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1 Introduction

1.1 Background

The Ultra Ethernet Consortium (UEC) is an industry effort — involving many contributors including
hyperscalers, system vendors, silicon providers, and others — with a mission to enhance Ethernet for
use in Al and HPC.

Contributors are aiming to cover all aspects of a successful specification, including software APIs,
network protocols, hardware friendliness and scalability, network operation, compliance, and
extensibility. In service of the UEC’s mission, this document provides a specification of new protocols for
use over Ethernet networks and optional enhancements to existing Ethernet protocols that improve
performance, function, and interoperability of Al and HPC applications.

The Ultra Ethernet (UE) specification covers a broad range of software and hardware relevant to Al and
HPC workloads: from the API supported by UE-compliant devices to the services offered by the
transport, link, and physical layers, as well as management, interoperability, benchmarks, and
compliance requirements.

UE does not require or mandate changes to the network layer or the Ethernet PHY and link layers. For
instance, a UE-compliant implementation might use Ethernet switches common in the market at the
time of publishing the specification. However, UE offers optional network, Ethernet PHY, and link layer
features that enable better performance for demanding applications. Over time, and as experience is
gathered, it is possible that some of these optional features might become commonplace and even
required. A UE-compliant implementation supports the mandatory requirements in this specification.

1.1.1 UEC Organization

UE architecture comprises the four lower layers of the classic ISO/OSI networking model along with
software services and the APIs that expose these services to the upper layers. Each of the four layers is
addressed by a UEC working group (depicted as rows in Figure 1-1), which defines the required
architecture with strict requirements and characterization in terms of scalability, capability,
performance, and interoperability. The UEC management working group provides Ethernet fabric and
endpoint management. The UE management architecture includes management protocols, transports,
and data models. The UEC Compliance working group, in collaboration with the Technical Advisory
Committee (TAC), defines the compliance and interoperability requirements. The UEC Management and
Debug & Performance working groups interact with all the aforementioned working groups.

Additionally, UEC is adding storage services alongside the network services for relevant application and
workloads. The working groups depicted as columns in Figure 1-1 were formed after the initial set of
working groups depicted as rows. Their contributions to the UE specification and other standalone
documents are scheduled for a future release.
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Figure 1-1 - Working Group Organization

UEC is incorporated under the Linux Foundation Joint Development Foundation (JDF) as an International
Standards Development Organization (SDO). UE specifications are OPEN for public download. Future
versions, once created and ratified, will also be publicly available for download. It is the intention of UEC
members to propose their work products to appropriate standards organizations and/or relevant open-
source communities to encourage broad adoption and to contribute as appropriate to mainstream
industry standardization efforts for Ethernet, Internet Protocol (IP), software, and API development.
Potential relevant SDOs to consider include, but are not limited to, IEEE, IETF, OCP, OFA, SONiC/SAl, and
various storage and management SDOs.

1.1.2 UE Transport Profiles

UET specifies three profiles: Al Base, Al Full, and HPC. The Al Base profile is designed to provide the
functionality required by current and future Al applications where high performance is required at the
lowest cost. The Al Full profile adds additional features (e.g., deferrable send, exact match, and support
for atomic primitives). The HPC profile addresses the needs of High Performance Computing applications

and is largely a superset of the Al Full profile.

Each profile lists the services provided and the distinct features required at the transport layer of a
compliant product. The profiles themselves are defined in section 3.3. The details of the hardware
interface at the endpoint are out of scope for the UE specifications. Software APIs to the upper layers
are specified to provide interoperability with higher-layer software. The goal is that different vendors’
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devices supporting a given profile exhibit interoperability and functionality as described in these
specifications.

Profiles may include optional-to-implement features. If optional features are implemented, they MUST
follow the defined specification to claim compliance.

1.2 UE Specification Conventions
The UE specification uses the following conventions for normative language, informative notes,
terminology, units, numbers, and figure formatting.

1.2.1 Normative, Informative, and Implementation Statements

Normative language is identified using terms defined by IETF BCP14. The key words “MUST”, “MUST
NOT”, “REQUIRED”, “SHALL", “SHALL NOT”, “SHOULD”, “SHOULD NOT”, “RECOMMENDED”, “NOT
RECOMMENDED”, “MAY”, and “OPTIONAL” in this document are to be interpreted as described in IETF
BCP 14 [4], IETF RFC 2119 [1], and IETF RFC 8174 [2]when, and only when, they appear in all capitals, as
shown here.

All text not explicitly identified as informative comment is normative. An [informative] marking in the
section title applies to the entire section including any subsections. Diagrams and tables are considered
normative unless marked in the title as [informative].

Sections of text are marked as informative using the following convention:

Informative Text:
Informative text is included in this area.

Occasionally, notes to the implementer of this specification are included for informational purposes.
These notes are intended to clarify the intent of the specification and to provide guidance to the
implementer. They are indicated with the following format:

Implementation Note:
Implementation note text is included in this area.

1.2.2 Terminology

1.2.2.1 Abbreviations

Abbreviation Definition
AAD Additional authentication data
ABI Application binary interface
ACK Acknowledgement
AEAD Authenticated encryption associated data
AES Advanced encryption standard
Al Artificial intelligence
AN Association number
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Abbreviation

Definition

API Application programming interface
AV Libfabric address vector

BDP Bandwidth-delay product

BER Bit error ratio

BTS Back to sender

BW Bandwidth

c2Cc Chip to chip

c2M Chip to module

CBFC Credit-based flow control

cC Credits consumed (Link Layer) / congestion control (Transport Layer)
CCC Congestion control context

CCL Collective communications library
CCR Corrected codeword ratio

CF Credits freed

CG Codeword group

CID Company identifier

CIR Codeword interleaving ratio

CL Credit limit

CMS Congestion management sublayer
CcpP Credit packet

cQ Libfabric completion queue

CRC Cyclic redundancy check

CSIG A layer 2 congestion signaling mechanism
Ctlos Control ordered set

cu Credits in use

DPA Differential power analysis

DIC Deficit idle count

ECMP Equal cost multi-path

ECN Explicit congestion notification (RFC 3168)
EP Libfabric endpoint

EQ Libfabric event queue

EQDS Edge queued datagram service

EV Entropy value

FA Fabric address

FEC Forward error correction

FEP Fabric endpoint

Fl Fabric interface

FLR Frame loss ratio

FPC Frames per codeword

GCM Galois counter mode
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Abbreviation

Definition

GMAC

Galois message authentication code

gNMI GRPC network management interface

gNOI GRPC network operations interface

gRPC gRPC remote procedure calls

HPC High-performance computing

ICV Integrity check value

IP Internet protocol (RFC 791 and/or RFC 8200)
IPG Interpacket gap

v Initialization vector

KDF Key derivation function

KMD Kernel mode driver

LACP Link Aggregation Control Protocol (IEEE Std 802.1AX)
LAG Link aggregation

LLDP Link Layer Discovery Protocol (IEEE Std 802.1AB)
LLR Link layer retry

MAC Media access control

MDIO Management data input/output

MID Message identifier

Ml Media-independent interface

MMF Multi-mode fiber

MPI Message passing interface

MR Libfabric memory region

MTBPE Mean time between PHY errors

MTTFPA Mean time to false 802.3 packet acceptance
NACK Negative acknowledgement

oSl Operating system instance

PASID Process address space identifier

PCS Physical coding sublayer

PDC Packet delivery context

PDS Packet delivery sublayer

PFC Priority-based flow control

PGAS Partitioned global address space

PHY Physical layer device

PID Process identifier

PLS Physical layer signaling

PSN Packet sequence number

QoS Quality of service

RI Resource index

RoCE RDMA over converged Ethernet

ROD Reliable ordered delivery
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Abbreviation
RS Reconciliation sublayer
RS-FEC Reed-Solomon forward error correction
RTO Retransmission timeout
RTR Restart transmission request
RTT Round trip time
RUD Reliable unordered delivery
RUDI Reliable unordered deliver of idempotent operations
SACK Selective acknowledgement
SD Secure domain
SDK Secure domain key
SDKDB Secure domain key database
SDI Secure domain identifier
SDME Secure domain management entity
SER Symbol error ratio
SES Semantic sublayer
SHMEM Shared memory / Symmetric hierarchical memory
SMF Single-mode fiber
SSI Secure source identifier
TC Traffic class
TSC Timestamp counter
TSS Transport security sublayer
UCR Uncorrectable codeword ratio
UE Ultra Ethernet
UET Ultra Ethernet Transport
UEC Ultra Ethernet Consortium
uuD Unreliable unordered delivery
VAS Virtual address space
VC Virtual channel
VLAN Virtual LAN (local area network)
WDM Wavelength division multiplexing
YANG Yet another next generation

1.2.2.2 Terms

Class Term Description
Operating System CPU Central processing unit; a generic processor for arbitrary
Communication computation functions.
Memory An electronic holding place for the instructions and data used
by CPUs and accelerators.
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Class

Term

Description

Operating system
instance (OSI)

An instance of an operating system (e.g., a virtual machine).

Process

An instance of a program executing on an OSI owned by a
specific user and having a private virtual address space (VAS).
A process is identified by a process ID unique to the OSI it runs
in.

Process address space
ID (PASID)

A unique identifier for a VAS within each OSI. A target PASID
can be determined based on a combination of JobID and
PIDonFEP.

Process ID (PID)

Operating system-assigned identifier for a process.

User

An entity with access privileges to nodes of a cluster capable
of executing compute processes.

Virtual address space
(VAS)

Process-specific virtual address for memory allocation.

Fabric
Communication

Absolute addressing

A mode of addressing a resource within the client/server job
model. Includes three complementary parts of the destination
address: (1) an FA identifying a FEP, (2) a PIDonFEP
interpreted without a JobID, and (3) a Resource Index.

Accelerator

A compute module or device designed for the efficient
execution of specific functions.

Acknowledgment
packet (ACK)

A packet used by the UET to implement reliability. ACKs are
transmitted by the destination PDC to the source PDC to
indicate successful reception of packets at the PDS layer. ACKs
can carry a semantic response.

Best-effort network

A network (as opposed to a lossless network) where packets
are sent on at least some links without any explicit
communication of buffer availability between a transmitter
and the link peer. Packets may be dropped due to insufficient
buffering.

Cluster

A set of nodes connected by one or more fabric planes.

Congestion control
context (CCC)

Used to control the rate of data transfer between two FEPs
for RUD and ROD traffic. In some cases, a CCC is shared by one
or more PDCs.

Congestion
management sublayer
(CMS)

The part of the Ultra Ethernet Transport (UET) protocol
responsible for managing congestion.

Entropy value (EV)

The value of the field within a packet header (e.g., UDP source
port) used to load balance packets across paths within the
fabric

Fabric

One or more fabric planes.

Fabric address (FA)

IPv4 (RFC 791) or IPv6 (RFC 8200) address.
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Class

Term

Description

Fabric endpoint (FEP)

A logical entity addressable by a single (assigned) FA. The UE
transport protocol, including the optional security context,
terminates at a FEP. A FEP connects to a fabric using a port
and can be used only by a single OSI. A FEP can have multiple
ports using a single FA, as long as the ports are each
connected to completely isolated fabric plane. A node can
have one or more FEPs.

Fabric path or path

An ordered set of links (hops between nodes and/or switches)
through which a specific packet is transmitted from a source
FEP to a destination FEP. Packets can be routed along multiple
paths or planes between two FEPs.

Fabric plane or plane

A set of FEPs connected with links and switches (optionally)
allowing any FEP to communicate with other FEPs in the same
set. Communication between FEPs on different fabric planes
is beyond the scope of this specification.

Folded Clos Type of multistage network topology composed of crossbar
switches. Also known as a fat tree.

Frame A unit of data transmission on an Ethernet network using
layer 2 encapsulation, starting with the MAC address and
ending with the CRC.

Initiator The FEP that initiates the creation of a PDC for RUD and ROD
modes.

Link A physical connection between two ports.

Lossless network

A network in which all network devices (switches and
endpoints) avoid packet loss due to buffer overflow by
transmitting a packet only when it is known that the link peer
has available buffers to receive and store the packet. Packet
loss avoidance is applied to all links in the network.

Message One or more packets with the same message ID. A message is
split into a spatially (with respect to memory addressing)
ordered set of packets at the source. One or more messages
(and supporting packets) make up a transaction.

Negative A packet used by the UET to implement reliability. NACKs are

acknowledgement transmitted by the destination PDC to the source PDC to

packet (NACK) provide an explicit indication of packet loss.

Node A computing device with one or more FEPs. A node may
contain one or more CPUs and/or one or more accelerators.

Packet An IPv4 or IPv6 datagram transferred across the network.

Packets are routed through the network along paths. Packets
of the same PDC traversing different paths may arrive in a
different order than how they were sent.

Packet delivery
context (PDC)

A logical unidirectional and often transient entity (established
by the transport) between two FEPs, which exists at the
initiator and at the target FEP to control the successful
transmission of packets.
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Class

Term

Description

Packet delivery
sublayer (PDS)

The part of the Ultra Ethernet Transport (UET) protocol
responsible for delivering packets with desired ordering and
reliability over IP/Ethernet networks.

Packet window

The maximum number of unacknowledged bytes that can be
outstanding on a congestion control context between two
FEPs.

Port

A single Media Access Control (MAC) as defined by IEEE 802.3
and any UE extensions.

Relative addressing

A mode of addressing a resource within the parallel job model
to ensure scalability to the largest process counts. Includes
four complementary parts of a destination address: (1) an FA
identifying a FEP, (2) a JoblID identifying a job in a cluster
uniquely, (3) a local PIDonFEP ranging from 0 to P-1
identifying one of the P OSI PIDs that are associated with a
destination FEP (that are part of the job), and (4) a Resource
Index.

Semantic sublayer
(SES)

The part of the Ultra Ethernet Transport (UET) protocol that
implements the OFI libfabric API.

Switch A device with two or more ports that forwards packets
received based on the packet’s FA or other information/state.
Target The FEP that responds to the initiation of a PDC from an

initiator. The target does not initiate messages on the PDC
and only responds to messages from the initiator.

Traffic class (TC)

A classification of network traffic that identifies mechanisms
and resources within endpoints and switches used for the
isolated transmission of packets (e.g., queues, buffers,
schedulers). Traffic classes are distinct from one another and
can be prioritized between one another. Attributes and fields
of received packets are used to identify a traffic class (e.g.,
Differentiated Services Code Point (DSCP) [3]).

Transaction

One or more messages (and supporting packets) needed to
implement the libfabric request and deliver the payload
requested by the user.

UE Transport Protocol
(VET)

A method including protocol, packet formats, and FEP policies
by which FEPs communicate.

Parallel

Communication

Job A job consists of one or more ranks.

JobID A unique identifier for a parallel job within a cluster. JobIDs
are used for addressing and authorization purposes.

Parallel job A collection of processes running on a cluster that belongs to

the same user and can communicate.

Parallel job model

A mode of cluster operation that involves MPI/*CCL or
SHMEM. The parallel job execution is characterized by a “run
to completion” model (in which checkpoint/restart is a simple
reliability technique).
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Class

Term

Description

PIDonFEP

An identifier of a process associated with a FEP numbered
from 0 to P-1. If each FEP has the same number of processes
associated with it, each endpoint can easily compute the
PIDonFEP of a particular RankID.

Rank A process that cooperates to compute a particular workload.
A job can spawn multiple ranks on each OSI, and an OSI can
host ranks of multiple jobs.
RankID An assigned rank number per job starting from 0.
Client-Server Client A software entity on a node that communicates to a server

Communication

through FEPs.

Client/server job
model

A mode of cluster operation in which clients connect to
servers, e.g., storage or Function as a Service (FaaS). The
client/server execution typically runs the server for an
indefinite time, serving an indefinite number of clients (often
with complex reliability and availability guarantees).

Discovery

The process of finding servers using static fabric addresses or
a discovery service such as DNS or LLDP.

Resource Index (RI)

Identifies resources within a process such as a service, library,
or other entity (e.g., MPI vs. *CCL).

Server

A software entity on a node that provides a service to one or
more clients.

Server PIDonFEP

In combination with a Resource Index, a server PIDonFEP
identifies a service available on a specific FEP. The same FEP
may be used by multiple servers (on a single OSl), and a single
server may offer services through multiple PIDonFEPs in
combination with resource indices on multiple FEPs.

Security Threat
Model

Attacker An entity that wants to extract information from a
communication or modify communicated data.

Ciphertext The packet data containing the encrypted plaintext that is
sent on the wire between sender and receiver.

Information Data or properties of the data exchanged between two

participants that would allow the attacker to take or cause an
adverse action. Examples include cryptographic keys,
decisions of the FEP, etc.

In-scope threat

Threat that is explicitly addressed by TSS and that has defined
mitigations.

Intermediary/switch

An entity that routes or forwards packets to a receiver.

Out-of-scope threat

A threat that is not considered or addressed in this
specification.

Plaintext

The original data that needs to be encrypted by the sender
before transmission and the resulting data after it is
decrypted by the receiver.
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Class

Term

Description

Protocol secrets

UET secrets that are protected from users of the protocol
and/or attackers to maintain the trusted connection.

Side channel A method for an attacker to extract information without the
knowledge of the sender or receiver.
Threat Damage or danger that could expose protocol secrets, allow

the leaking of packet data, or degrade the integrity of the
network.

Threat mitigation

How TSS specifically addresses the possible threat.

Trusted entity

The portion of the FEP entrusted to handle key material and
perform cryptographic functions.

Privileged entity

A portion of the FEP and kernel driver that is responsible for
assigning transport-critical information such as JobID and
security context.

User entity

User application that uses a UET transport service.

Transport Security

Additional
authentication data
(AAD)

The additional data authenticated with the ciphertext. Used in
conjunction with an AEAD cipher.

Association number
(AN)

Selects between one of the two active keys (SDK) for an SD.
The active AN is carried in the TSS header allowing the use of
both the old and new keys until the key rotation is complete.
The AN is used for key rotation.

Authenticated
Encryption with
Associated Data
(AEAD)

A symmetric cryptographic scheme that combines
confidentiality and authenticity.

Advanced Encryption
Standard (AES)

A symmetric encryption algorithm used with AES-GCM.

Cryptographic key

Either a truly random binary string of a length specified by the
cryptographic algorithm or a pseudorandom binary string of
the specified length that is computationally indistinguishable
from one selected uniformly at random from the set of all
binary strings of that length. This definition is from NIST
SP800-108.

Differential power
analysis (DPA)

A side-channel attack that involves statistically analyzing
power consumption measurements from a cryptosystem.

Epoch

A key epoch is a subinterval between changes in security
association. Key epochs are managed by the SDME to ensure
the IV is unique and MAY be used to automatically generate
new SDK by using a KDF.

Initial secure domain
key (SDKi)

A symmetric key from the SDKDB. This can be used directly as
the SDK or optionally used in a KDF to form the SDK.

Galois/Counter Mode
(GCMm)

A mode of operation for symmetric-key cryptographic block
ciphers.
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Class

Term

Description

Galois message
authentication code
(GMAC)

An authentication algorithm used with AES-GCM.

Initialization vector
(IV)

The initial block/condition of the block cipher.

Integrity check value
(1cv)

The checksum calculated by the sender over the AAD and
ciphertext and sent with the packet. The receiver uses the ICV
to validate the cryptographic integrity of the packet.

IPv4SIP IPv4 (RFC 791) source address.
IPV6SIP IPv6 (RFC 8200) source address.
IPv4DIP IPv4 (RFC 791) destination address.
IPv6DIP IPv6 (RFC 8200) destination address.

Key derivation
function (KDF)

A process to derive a new symmetric key (Ko) from an input
key (Ki) using a pseudo random function (PRF). A KDF uses a
derivation key (Ki), label and context input parameters to
generate an output key (Ko). In pseudo code form, (Ko =
KDF(Ki, label=x, context=y)).

SDK database (SDKDB)

An SD database indexed by SDI and used to store/retrieve
security parameters for an SD. The SDI, AN, and possibly SSI
are used to obtain the key for the packet.

Secure domain (SD)

A set of FEPs that communicate using the security services
(confidentiality and encryption) of TSS. Members of an SD
share a common set of security parameters (keys,
confidentiality offset, etc.). The SD is represented in the
packet as using an SDI.

Secure domain
management entity
(SDME)

Abstract secure domain administrator.

Secure domain
identifier (SDI)

An identifier of the SD, carried within the packet. The SDI in
conjunction with the association number (AN) identifies the
SDKDB key slot. This is used for rekeying.

Secure domain key
(SDK)

A symmetric key used for packet AEAD cipher or KDF
operation. SDK is a cryptographic key per NIST security
definition.

Secure source
identifier (SSI)

A unique identifier of the source of the packets. This identifier
can be explicitly carried within the packet (SSI) or the source
IP header address.

Timestamp counter
(TSC)

A monotonic counter (different for each packet sent).

Transport Security
Sublayer (TSS)

The UE Transport Security Sublayer defined by this
specification
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Class

Term

Description

Libfabric mapping

Application binary
interface (ABI)

An interface between two binary program modules (e.g., user
program and a library or operating system). The interface
defines how data structures and computational routines are
accessed in a low-level hardware-dependent format.

Application
programming
interface (API)

A type of software interface. An API offers a service to other
pieces of software and provides a way for two or more
computer programs or components to communicate.

Collective
Communications
Library (*CCL)

One of any number of Collective Communication Libraries
that implement collective operations common in parallel
computing (e.g., Broadcast, AllReduce, AllGather, etc). An
accelerator vendor commonly provides a proprietary *CCL
implementation that supports the vendor’s accelerator
capabilities.

Kernel mode driver
(KMD)

A component of the operating system that runs in the
privileged kernel mode, allowing code to access the system
memory and hardware directly.

Libfabric address
vector (AV)

A mapping of higher-level addresses, which may be more
natural for an application to use, into fabric-specific
addresses. See libfabric
<https://ofiwg.github.io/libfabric/v1.20.1/man/fi_av.3.html>.

Libfabric completion
queue (CQ)

High-performance event queues used to report the
completion of data transfer operations. See libfabric
<https://ofiwg.github.io/libfabric/v1.20.1/man/fi cq.3.html>.

Libfabric endpoint (EP)

A communication endpoint using the libfabric API that can
listen for connection requests and perform data transfers.
Endpoints are configured with specific communication
capabilities and data transfer interfaces. See libfabric
<https://ofiwg.github.io/libfabric/v1.20.1/man/fi_endpoint.3.
html>.

Libfabric event queue

(EQ)

A queue used to collect and report the completion of
asynchronous operations and events. Event queues report
events that are not directly associated with data transfer
operations. See libfabric
<https://ofiwg.github.io/libfabric/v1.20.1/man/fi_eq.3.html>.

Message passing
interface (MPI)

A standardized and portable message-passing
communications library interface designed for parallel
computing (e.g., MPI-4.1 as defined by the MPI Forum).

Partitioned global
address space (PGAS)

A parallel programming model that uses a logically partitioned
global memory address space to enhance performance and
efficiency in distributed systems.

Shared memory /
symmetric hierarchical
memory parallel
programming library
(SHMEM)

A communications library for distributed memory
environments focusing on one-sided communication allowing
applications to read and write each other's memory.
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Class

Term

Description

Credit-based flow
control

Best-effort VC

A virtual channel configured to not use the CBFC credit
mechanisms.

CBFC message

A link-level message between a CBFC sender and receiver.
Different CBFC messages are formatted as either a CtlOS or a
fully formed Ethernet packet.

Cell

A unit of storage in a data buffer. Packets are usually divided
into one or more cells for storage. The number of cells in a
receiver’s data buffer is directly related to the number of
credits that a sender can use.

Control ordered set

An 8-byte message format used by CBFC and LLR to pass
information between link partners.

Credit

A token representing a unit of data storage at the receiver.
Credits allow a sender to transmit data packets and are
consumed at the sender as packets are transmitted. Credits
are returned to the sender by the receiver when the receiver
has released buffer resources that can be utilized for new
packet arrivals.

Lossless VC

A virtual channel configured to require CBFC credits for
transmission of packets with guaranteed buffering available at
the receiver. A lossless virtual channel can be flow controlled
separately from other lossless VCs on a single physical link.

Receiver

The link partner function that receives packet data and
transmits CBFC credits.

Sender

The link partner function that transmits packet data and
receives CBFC credits.

Virtual channel (VC)

An entity that contains a subset of a port’s traffic with similar
traffic characteristics, dedicated buffering, and flow control
management.

Link Layer Discovery

Link Layer Discovery
Protocol (LLDP)

A media-independent protocol, standardized by IEEE as IEEE
Std 802.1AB, capable of running on all IEEE 802® LAN stations
allowing ports to learn the connectivity and management
information from adjacent stations.

Company ID (CID)

IEEE Std 802: A unique 24-bit identifier assigned by the IEEE to
identify an organization. A CID cannot be used to generate
universally unique MAC addresses.

Management

gNMI

A standard gRPC-based network management interface
defined by the OpenConfig project and used to retrieve and
modify network device configuration as well as provide
control and generation of telemetry.

gNol

A standard gRPC-based network operations interface defined
by the OpenConfig project and used for executing operational
commands on network devices.

gRPC

A high-performance open-source framework for universal
remote procedure call (RPC).
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Class Term Description

Yet Another Next A data modeling language for the definition of data sent over
Generation (YANG) network management protocols such as the NETCONF and
RESTCONF.

1.2.3 Formatting

Figures are used to define protocol headers and protocol sequence exchanges. The conventions for
these figures are shown below. Wherever diagrams and figures inadvertently contradict the textual
description, the text always takes precedence.

1.2.3.1 Header Format Figures

Figure 1-2 is an example of a full-header stack as illustrated in other sections of the specification. These
full-header stacks do not show all the details of each header in each layer, but rather identify the
important fields needed for parsing the headers and finding the next layer of the stack. The layers of the
header stack are shown on the left and are differentiated by color.

L2 Ethernet header [ ETF]BI'_T\/E)B__|E """""
L3 _______ IpvdorlIPvb header
! protocol/next_hdr !
L4 ,,,,,,,,,,,,,,,EF’EECEJEQEEEUHQPX,,,,,,,,,,,,,,i, ,,,,,,,,,,,,,, destination_port=UET
UDP header
|type=UET TS5 |
TSS header
T T
______ type _ _j_next_hdr ;
PDS header
UET SES header
UET payload
TSS ICV
L2 Ethernet FCS

Figure 1-2 - Example Full Header Format

Figure 1-3 is an example of an individual detailed header figure used in other parts of the specification.
Bytes are labeled across the top and down the left side. The least significant bit (LSB) of a byte is the first
bit on the left, and the most significant bit (MSB) of a byte is on the right. Header fields are labeled
below the byte labels at the top and to the right of the byte offset labels. Header field widths are based
on actual bit sizes. Reserved fields are to be ignored upon receipt and transmitted as zeros. Each
individual header is a stand-alone figure and shows the header starting at a byte offset of zero. The
actual offset of the header within a receive packet depends upon the specific format of the previous
headers, which are not shown in the stand-alone figure.
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Figure 1-3 - Example Individual Header Format

A description of the header fields is provided in a table following the detailed header figure.

1.2.3.2 Sequence Diagrams

Figure 1-4 shows an example of a sequence diagram used in this specification. Sequence diagrams are
used to illustrate the timeline for specific information exchanges between two entities and across
functional layers within entities. The event timeline flows from top to bottom. The sequence diagrams
do not provide a normative depiction of the complete set of information exchanged between entities,
but rather are used to describe a particular instance of a communication scenario. The example shows a
message provided to the UET semantics layer by an external entity (e.g., a libfabric provider), and how it
is broken into packets and passed to the PDS layer for transmission over the wire to a remote target.
Some of the important UET header fields are shown above the arrows indicating packets transmitted on
the wire. Actions and events that occur during the information exchange are highlighted using dashed
arrows and supporting text.
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1.2.4 References

The UE specification makes both normative and informative references. Normative references are
required to assure interoperability among UE components. Informative references are intended to
provide additional background and further understanding of the UE operating environment. Each
chapter of the UE specification may provide a list of normative and informative references.

The following normative references are used in this introductory material:

[1] IETF RFC 2119, "Key words for use in RFCs to Indicate Requirement Levels," 1997. [Online].
Available: https://www.rfc-editor.org/rfc/rfc2119.

[2] IETF RFC 8174, "Ambiguity of Uppercase vs Lowercase in RFC 2119 Key Words," 2017. [Online].
Available: https://www.rfc-editor.org/rfc/rfc8174.

[3] IETF RFC 2474, "Definition of the Differentiated Services Field (DS Field) in the IPv4 and IPv6
Headers," 1998. [Online]. Available: https://datatracker.ietf.org/doc/html/rfc2474.

[4] IETF BCP14, "IETF Best Pratice 14," 2023. [Online]. Available:
https://datatracker.ietf.org/doc/bcp14/.

1.3 System View and Nomenclature
The field of Al and HPC is evolving at a very fast pace. Al models are changing at an even faster pace.
This has created a need for fine-tuned systems that scale horizontally and vertically for various Al and
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HPC workloads. Horizontal scaling involves adding more endpoints and/or fabric switches. Vertical
scaling involves endpoint expansion by adding more processing, memory, and/or storage.

Algorithm and model evolution is outpacing the hardware (mainly on memory, storage, and network
aspects). An optimal system balances a triangle of compute, network (i.e., fabric), and the associated
data (i.e., model parameters and training data). The UE specification explicitly addresses network
technology and implicitly addresses other elements.

The UE specification addresses distributed workloads, whether they are Al or HPC, and naturally inherits
some nomenclature from parallel computing. Figure 1-5 provides a system overview of the parallel
computing components, terms, and concepts addressed by the UE specification. The following text
provides a high-level overview and introduction of the UE environment and associated nomenclature.
Technical details of the procedures, protocols and operation of the components specified in this
standard are provided in subsequent normative chapters.

UE is specified to operate within a cluster, which includes an interconnection of nodes through a fabric.
A port implements a single Media Access Control (MAC) as defined by IEEE Std 802.3, optionally
including any UE specific extensions, as required by the UET profile it complies with. A link connects two
ports. A fabric interface (Fl) is a physical entity that provides one or more ports and exposes one or more
fabric endpoints (FEPs) to one or more operating system instances (OSls). A fabric address (FA) is either
an IPv4 or IPv6 address, and a FEP is a logically addressable entity assigned a single FA. The UE transport
protocol terminates at a FEP, optionally including a security context. Specifically, a FEP can only be used
by a single OSI, and a node may have one or more FEPs. Each OSI may use one or more Fls with one or
more FEPs to connect to a fabric.

A switch has two or more ports and is a packet forwarding device that is part of the fabric. Packets are
forwarded along a path based on forwarding information that includes the packet’s FA, other header
fields (e.g., the UDP source port used as an entropy value), and switch state. Any two packets with the
same path forwarding information are expected to take the same path through the fabric. A fabric plane
is a set of FEPs connected with links and optionally switches allowing any FEP to communicate with
other FEPs in the same set. Communication between FEPs across different fabric planes is beyond the
scope of this specification. A path exists within a fabric plane, but not across fabric planes. A fabric is
made up of one or more fabric planes.
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Figure 1-5 - System Overview

A node is a computing device with one or more FEPs. A cluster is a set of such nodes connected by a
fabric (Note that the simplified diagram in Figure 1-5 is for illustration purposes and shows only a single
node in the cluster. A typical UE deployment can have hundreds of thousands of nodes). An accelerator
is a computing module or device designed for the efficient execution of specific functions. ACPU is a
generic processor for arbitrary computation. CPUs and accelerators have memory attached, and a FEP
has access to that memory through virtual addressing. A node may have local storage and contain one
or more CPUs and/or one or more accelerators.

A user is an entity with access privileges to nodes of a cluster. A user can execute processes. A process is
an instance of a program executing on an OSl owned by a specific user and having a private virtual
address space (VAS) in the memory. A process is identified by a process ID (PID) unique to the OSl it runs
in. A process address space ID (PASID) is a unique identifier for a VAS within each OSI.

Clusters can be used in two fundamentally different ways that can potentially co-exist:

1. Executingin a parallel job model (e.g., MPI/*CCL ,or SHMEM).
2. Executingin a client/server model in which clients can connect to servers (e.g., storage or a
Function as a Service (FaaS)).

Each packet carries an identifier indicating which model it is participating in. The parallel job execution is
characterized by a “run to completion” model, while the client/server execution typically runs the server
for an indefinite time, serving an indefinite number of clients (often with complex reliability and
availability guarantees).
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Two FEPs require IP-level connectivity to communicate. Multi-ported FEPs are supported in a UE
network provided there is one FA (i.e., IP address) associated with any FEP. The FA associated with the
FEP is used as the source for all packets sent from the FEP, or as the destination for all packets sent to
the FEP.

A FEP can have multiple ports (e.g., scenario A in Figure 1-6). UE does not mandate how those ports are
used. Many multi-ported configurations are possible, including: a link aggregation (LAG) with members
terminating on the same switch (e.g., scenario D in Figure 1-6), a multi-switch LAG with members
terminating on different switches (e.g., scenario E in Figure 1-6), or IP-level multipath connectivity to
reach the FEP’s individual address via multiple ports or in an active-standby configuration. Other
scenarios for supporting multiple ports on a common fabric interface are possible and are
implementation-dependent (e.g., Scenarios B, C, and F in Figure 1-6). Scenario F of Figure 1-6 shows an
embedded switch on a fabric interface card.
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FI (Fabric Interface) .
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Figure 1-6 - Multi-plane Networks and Multi-port FEPs

In multi-ported FEP architectures, the UET congestion management sublayer chooses the entropy value
for each packet. The UET does not mandate any specific port-selection method for multi-ported hosts; it
can vary between implementations.

Informative Text:

In multi-ported configurations, the network is expected to provide a mechanism that allows a FEP to
detect if a destination IP address (e.g., the FA of a peer FEP) is unreachable on any given plane and, if
so, avoid using that plane for that destination. Possible methods to do this include using IP routing
protocols or ICMP unreachable messages to communicate unreachability to a FEP., The UET, however,
does not mandate any specific technique. In the future, mechanisms might be defined in the UET to
allow the determination of reachability.
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Two different computing models are differentiated in terms of addressing: parallel job and client/server.
A single FEP may be designed to support the traffic type of both or just one computing model. Both
modes can operate simultaneously over a single FEP. Figure 1-7 and Figure 1-8 are overviews of the two
different computing models within a cluster.

PIDonFEP=X 1 PIDonFEP=X

Rank1 Rank3
PIDONFEP=Y. - . PIDonFEP=Y

Fabric Interface
FEP)
FASYEVEY:Y]

RankO Rank1
PIDonFEP=Z . . PIDonFEP=Z

| |

A Switch J

Figure 1-7 - Parallel Job Model

A parallel job is a collection of processes running and communicating on a cluster that belongs to the
same user. A job is often started collectively and is uniquely identified by a JoblD within a cluster. JobIDs
are used for addressing and authorization purposes. Jobs consist of one or more ranks, which are
processes that cooperate to compute a particular workload. A job can spawn multiple ranks on each OSl,
and an OSI can host ranks of multiple jobs. If a job globally contains R processes/ranks, then they are
numbered with RankIDs from 0 to R-1. In the parallel job model, the local PIDonFEP addressing ranges
from 0 to P-1 where P processes are associated with a FEP for a given job. If each FEP has the same
number of processes associated with it, each endpoint can easily compute the PIDonFEP of a particular
RankID. As an example, assume a job runs on R ranks across N nodes, where each node has F FEPs. The
RankID range is 0 to R-1, the ranks per node is R/N, and the ranks per FEP is R/N/F. In this case, P is
R/N/F and the PIDonFEP range is O to P-1, or O to R/N/F-1.

A server is a software entity on a node that provides a service to one or more clients. Clients and servers
communicate through FEPs. A server PIDonFEP identifies a service available on a specific FEP, and a
Resource Index identifies a resource within that service. The same FEP may be used by multiple servers
(on a single OSI), and a single server may offer services through multiple PIDonFEPs on a FEP. A
client/server JobID is conceptually the same as an “N to 1” connection in that it is used for authorization
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Figure 1-8 - Client/Server Job Model

of a client toward a server, but it may be ephemeral in that it exists only while traffic is active. The
combination of server PIDonFEP and Resource Index is conceptually the same as a TCP/UDP port.

UET servers can use well-known server PIDonFEP values and a set of resource indices for specific
services, and UET clients may use either preconfigured static server FAs or various discovery
mechanisms to resolve a server’s hostname or alias to an FA, such as DNS or a ‘hosts’ file, allowing
clients to establish communications with a server. Additionally, UET clients and servers can choose to
utilize non-UET discovery methods such as first establishing a TCP/IP connection and subsequently
exchanging UET capabilities, addresses, and identifiers.

UET has both relative and absolute endpoint addressing modes (see Figure 1-9). The relative addressing
mode provides consecutive addressing within the parallel job model to ensure scalability to largest
process counts. Absolute addressing is used in the client/server model.

In the relative addressing mode, UET defines four complementary parts of a destination address:

An FA identifying a FEP.

A JoblID uniquely identifying a job in a cluster.

A PIDonFEP ranging from 0 to P-1.

A Resource Index (Rl) identifying a service, library, or other entity within the target process (e.g.,
MPI vs. *CCL).

el

When a packet arrives at a destination FEP, the target PASID can be determined based on a combination
of JobID and PIDonFEP.
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Informative Text:

Assume a job contains K endpoints and P processes per endpoint. This addressing scheme allows for a
table of size K-1 at the source to translate to a destination FA and then, at this destination, a table of
size P to translate to the target process at the destination. In a system that supports multiple jobs per
endpoint, the JobID disambiguates different jobs at the destination to find the right PIDonFEP table of
size P. This avoids O(K*P) table entries at the source that would be required if one flat address space
was used. This approach replaces the O(K*P) table entries with O(K+P) entries. . K is expected to be in
the tens of thousands, P in the hundreds.

In the absolute addressing mode, UE defines three complementary parts of an address:

1. An FAidentifying a FEP.
2. A PIDonFEP identifying one of the OSI PIDs that are associated with a destination FEP.
3. AResource Index (RI) identifying a service or other entity within the target process.

The Rl is useful to address a specific subroutine or function in a server (e.g., running a FaaS or rPC
service). When a packet arrives at a destination FEP, the target PASID is determined based on the
PIDonFEP. The JoblID is not part of addressing but is used for authorization.

Messages represent a single communication transaction in the UE network. Figure 1-10 shows the main
concepts behind message communication delivery. A transaction is created by a process calling into the
UET libfabric provider, which in turn calls into the semantics layer. The semantic sublayer creates various
messages to complete the transaction. A message and its associated buffer are split into a spatially
ordered set of packets, with respect to memory addressing, at the source FEP. The packets are sent and
routed, potentially out of order, through the network along paths. A message may initially involve a
rendezvous protocol step as discussed in the UET semantics specification.
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The source of such a message is called the initiator, and the destination is called the target. Each packet
has a source FEP and a destination FEP. A path is an ordered set of links (between nodes and/or
switches) through which two FEPs communicate. Without considering packet loss in the fabric, packets
of the same traffic class (TC) sent along the same path are always received at the destination FEP in the
order they were sent at the source. When packets are routed along multiple paths between two FEPs,
no ordered arrival among different paths is guaranteed. UET expects that switches will, in the absence of
routing changes, deliver two packets from the same PDC, with the same entropy value and traffic class,
along the same path. The UE transport protocol (UET) defines protocols, packet formats, and FEP
policies by which FEPs communicate. A FEP can be designed to support either parallel, client/server, or
both traffic types.
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Memory Memory 1

. Transactions
libfabric . libfabric 11
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Packet UET Packets . Packet I
I 1 Delivery. . Delivery. .

Security.
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Packet Delivery Context (PDC)

Figure 1-10 - Transport Data Delivery and Packet Delivery Contexts

A packet delivery context (PDC) is a unidirectional logical and often transient entity (defined by the
transport) between two FEPs, that exists at the initiator FEP and at the target FEP to control the
successful transmission of packets. The packet delivery sublayer (PDS) creates and uses PDCs to provide
the requested ordering and reliability delivery mode. Reliability is implemented using acknowledgment
packets (i.e., ACKs and NACKs), which the destination transmits to the source to indicate successful end-
to-end reception. The congestion management sublayer (CMS) controls the number of bytes that a
source can transmit to a destination at any given time. A packet window is the maximum number of
unacknowledged bytes that can be outstanding on a CCC. Multiple processes of the same job can share
a single PDC, and a single process can use multiple PDCs to communicate with another process. Between
two FEPs, there can be one or more PDCs, and each packet identifies an associated PDC.

44

Copyright © 2025 Ultra Ethernet Consortium™. All rights reserved.



1.3.1 Workloads [Informative]
The information in this subclause is background material and represents the state of the art for
workloads as of the publication of the UE Specification v1.0. UE targets the following four workloads:

Al training (AIT)

Al inference (All)
High-performance computing (HPC)
Client/server (e.g., storage traffic)

P wnN e

1.3.1.1 Al Training Workloads

Al training workloads were originally characterized by “3D parallelism” where the communication
pattern could be expressed as a 3D torus if it were beneficial. The first dimension is data parallelism
(DP), where the examples in a single minibatch are processed through multiple model replicas, and
gradients or weights are synchronized with allreduce operations.

The second dimension is pipeline parallelism (PP), where each pipeline stage is a set of layers of the
model, and communications of the activations in the forward direction and errors in the backward
direction are performed between neighboring layers on different accelerators forming a pipeline with
point-to-point communications.

The third dimension is operator parallelism (OP), which depends on the type of layer. For large language
models (LLMs), the main layer operation is matrix multiplication. Thus, layers would implement a
parallel matrix multiplication that can also be expressed with allreduce operations. “Mixture of Experts”
models often use expert parallelism (EP) that is similar to operator parallelism in the 3D parallelism
view. EP bundles k (for typical k=16 to 256) models together and performs an alltoall(v) operation
among them. The alltoall(v) operation is not always balanced. Al inference parallelism is very similar. It
differs in that it does not consider data parallelism and usually uses very small batches. Thus, both job
sizes and transmitted messages are generally smaller.

Later, additional parallelism dimensions, such as sequence and context parallelism were added and may
lead to higher-dimensional communication structures.

As a workload example (circa 2023), the well-known GPT-3 model had 175 billion parameters in 96
transformer layers. Storing those parameters in FP16 required 350 GiB, which required multiple state-
of-the-art accelerators available in 2023 (not accounting for stashed activations or other temporary
values or copies during training). In this scenario, if there are six accelerators along the pipeline and four
in the operator parallelism dimension, then there are 16 GPT decoder layers per four accelerators. On
accelerators available in 2023, this would have taken approximately 160 msec compute time. The
communication is then 50 MiB per layer along each dimension (pipeline and operator).

Assuming a target service level objective of 200 msec, then 40 msec are for pipeline communications
and the ring allreduce (which sends data twice). Each accelerator now sends 50 MiB 16*2 times for
allreduce and once along the pipeline dimension. Thus, it needs to communicate 1.7 GiB in 40 msec,
requiring 41 GiB/s. For lower latency, one can scale the operator dimension and decrease the
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communication time. For a 10 msec service level objective, one would need approximately 150-200
GiB/s throughput.

Al training workloads follow a 3D parallelism scheme but in addition to the weights, each accelerator
typically stores a “golden copy” of the weights as well as all activation outputs for its layers until it
applies the gradients on the backward pass. In general, Al training workloads require extremely high
(cheap) bandwidth and have low to moderate latency sensitivity. Typical message sizes are in the
megabyte or larger regime.

1.3.1.2 Al Inference Workloads

Al inference workloads follow a 3D parallelism scheme but do not offer data parallelism, as each input
sample is a user request. They may be batched, but usually this is used only to improve accelerator
efficiency. Al inference workloads sometimes have stringent service level objective requirements to
satisfy interactive usage patterns. In this case, batches are smaller, leading to smaller activations
(pipeline messages) as well as operations (allreduce). These often remain in the kilobyte-size range.

Consider generative Al inference on GPT-3 as an example. In this case only one token is input instead of
a full sequence in the GPT-3 example above. Thus, everything is approximately a sequence length
smaller (2048 for GPT-3). In practice, generative inference systems often use beam search for improved
quality. With a beam width of four, there is a total shrinking factor of 512. Unfortunately, the weight
memory remains the same, leading to the same distribution (OP=4, PP=6). The computation now can be
as small as 1 msec and would send 3.3 MB of data per accelerator. With a service level objective of 1.2
msec, a reduction would be performed in 0.2 msec, leading to a bandwidth requirement of 16 GB/s —
but now with allreduce of size around 100 KB. If those were split across multiple planes, then message
sizes would be in the single-digit kilobyte range. The bandwidth requirements grow with distributed KV
caching! Inference requires lower latency than training in general.

1.3.1.3 HPC Workloads

HPC workloads fall into two categories: (1) low depth (LD), which is highly parallel and (2) high depth
(HD), which has long dependency chains. HD workloads often have long and skinny-directed acyclic
graphs (DAGs) leading to latency-sensitive execution. Many strong scaling problems have this shape.

Consider weather forecasting as an example. In this case the computation must finish in a certain time.
The algorithms run many iterations during the simulation, where the time step inversely depends on the
resolution. More accurate higher resolution models lead to smaller timesteps. In practice, such models
have high communication overheads (25-50%) with mostly small (single-packet) messages (2.5 kiB) in
recurring patterns.

Many other workloads are LD and thus less latency-sensitive. Most weak-scaling workloads where one
can adjust the local domain size to run well on a given system fall into this category. Some of those
workloads may need high bandwidths (e.g., Al training) or high message rate (e.g., graph algorithms).
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1.3.1.4 Client/Server (e.g., Storage Traffic)

Storage traffic serves data from storage servers to endpoints and is an example of client/server
communication. The communication stacks often split larger requests into multiple smaller messages
(e.g., some MiB or even some KiB). Those sizes can, to some extent, be tuned to the transport protocol.
The data access patterns and sizes are user-dependent and are rarely controlled by the system
administrator. Thus, random incast events (e.g., many customers accessing the same storage server)
regularly occur.

1.4 Software

1.4.1 Al and HPC API Interface

UE is designed to support libfabric v2.0 APIs and collaborates with the libfabric community to allow an
endpoint to interact with Al frameworks and HPC workloads. Some UE optional features require support
from network devices (e.g., switches) for advanced capabilities such as packet trimming. To that end,
the network operating system (NOS) requires extensions to support UE features.

UE does not currently address interactions across administrative domains.

1.4.2 Fabric Endpoint Software Stack
Figure 1-11 shows the software stack running on a FEP.

UE is designed to support existing Al training (AIT) and Al inference (All) frameworks. These frameworks,
like TensorFlow, PyTorch, JAX, and others, are expected to work seamlessly on top of a UE software
stack. In other words, a goal of UE is to enable the migration of applications, relying on these
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Figure 1-11 - UE Software Endpoint Stack

frameworks, to UE-powered nodes without requiring change. It is common for the frameworks to
leverage a hardware-dependent vendor-specific *CCL library. However, a UE-compliant *CCL library,
while not directly specified, does not require an application change.
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1.4.3 Switch Software Stack

Figure 1-12 shows an example of a switch software stack supporting UE features. UE operates over
existing Ethernet switches, but additional capability may be obtained by supporting optional UE features
in switches. Switches in the UE environment are expected to run a variety of network operating systems
(e.g., SONIC, FBOSS, Junos OS, 10S, etc.). Optional UE functionality within the switch silicon can be
accessed through a switch chip abstraction interface (e.g., SAl) that has been suitably enhanced for UE.
No changes are required to the forwarding paradigm of the switch and its associated network operating
system (NOS). IP-based forwarding can remain unchanged; however, optional features are defined for
UE (e.g., packet trimming).

Management Space T

SDN Controller (NMaaS)

User Space I Control Plane

Application Containers
—
Switch State Service (SWSS)

Switch Abstraction Interface (SAl)
Technology Provider ASIC SDK

Kernel Space

, Data Plane
ASIC Drivers

Hardware
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Figure 1-12 - Switch Module Layering

1.4.4 Network Operating System (NOS) Interface
The NOS provides essential services on switches for configuration and control. Some NOS components
may need to be updated to support UE features. The following are examples:

e UE organizationally specific TLVs for LLDP.
e Packet trimming.

Figure 1-12 shows the layering of various switch modules. The layer above a switch abstraction interface
(SAl) is referred to as the NOS control plane, and functionality below is referred to as the NOS data
plane.

The control plane software interacts with data plane functionality through an abstract API. One example
interface is the switch abstraction interface (SAl) developed in the Open Compute Project (OCP). SAI
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provides an abstraction layer on top of a vendor-provided software development kit. This abstraction
helps the NOS interact with a single consistent set of APIs for hardware programming. See the following
references:

e <https://www.opencompute.org/wiki/Networking>
e <https://www.opencompute.org/wiki/Networking/SAl>

An SDN controller may be part of UE implementations but is not within scope of the UE specifications.
1.5 Networking

1.5.1 Al and HPC Network Taxonomy
UE differentiates three network types as illustrated in Figure 1-13:

1. Frontend network
2. Backend scale-out network
3. Scale-up network

1.5.1.1 Frontend Network

The frontend network is the operational network in datacenters that connects all compute nodes to the
outside world (e.g., other datacenters or end customers on the Internet). This makes the frontend
network one of the most important components in the datacenter. Any loss of availability in the
frontend transport leads to direct customer impact and related costs. Because the frontend network
connects customers and distant datacenters, it may support a variety of transport protocols (e.g.,
TCP/IP, UDP/IP, and QUIC) that can operate over long-distance links with millisecond-level delays.
Furthermore, multi-tenancy of the compute node is frequently used and may require network overlays
to support virtual machine migration and network virtualization.

Fundamentally, frontend networks carry two types of traffic: “north-south” (NS) traffic to and from the
outside world (i.e., other datacenters and customers) and “east-west” (EW) traffic from network
endpoints within the same datacenter. Each traffic type has fundamentally different characteristics. For
example, EW traffic is often higher bandwidth than NS traffic, and packets are less “valuable” (i.e., they
can be discarded and retransmitted at lower cost than for NS traffic). Furthermore, EW traffic usually
has more stringent latency (i.e., microseconds) and higher bandwidth requirements (e.g., tens-of-
gigabit/s) as it often connects diverse services, such as deep call chains of microservices, serverless
functions, or storage access. NS traffic is often customer-facing, and bottlenecks often occur outside the
datacenter. These characteristics may limit latencies to single-digit milliseconds and tens-of-megabit/sec
bandwidths.
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Figure 1-13 - Network Types

Handling these two types of traffic in addition to providing high availability make frontend networks
quite complex. Switches and NICs need to support complex functionality such as filtering, policing,
encapsulation, and security.

1.5.1.2 Backend Scale-out Network

The backend network is usually a specialized high-performance network of limited scope relative to the
frontend network — often deployed across a “cluster” (e.g., a set of rows). It is sometimes also called a
“scale-out” network. The backend scale-out network often forms its own layer-3 subnet and is not
usually connected directly to the frontend network. Communication between frontend and backend
networks often occurs through compute nodes with network interfaces into both networks.

The backend scale-out network serves very special purposes. For example, an HPC backend scale-out
network enables communication via a message passing interface (MPI), while a deep learning backend
scale-out network delivers training traffic. An Al-oriented backend scale-out network might include
special-purpose optimizations such as switch support for collective operations over bulk data, while an
HPC-oriented backend scale-out network might support latency optimizations only for small collectives.

Having two networks may increase the cost of the overall system (i.e., two networks instead of one —
separate frontend and backend networks). However, two networks provide a clean separation of traffic
(i.e., no interference) and design (i.e., allowing for different architectures and technology deployments).
In some classic HPC systems, the backend scale-out network provides all the connectivity and network
services for the compute nodes. However, this is achieved by retrofitting traditional transport protocols
(e.g., TCP/IP) over the top of the HPC transport (e.g., portals, IPoIB) and accepting the trade-offs that are
implied.
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1.5.1.3 Scale-up Network

Scale-up networks are typically very specialized short-range interconnects that often come with only a

single tier of switches or possibly no switch at all.

Historical scale-up networks support I/O coherency that is not always present in all types of

interconnects. Modern examples used to connect accelerators (e.g., XPUs known as GPUs, FPGAs, or
specialized SoCs) include AMD’s XGMI, NVIDIA’s NVLINK, Intel’s Xe Link, switched PCIExpress, and CXL
systems. The capabilities of these networks usually include memory semantics (which is similar to RDMA

for bulk transfers) at the lowest available latencies (targeting sub-microsecond, for a small-scale or

programmed memory access). UE primarily focuses on backend and scale-out networks, but concepts

and portions of UE technology may apply to scale-up networks.

In typical 2024 datacenter environments, the three types of networks are distinguished by different

characteristics, summarized in Table 1-1.

Table 1-1 - Distinctive characteristics by network type (circa 2024)

proprietary, need

compatibility, no

Characteristic (2024) Frontend Backend Scale-out Scale-up
(Intra Data Center)

Latency requirements® (One-way delay) 100 ps+ <10 us <1uys

Single-link bandwidth requirements up to 100 Gbit/s up to 800 Gbit/s up to 800 Gbit/s

Number of links 1 per node 1to2 Many

(per accelerator) (per accelerator)

Multi-tenancy requirements Hundreds of Up to tens of Usually, single
tenants per tenants per tenant
endpoint endpoint

Security requirements Important today Important in the Optional
(SSL/TLS encrypt future for some
everything) (depends on

offering, encrypt
everything should
be optional)

Protocol requirements Wide variety of Proprietary Proprietary
transport protocols ok protocols
protocols (all IP (desired for necessary

. workload (probably no IP for
compatible, some o
specialization, performance
workload- probably L3 reason, L1/L2
specialized headers for headers only,

some provide
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to co-exist) need to co-exist) coherency)
Maximum link length requirement 1500 m 150 m 5-10 m
Deployment scale 256k+ 256k 100-1000
(network endpoints)
Topology 3 level Clos 2-3 level Clos or full mesh or single
Dragonfly stage switch
Single-job scale 100 256k 100-1000
(network endpoints)
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Characteristic (2024) Frontend Backend Scale-out

(Intra Data Center)

Scale-up

Note:
1. The latency requirement is a bound on the range of the congestion window for full bandwidth.

Informative Text:

This specification is focused on the backend scale-out network. UEC will consider opportunistic
support for frontend and scale-up networks. The intent is that when making trade-offs, the goal of
supporting frontend or scale-up networks will not impact the performance of backend scale-out

deployments and will not impact the schedule for this specification delivery.

1.5.2 UE Transport (UET) Objectives

UET is focused on enabling the workloads and use cases for HPC and Al (AIT and All). UET mainly targets
RDMA service and attempts to provide the best, modernized, and highly optimized transport service for
carrying RDMA in Al and HPC workloads. The general characteristics are summarized in Table 1-2. The
three use cases (i.e., dedicated Al training cluster, cloud Al/HPC, and at-scale HPC) involve organizations
that leverage the full system scale of a single application as well as organizations who fill a significant
fraction of the machine with single-node applications — and the full spectrum in between. The objective
for UET is to serve the breadth of these use cases with a single transport protocol.

Table 1-2 - Characteristics of UET Deployment Model

Characteristic (2026+) Dedicated Al Training Cloud Al/HPC At Scale HPC
Cluster

Network scale 100k — 256k 256k 80k — 256k

(Ethernet ports)

Target unloaded one-way 2—-10us 2—-10ps 2—-10ps

latency

Ethernet port speed 800 G+ 400 G+ 800 G+

Average network utilization Up to 85% 20-40% overall BW Varies, 60-80% for
60-80% for Al cloud BW-intensive apps

Packet rate Low Mixed High

Message size Relatively large Mixed Tiny to Mixed

Encryption Optional Required Optional

Multi-tenancy

Node-level job isolation

Node-level job isolation +
network virtualization

Node-level job
isolation

An additional UET goal is to provide an accelerator-friendly interface. This involves defining a

specification that minimizes the required hardware complexity for integrated endpoints. Another aspect
involves defining a software solution that enables accelerators and other processors to do more in
hardware. For example, UET may allow an accelerator to own the ‘fast path’ and move other functions
(e.g., management and complex error handling) to a separate processor (e.g., host CPU). The details of a
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hardware implementation and interface within an endpoint to an accelerator are out of scope for this
specification.

While UET provides excellent performance on best-effort networks leveraging multi-pathing and
improved congestion control assisted by network telemetry, it is also architected to run on lossless
networks. For best-effort networks, UET embraces two fundamental lessons learned from the success of
Ethernet, TCP/IP, and large-scale networks deployed for various applications including the cloud - that
transport protocols should provide loss recovery and that many large-scale lossless fabrics are
challenging to operate without triggering head-of-line blocking and congestion spreading. Following
these principles, the UE transport builds on the proven path of distributed routing algorithms and
endpoint-based reliability and congestion control.

1.5.3 Network Fabric
The network fabric consists of Ethernet switches and the associated elements described below.

1.5.3.1 Elements
The UE switch fabric incorporates three common functional planes: control plane, data plane, and
management plane. These are depicted in Figure 1-14 and described as follows.

1.5.3.1.1 Control Plane

The control plane is responsible for running critical functions such as routing protocols to maintain
communication between fabric switches. This layer is managed by networking operating systems (NOSs)
such as SONIC, FBOSS, and others. The control plane interacts with the switch data plane using standard
APIs such as SAl or vendor-specific APIs.

Figure 1-14 - Layered View of Networking Functionality

53

Copyright © 2025 Ultra Ethernet Consortium™. All rights reserved.



1.5.3.1.2 Data Plane

The data plane, also referred to as the forwarding plane, is responsible for forwarding packets in the
network. This layer spans the UE endpoint (i.e., FEP) and the network switches. For clarity, the data
plane does not control or manage the UET FEPs. This layer comprises a lower-level abstraction of the
switch hardware and is responsible for forwarding packets according to the forwarding information
provided by the control plane.

1.5.3.1.3 Management Plane

The management plane is responsible for ensuring that the switch fabric is operational, reliable, and
secure. Management systems and associated protocols perform software upgrades, monitoring, and
other administrative activities. The management plane interacts with the control plane using standard
interfaces such as Netconf, gNMI, SNMP, and others. The managed objects manipulated by the
management plane are defined by standardized data models such as YANG and supported by vendor-
neutral software such as OpenConfig (see: <https://openconfig.net>).

Informative Text:

Traditionally the management of endpoints has been separated from the management of the fabric.
UE follows the traditional separation that industry and organizations are accustomed to. The UEC
management working group is responsible for ensuring full functionality, performance, and
interoperability of UE-compliant devices.

1.5.3.2 UE Switch Operation in Physical Networks
A UE-compliant switch operates in two types of physical networks:

1. UE data plane network: A network connecting FEPs to one another through UE switches. This
network carries application traffic for various workloads and is optimized for UE specifications.

2. Switch management network: Every switch provides at least one dedicated Ethernet port to
connect non-fabric endpoints such as SDN controllers, fabric managers, telemetry collectors,
SNMP servers, and other devices responsible for managing the infrastructure. This network is
not latency-sensitive and typically has low bandwidth requirements.

1.5.3.3 Topologies

Topology is a critical part of an Al and HPC fabric as it sets the performance bounds by establishing the
network diameter and bisection bandwidth. Deployments need to consider the optimal system cost in
terms of energy consumption and physical aspects such as cable costs.

Congestion management in this specification targets Clos networks, while not excluding other
topologies. However, no optimization or performance objectives are set for topologies other than a
folded Clos network (i.e., a fat tree). Congestion management in this specification has been simulated
over a fat tree network topology.
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1.5.3.4 Network Constraints

The UE fabric is constrained to use IPv4/IPv6-based layer 3 forwarding. A UE fabric that uses tunnels
(e.g., VXLAN) is not currently specified and is left to implementors. Multitenancy can be addressed at
the FEP level through encrypted tenant application data, specific allocation of JobIDs and may also take
advantage of existing tunneling mechanisms.

UE does not require changes to the network layer and can use existing routing protocols. UE switches
use equal cost multipath (ECMP) routing for load balancing where the entropy values are managed by
the UET congestion management sublayer (CMS). The congestion management algorithms are designed
with the expectation that fabric switches do not modify the entropy values and that any two packets
with the same entropy values take the same path through the UE fabric. CMS expects UE switches to
support explicit congestion notification (ECN) as specified in IETF RFC 3168, but with the additional
constraint of marking congested packets when dequeuing for transmission rather than enqueuing.
Packet trimming, as specified in section 4.1, is an additional mechanism for congestion notification and
makes use of multiple differentiated services code points (DSCP) to identify packets that can be trimmed
and have been trimmed as well as assure they are mapped to appropriate traffic classes for expedited
forwarding.

Traffic classes are embodied in the mechanisms and resources within endpoints and switches used for
the differentiated transmission of packets (e.g., queues, buffers, schedulers). Traffic classes are
differentiated from one another and can be prioritized between one another. Packets are mapped to
traffic classes using attributes and header fields of the received packets. UE primarily relies upon the
DSCP field in the IP header to identify the traffic class of a received packet.

Informative Text:

Traffic classes are specified at multiple levels. UE maps the traffic class specified at the libfabric layer
to traffic classes across the fabric. For example, UET recommends separate traffic classes for requests
and ACKs/NACKs. UET chooses a broad definition of traffic class to acknowledge implementations that
incorporate queuing resources and forwarding mechanisms that enable the differentiated forwarding
of packets identified by the differentiated services code point (DSCP). The DSCP can identify 64
distinct differentiated services, 16 of which are available for local definition and use. Implementations
provide a variety of ways to configure the mapping of packets identified by DSCP to traffic classes at
the endpoint link and switch level. There is no current standard identified or defined by UE to perform
this mapping. In some cases, multiple DSCP values may map to the same traffic class (see the UET
DSCP mappings table in the CMS section 3.6.4.7). UE features depend upon the consistent
configuration and use of traffic classes at the endpoint and across the fabric. UE recommends a
consistent mapping, and the network operator is responsible for assuring this consistency.

Figure 1-15 shows the mapping of application requested traffic classes to traffic classes available at the
link layer on endpoints and switches. Items depicted within the dashed boxes are configuration values
available to the UE operator at different layers of the UE solution stack. Applications can specify the
desired libfabric traffic class using the fi_domain() library API. If unspecified, the UE libfabric mapping
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section 2.2 provides default DSCP values to use for requests. The CMS specification provides a table of
DSCP to Traffic Class mapping in section 3.6.4.7. This table describes how different classes of DSCP
values are mapped to traffic classes at the link.

The DSCP values provided for message requests from the libfabric layer are passed through and
categorized as either DSCP_TRIMMABLE or DSCP_NO_TRIM. The UET protocol includes DSCP values for
generated ACKs, NACKs, and control packets that are categorized as DSCP_CONTROL. The UET protocol
can also categorize retransmitted data packets with DSCP_TRIMMABLE_RETX. All these DSCP categories
are mapped into the link level traffic classes TC_high and TC_low that are prioritized higher and lower
with respect to one another.

Switches that trim packets (denoted by the scissor icon in Figure 1-15) change the DSCP values to
DSCP_TRIMMED or DSCP_TRIMMED_LASTHOP depending upon where they are in the fabric topology.
The DSCP values for trimmed packets can be mapped to a third traffic class (TC_med) if available,
otherwise TC_high is used. The management actions for mapping DSCP values to the traffic classes
within the switches is either vendor-specific or currently unspecified.

The congestion management sublayer of UET is designed with the expectation of using at least two
traffic classes for PDCs to achieve high performance. The network operator is responsible for allocating
and configuring the traffic classes used by UET. The mapping of UET packet types to traffic classes is
dependent on whether the network is best effort or lossless. See CMS section 3.6.4.7 for further details.

App/libfabric OFI Provider SES/PDS/CMS FEP Switch
Vendor proprietary
fi_domain() CMSsection3.64.7  rmmmmmmmmemeeeeee
fi_domain_attr.tclass Napeing Dapends om: DSCP ->802.1TC
fi_endpoint(3), fi_domain(3) * Mode: ROD, RUD, RUDI L.
- T * Fabric: Lossless, Best-effort s vy 18
fffffffffffffffffffffffffffffffffffff ) DSCP A - 0
DSCP i FI_TC_LOW_LATENCY } ----------- LibFabric Generated )
FI_TC_LOW_LATENCY : 1 DSCP_TRIMMABLE HeHHEHEH | | HHEHEHE
FI_TC_BEST_EFFORT ! _i™ DSCP_NO_TRIM L w7 HAAARERH) (B
FI_TC_BULK_DATA - I TC_low
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Figure 1-15 - Traffic Class Mapping
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1.6 UE Specification Overview: Layers

The UE specification spans multiple layers from software down through the physical layer. Figure 1-16
shows the required and optional components of the UE specification by layers. An overview of each
layer is provided in the following sections:

Applications

Software APIs (*CCL, MPI, OpenSHMEM)
Software [ibfbie  [Ofeemons

e UE Transport

Message Semantics

Transport Packet Delivery

Congestion Management

- Security

IP Layer

Network | Packet Trimming |

T Ethernet Link Layer

| LLDP Negotiation |

L- k Logical Link Control or other MAC Client
I n | Link Layer Retry | | Credit-based Flow Control |

MAC Control
TTme—— MAC

Ethernet PHY Layer

P hySica I FEC Statstics | | UE LL Support

100 Gb/s/lane

@packets
] Existing/Unmodified

Ethernet

Fabr;)/

[] UECRequired

[] UEC Optional

Figure 1-16 - UE Specifications by Layers

1.6.1 Software Layer
UE Software specifications are provided in section 2. This includes a mapping to the libfabric API.

libfabric mapping: UE-compliant implementations support the Open Fabrics Interface — libfabric API
<https://ofiwg.github.io/libfabric/>. Libfabric v2.0 denotes the baseline API for UE-compliant endpoints.
Libfabric is the northbound APl where the UE APl is defined and compliance is checked. UE specifications

are expected to maintain alignment with the libfabric community. Libfabric is chosen because it
supports many workloads over RDMA-based fabrics and is implemented by many vendors building
hardware and software to meet the specification. Multiple vendors have successfully created products
that enable MPI-based HPC applications while also allowing PGAS, SHMEM, and other programming
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models. At the same time, vendors have created libraries that support popular Al frameworks (e.g.,
PyTorch, TensorFlow, or ONNX). All these vendor offerings have proven to be easily and efficiently
mapped over libfabric. UEC collaborates with the libfabric community to extend the libfabric API, as
appropriate and necessary to support new UE features.

1.6.2 Transport Layer

UE transport layer specifications are provided in section 3. The UE transport protocol is designed to
serve the networking demands of both HPC and Al workloads. Different profiles are defined to allow
product optimization for satisfying the unique needs of the workloads. It is anticipated that the network
requirements for Al and HPC workloads will increasingly overlap. The UE transport protocol enables a
wide range of implementations. The components of the UE transport protocol include message
semantics, packet delivery reliability modes, congestion management, and security.

Semantics (SES): The SES sublayer is designed to integrate into broadly deployed Al frameworks and
HPC libraries through a libfabric mapping. Applications using libfabric exchange messages over the fabric
and place those messages directly into one another’s buffer memory using popular zero-copy
techniques. The SES sublayer specifies a protocol that defines how application messages are identified,
how the associated buffers are addressed, and how the preferred operations on the messages are
employed. The SES sublayer is the primary interface between the UE transport and the libfabric
provider.

Packet Delivery Sublayer (PDS): Application requirements determine the selection of the appropriate
UET packet delivery services. Different applications are optimized for various reliability and packet
ordering constraints on message delivery. Through the UET layering model and associated libraries
applications can select the transport protocol functionality that best suits their needs. The PDS sublayer
defines a protocol with multiple modes of operation that offer all combinations of reliable, unreliable,
ordered, and unordered packet delivery services.

Congestion Management Sublayer (CMS): End-to-end congestion management is essential to achieve
high network efficiency, reduce packet loss, and minimize latency while maintaining fairness between
competing flows. Traffic classes are used in the network to separate traffic flows that have different
characteristics and requirements from the network. To maintain fairness and assure a low latency
control loop, UE congestion management is designed to be used on all traffic in the same traffic class.
Traffic class configuration is the responsibility of the network operator. High network efficiency and
reduced latency are achieved by allowing UET congestion management to enable multi-path packet
spraying across the fabric and avoid hot spots when congestion signals arrive. Under UET, PDCs with
unordered flows may simultaneously use all paths to the destination, achieving a more balanced use of
all network paths. Link load imbalances are avoided by the coordinated choice of the paths between the
endpoints and switches guided by real-time congestion management. This fine-grained load balancing
results in improved network utilization and reduced tail latency.

Transport Security Sublayer (TSS): Al training and inference often occur in hosted networks where job
isolation is required. Moreover, Al models are increasingly sensitive and become valuable business
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assets. Recognizing this, the UE transport incorporates network security by design and can encrypt and
authenticate all network traffic sent between computation endpoints in an Al training or inference job.
As jobs grow in scale, it is necessary to support encryption without ballooning the session state in hosts
and network interfaces. In service of this, UET incorporates new key management mechanisms that
allow efficient sharing of keys among large numbers of compute nodes participating in a job. It is
designed to be efficiently implemented at the high speeds and scales required by Al training and
inference. HPC jobs hosted on large Ethernet networks have similar characteristics and require
comparable security mechanisms. Note that TSS is an optional feature.

1.6.3 Network Layer

Optional UE network layer feature specifications are provided in section 4. UE does not require any
changes to the network layer, but UET congestion management expects support for explicit congestion
notification (ECN) as specified in IETF RFC 3168, but with the additional constraint of marking congested
packets when dequeuing for transmission instead of enqueuing.

Packet Trimming: Congestion is inevitable within the fabric. As fabric speeds increase and more
pressure is put on limited switch chip buffering, congestion signals become more prevalent and the
information within those signals becomes more important in determining a corrective course of action.
UE defines a packet trimming feature that allows switches to truncate contested packets, modify the
DSCP field of the truncated packet, and forward the truncated packet toward the destination as the
congestion signal. Packet trimming provides considerably more congestion information than the ECN
bits alone. Packet trimming is optional for switches to implement and mandatory for FEPs to receive
trimmed packets.

1.6.4 Link Layer

Optional UE link layer specifications are provided in section 5. The UE specification adds several optional
features to the Link Layer, acknowledging that it may take longer to roll out products supporting these
features. Some workloads may benefit from these features, and experimentation at scale might be the
best way to prove it. In addition, other SDOs, such as the IEEE 802, may have interest in changing some
of these features.

Figure 1-17 shows the areas of focus for the UE link layer specifications with respect to IEEE 802
architecture at the link layer. UE’s optional recommendations for the Link Layer relate to the shaded
areas. All features are optional for UE compliance.
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Figure 1-17 - UE Link Layer Specification Focus Areas

Link Layer Retry (LLR): With speeds and scale increasing, and with the extreme bandwidth densities
common in accelerator networks, the traditional approach of relying only on end-to-end retry to address
packet drops is increasingly burdensome for latency-sensitive workloads. Local error handling at the Link
Layer has proven valuable in scale-out HPC networks, such as those used in exascale systems. The UE
specification provides this capability for Ethernet.

Credit-Based Flow Control (CBFC): Traditionally Ethernet networks refrain from using credit-based links,
which are common in fabric technologies. However, some recently introduced products support it with
optional improvements for some workloads. CBFC is an optional feature of the UE link layer.

UE Link Negotiation: UE specifications support “existing Ethernet switches” but introduce multiple
optional new features that benefit from discovery and feature negotiation capabilities. While it is an
objective of UE to operate on a dedicated backend network for inter-accelerator communication, the
objective does not mitigate the need to support discovery and feature negotiation amongst all entities
(endpoints as well as switches) on the network. UE promotes the notion of “profiles” that describe
required and optional features. It is necessary to detect, discover, and reach consensus among all
network entities to interoperate with profile-supported features. UE assumes that standard negotiation
mechanisms like LLDP are prevalent in the industry and are extensible for the aforementioned purposes.
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1.6.5 Physical Layer
UE physical layer specifications are provided in section 6. UE is specified for physical layers using 100G
per lane signaling as defined by IEEE Std 802.3.

Figure 1-18 shows the areas of focus for the UE physical layer specifications with respect to IEEE 802.3
PHY architecture. UEC’s optional recommendations for the Physical Layer relate to the shaded areas.
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Figure 1-18 - UE Physical Layer Specification Focus Areas

IEEE 802.3 100G Per-Lane Signaling: The UE physical layer section lists the IEEE 802.3 specifications that
are within the scope of UE.

Channel Quality Assumption: Accelerator nodes are more complex than standard endpoints or TOR
switches. At the time of publication, it is assumed that IEEE standards are sufficient, while UE products
are encouraged to build more robust channels.

FEC Statistics for Prediction of Link Quality: UE networks are assumed to comprise multiple high-
performance links protected by forward error correction (FEC), on which data loss due to physical layer
errors is extremely infrequent. However, on a large-scale network there can be a few outlier links with
more frequent errors than the rest of the network. With massively parallel applications, such links can
require frequent retransmissions and thus become the performance bottlenecks of the whole network.
The UE PHY specification includes a method of estimating the mean time between PHY errors (MTBPE)
on each link from the statistics of the FEC decoder. This estimation enables identifying poor
performance and thus provides an opportunity to improve the network performance (e.g., by removing
the weakest links from the network or servicing their endpoints).
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2 UE Software Layer

2.1 UE Software Overview
The UEC develops specifications and/or software APIs and/or open-source code for various Al/HPC use
cases/applications. This includes, but is not limited to, software related to the following areas:

e Support of UE transports and APl within the OFI libfabric ecosystem (e.g., libfabric mapping
specification).

e Software reference models of UET transport.

e Linux kernel API changes and extensions to support UET.

e Interfaces between layers within the UET transport and other external components (e.g., Linux
kernel APIs).

e Example applications.

2.1.1 Software Specifications

2.1.1.1 Libfabric Mapping

The HPC and Al industries have established the use of abstraction layers within communication libraries
to isolate low-level details of the transport layer from the inner workings of the communication libraries.
UE adopts libfabric [1], also known as Open Fabric Interfaces (OFl), as the communication abstraction
layer. The libfabric mapping specification defines how the libfabric v2.0 APIs are implemented using
Ultra Ethernet Transport. The goal of this mapping is to extend and change libfabric as required to
provide a vendor-interoperable mapping that supports all the Ultra Ethernet profiles defined by the
transport working group. The specification also identifies the requirements imposed on UET libfabric by
this mapping.

2.1.2 Software Components and Interfaces
UE software spans components and interfaces in user space and (Linux) kernel space. The complete
scope of the work is illustrated in Figure 2-1 and summarized in Table 2-1.
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(e.g. NVMeOF-UET)
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UET Kernel
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: kernel_driver.ko
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*The UET Kernel implementation leverages UDP tunnel interfaces to
transmit and receive over standard netdev devices
Figure 2-1 - Components and Interfaces Defined By UEC
Table 2-1 - UE Software Components and Interfaces
Interface or Component Functionality Scope of Work

e libfabric
e libfabric application API

User space application API

Definition and implementation
of changes and extensions
required of libfabric and
extensions.

Definition of interoperability
requirements between vendor
provider implementations.
Definition and implementation
of libfabric provider for
Transport Reference Provider
Model [3] and Linux kernel
implementation [4].
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Interface or Component

Functionality

Scope of Work

o |ibUET
o |ibUET application API

e Common device model across
vendors.

e Common application API,
infrastructure. and semantics
for command and control.

Definition and implementation
of the libUET application API.
Definition and implementation
of libUET functions.

e UET core

e  UET core user space
application API

e  UET core kernel application
API

e  UET core kernel module API

e Common control and data
plane infrastructure used by
kernel UET applications and
UET kernel drivers.

e Command, control, and data
API for user space and kernel
applications communicating
with or using UET core.

Definition and implementation
of the UET core user space,
kernel application and kernel
module APIs.

Definition and implementation
of UET core functions.

UET kernel Implementation

Kernel software implementation of
a subset of UET.

Definition and implementation
of the SES, PDS, and CMS
sublayers.

Upstream as necessary.

Kernel subsystem APls

Access to common kernel functions
and interface with specific
subsystems (e.g., rdma_core)

Define and implement
extensions to other kernel
subsystems to support UET.
Upstream as necessary.

2.1.2.1

Integration Model of FEP

A FEP exposes a raw L2 Ethernet device to the operating system to facilitate integration into the

Ethernet ecosystem (i.e., ARP, ICMP, etc.). A UE FEP implements a netdev [6] Ethernet device for

integration into the Linux kernel networking stack and a vendor-supplied libfabric provider driver for

integration into libfabric. In the Linux kernel, the UET transport is included via a stack driver architecture

similar to how a RoCE device is integrated into the kernel. Vendor implementations may vary from the

FEP integration model described in this specification.

2.1.3 Reference Software Models and Supplementary Software
UEC provides several software artifacts to assist implementors as follows:

Table 2-2 - UE Reference Software

Software

Description

UET reference provider model [3]

provider driver.

A user space implementation of a subset of UET (SES, PDS, CMS, and TSS
core algorithms) deployable as a standalone model or as a libfabric

UET Linux kernel implementation

(4]

appropriate

Kernel implementation of a subset of UET (SES, PDS, TSS, and CMS
sublayers). Includes kernel subsystem interface and functional changes as

UE RCCL plugin [5]

A version of the RCCL networking plugin that provides end-to-end
connectivity for a subset (ncclSend, ncclRecv) of the RCCL networking
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Software Description

calls over UET using the UET reference provider model. This provides an
example of how an application can use the UET libfabric implementation.

UE Wireshark plugin [2] A fork of the Wireshark open-source network protocol analyzer with a

dissector for UET

2.14
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2.2 UE Libfabric Mapping

This document specifies the mapping between libfabric v2.0, also known as Open Fabrics Interfaces
(OFI), and the Ultra Ethernet Transport (UET v1.0), as well as the requirements imposed on UET OFI
providers. The mappings are an important part of enabling communication libraries and services over
UET, including support for MPI, *CCL, SHMEM/PGAS, and other communication uses. UET must uphold
the expectations of these communication libraries and services. Additionally, the mapping is dependent
on the UET semantics and profiles. It is expected that each UET Fabric End Point (FEP) vendor will
provide a UET libfabric provider that is optimized for their FEP; however, this specification defines
requirements that enable interoperability between UET FEPs.

Libfabric has been selected as the primary network data plane API for UET as it is a flexible open-source
framework utilized by various communication libraries for Al and HPC workloads. Libfabric is
incorporated into this specification by normative reference. This specification does not attempt to
provide a tutorial description of libfabric. Details about libfabric and the libfabric APIs are available from
libfabric.org. Where possible, references to the libfabric main pages are provided. Note that these
references are subject to change.

In summary, libfabric provides a communication API tailored for high-performance, parallel, and
distributed applications. As a low-level communication library, it abstracts various networking
technologies. However, in this context, we define its use for UET, aiming to eliminate ambiguity while
enhancing interoperability and simplifying debugging. Libfabric has been deployed at scale, and its open-
source ecosystem is suitable for future enhancements that can be delivered as UET evolves. Libfabric
supports Linux, Windows, FreeBSD, and macOS platforms and uses a dual GPLv2/BSD license or a
compatible license, such as MIT. Extensibility has been designed into the API.

Libfabric is built around the concept of plugins known as “providers.” The software components of UET
functionality are part of a vendor-supplied UET provider. The libfabric core communicates with all
providers via a common provider API. The libfabric software architecture is illustrated in Figure 2-2. The
applications shown in the diagram are illustrative and not meant to be comprehensive.
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Figure 2-2 - Libfabric Software Architecture

The libfabric APIs are partitioned into four main categories:

e Control (discovery)
o Used to determine the types of communication services available
e Communication (connection management, address vectors)
o Used to set up communication between endpoints
e Completion (event queues, completion queues, counters)
o Used to report data transfer operation results, connection setup status, collective
joining results, and other asynchronous events
e Data Transfer (messages, tag matching, RMA, atomics, collectives)
o Used to transfer data between endpoints, supporting different communication
paradigms
o Four of the data transfer paradigms shown in Figure 2-2 (messages, tagged messages,
RMA, and atomics) target point-to-point communication. Collectives are a fifth data
transfer paradigm targeting coordinated atomic operations among a large set of peers.

Each of these API categories is covered in this specification.
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A libfabric provider implements the libfabric APl over vendor-specific lower-level software and hardware
interfaces. Libfabric does not define the software/hardware interfaces that a provider uses to access
network hardware. The libfabric UET Provider Software Architecture is illustrated in Figure 2-3.

Applications

v
HPC & Al Middleware (MPI, SHMEM, *CCL) \

———— === l~ —————————————— libfabric APIs

User

Vendor APIs

Vendor Low-Level NIC HW Interface

UET Control

APIs ¢  TT-TTTTTTTTyT T TTTTTTTTTTTTTTTTTTT
Kernel

Bypass

Figure 2-3 - Libfabric UET Provider Software Architecture

Kernel

A kernel driver MUST be provided to facilitate operations that require a privileged entity, such as JoblD
assignment, provisioning, or security key management. The vendor low-level NIC hardware interface
SHOULD use kernel bypass techniques when accessing the hardware for performance reasons.

The interface between the kernel driver and a privileged entity is referred to as the UET Control API. The
privileged entities that interface with the kernel driver are expected to vary across deployments. Thus,
UET standardizes the UET Control APIs for Linux implementations to allow:

o Kernel drivers that implement the standard interface to interoperate across deployments, and
e Privileged entities to interoperate with kernel drivers from multiple vendors.

Netlink was selected as the foundation for the UET Control APls in Linux environments due to its
flexibility, extensibility, and wide availability. Implementations for non-Linux operating systems are
expected to provide similar functionality. More details on the UET Control APIs are provided in
subsequent sections of this specification.
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2.2.1 Application Use Cases

Different applications have different communication requirements. This section highlights several
application use cases that were considered by UET along with a high-level summary of their expected
usage of the libfabric APIs. Additional use cases were considered, but not documented here, such as a
variety of client/server applications for purposes such as storage or remote procedure calls (RPC). Table
2-3 summarizes the expected libfabric APl usage for selected UET targeted applications.

Table 2-3 - UET Application Categories

Application Use Case Summary of Expected API Usage

e Reliable communication
e Matching based on sender ID
*CCL e Tagged messages using exact matching
o  With no guarantees about which tag matches if duplicate tags are used
e Data transfers using RMA Write
e Message and data ordering not required
e  Optional use of collective offload

e Reliable communication

e Matching based on sender ID

*MPI e Tagged messages with wildcard matching and duplicated tags
e Send/receive untagged messages

e Data transfers using RMA Read and RMA Write

e Tagged message ordering is required

e Data ordering is not required

e  Optional support for atomic operations

e  Optional use of collective offload

e Reliable communication

SHMEM e Message and data ordering not required

e Data transfers using RMA Read, RMA Write, and atomics
e  Optional use of collective offload

e Unreliable datagram communication
ub e Send/receive MTU-sized messages
e  Message and data ordering not required

2.2.2 UET Profiles

UET defines multiple profiles that allow for tradeoffs between implementation complexity/cost and
capabilities. Each UET profile corresponds to a set of required capabilities. The details of the capabilities
required by each profile are defined in the SES specification. The three UET profiles in order of
functionality (least to most) are:

1. AlBase
2. Al Full
3. HPC

Profiles specify the minimum required set of functionality and features for support of the profile. UET vendors providing
additional features beyond the profile specification MUST provide a means of selectively enabling and disabling those features.
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Libfabric provides flexibility by making a broad set of parameters available to applications. These

parameters are typically carried in libfabric structures. UET places constraints on the set of parameters
that MUST be supported. Table 2-4 summarizes the parameters that MUST be supported for each
profile. Parameters not shown have vendor-specific values.

Table 2-4 - Per-Profile Libfabric Parameter Requirements

Structure Field Value(s) Required Notes
Al Al HPC
BASE FULL
fi_info
caps FI_LOCAL_COMM Y Y Y libfabric capabilities
FI_REMOTE_COMM Y Y Y
FI_MSG Y Y Y
FI_SEND Y Y Y
FI_RECV Y Y Y
FI_TAGGED (exact match)?! Y Y 1See footnote 1
FI_TAGGED (wildcard)? Y
FI_DIRECTED_RECV? Y 2See footnote 2
FI_TAGGED_DIRECTED_RECV? Y
FI_SELECTIVE_COMPLETION Y Y Y
FI_SHARED_AV Y Y Y
FI_RMA Y Y Y
FI_WRITE Y Y Y
FI_REMOTE_WRITE Y Y Y
FI_READ Y Y
FI_REMOTE_READ Y Y
FI_RMA_EVENT Y Y Y 3See footnote 3
FI_ATOMIC (non-fetching)3 Y Y Y
FI_ATOMIC (fetching)? Y Y
FI_HMEM Y Y Y
FI_FENCE Y Y Y
addr_format FI_ADDR_UET Y Y Y New for UET
fi_fabric_attr
name UET Y Y Y
prov_name Vendor specific
fi_domain_attr
name Vendor specific Usually in the form of
[vendor]_[instance]
threading FI_THREAD_SAFE Y Y Y Support for other
values is vendor-
specific
mr_mode Provider requires application Y Y Y
use of FI_MR_ENDPOINT
mr_key_size <=6 Y Y Y See section 2.2.5.3.4.1
cq_data_size 8 Y Y Y
max_ep_tx_ctx >=1 Y Y Y
max_ep_rx_ctx* >=1 Y Y Y 4See footnote 4
max_ep_stx_ctx 0 Y Y Y No shared transmit
queues
max_ep_srx_ctx 0 Y Y Y No shared receive
queues
mr_iov_limit >=1 Y Y Y
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Structure Field Value(s) Required Notes
Al Al HPC
BASE FULL
mr_cnt >=8 Y Y Y Floor is subject to
overall availability of
MR resources if MRs
are a shared resource
tclass FI_TC_BEST_EFFORT Y Y Y Maps to default TC
FI_TC_UNSPEC Y Y Y Maps to default TC
DSCP value Y Y Y
auth_key_size Oor3or Y Y Y See section 2.2.4
FI_AV_AUTH_KEY Y
max_ep_auth_key >=1 Y Valid only in
conjunction with
auth_key_size =
FI_AV_AUTH_KEY
fi_ep_attr
type FI_EP_RDM Y Y Y Reliable datagram
FI_EP_DGRAM Y Y Y Unreliable datagram
protocol FI_PROTO_UET Y Y Y New for UET
protocol_version FI_VERSION (1, 0) Y Y Y
max_msg_size Max 4GB-1 | 4GB-1 | 5See footnote 5
PDU>
max_order_raw_size 0 Y Y Y No data ordering
max_order_war_size 0 Y Y Y No data ordering
max_order_waw_size 0 Y Y Y No data ordering
tx_ctx_cnt >=1 Y Y Y
rx_ctx_cnt >=1 Y Y Y See footnote 4
auth_key JobID when Y Y Y See section 2.2.4
auth_key_sizeis 3
fi_tx_attr
op_flags FI_COMPLETION Y Y Y
FI_INJECT Y Y Y
FI_INJECT_COMPLETE Y Y Y
FI_TRANSMIT_COMPLETE Y Y Y
FI_DELIVERY_COMPLETE® Y Y Y Applies only to reliable
endpoints
msg_order 0 Y Y Y No message ordering
FI_ORDER_SAS Y Y Y
Any combination of defined Y Y
Message ordering modes
comp_order 0 Y Y Y Field being deprecated
by libfabric
inject_size Vendor specific
iov_limit >=1 Y Y Y
rma_iov_limit >=1 Y Y Y
fi_rx_attr
op_flags FI_COMPLETION Y Y Y
msg_order 0 Y Y Y No message order
comp_order 0 Y Y Y Field being deprecated
by libfabric
fid_nic All fields supported Y Y Y
by the platform
should be set
Note:

1. Exact match versus wildcard tags are distinguished by the ‘ignore’ parameter of the fi_tagged() APls; see section

2.2.5.4.2.
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Structure Field Value(s) Required Notes
Al Al HPC
BASE FULL

2. The level of required support for FI_DIRECTED_RECV/FI_TAGGED_DIECTED_RECV is limited to the authorization
requirements specified in section 2.2.4.3 and the initiator ID matching requirements specified in section
2.2.5.4.2.1.

3. Alibfabric provider indicates the atomic operations that it supports via fi_atomic() APls; fetching and non-
fetching atomics are different operations; see section 2.2.5.4.4.

4. If scalable receive queues are supported, consecutive indices must be allocated for the endpoint with one index
for each receive queue. The allocation of consecutive indices can be accomplished using the service
configuration file described in Table 2-7 or by the provisioning system as described in section 2.2.5.3.5.1.

5.  Max PDU is the maximum payload of a single frame (i.e., UET payload) per definition in UE SES specification.

Libfabric v2.0 has added the capability to separately set the maximum message size for RMA operations
via the fi_setopt() APl. The UET requirements for all profiles are:

1 GB <= UET Maximum RMA Message Size <= (4GB - 1)
The per-profile requirements for completion counters are specified in section 2.2.5.3.7.
Table 2-5 contains a mapping of the application use cases shown in Table 2-3 to UET profiles.

Table 2-5 - Application Use Case Mapping to UET Profiles

Application Use Case UET Profile(s) with Optimal Use-Case Support
*CCL Any of Al Base, Al Full, or HPC
*MPI HPC
SHMEM Either Al Full or HPC
uD Any of Al Base, Al Full, or HPC

2.2.2.1 Profile Negotiation and Inter-Profile Interoperability
A logical priority, shown in Table 2-6, is associated with each profile to resolve conflicts when source
and destination FEPs have overlapping profile support.

Table 2-6 - Profile Logical Priorities

Profile Logical Priority
Al Base 0
Al Full 1

HPC 2

UET libfabric endpoint addresses, which are specified in section 2.2.5.1, include a Fabric Endpoint

Capabilities field that indicates the profiles supported by the fabric endpoint. If there is an overlap
between the profiles supported by the source and destination FEPs, the common profile with the

highest logical priority MUST be used for communication between the FEPs.
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The Al Base profile is a subset of both the Al Full and HPC profiles. So, the Al Base profile can always be
used. The HPC profile is not a superset of the Al Full profile. However, deferrable send, which is

discussed in section 2.2.5.4.1.2, is the only Al Full capability that is not supported by the HPC profile.

Thus, the Al Full profile and the HPC profile can interoperate subject to the following restrictions:

e The operations MUST be limited to those supported by the Al Full profile,

e The HPC profile MUST treat a deferrable send operation the same as a send operation, and

e The HPC profile MUST treat a deferrable tagged send operation the same as a tagged send

operation.

2.2.3 Configuration Information

The libfabric UET provider configuration parameters are shown in Table 2-7.

Table 2-7 - Libfabric UET Provider Configuration Parameters

Parameter

Data Type

Description

UET_PROVIDER_SERVICE_PATH

string

Environment variable specifying the path name
for an optional service configuration file
containing user-defined service name strings and
associated Indices. The service name strings can
be used as a parameter to the fi_getinfo() API to
allocate an index or a range of indices for the
service. The file format is simply one service entry
per line formatted as follows:

service_name start_index num_indices

The service_name is a string with a maximum
length of 64 characters. The start_index and
num_indices are integers, where (start_index +
num_indices] <= 4096.

UET_PROVIDER_MSG_RENDEZVOUS_SIZE

uint32_t

Messages with sizes >=
UET_PROVIDER_MSG_RENDEZVOUS_SIZE bytes
SHOULD be sent with a rendezvous protocol.

UET_PROVIDER_TAG_RENDEZVOUS_SIZE

uint32_t

Tagged messages with sizes >=
UET_PROVIDER_TAG_RENDEZVOUS_SIZE bytes
SHOULD be sent with a rendezvous protocol.

UET_PROVIDER_MAX_EAGER_SIZE

uint32_t

Maximum amount of eager data in bytes for the
rendezvous protocol.

The SES specification defines eager as follows:
The initial rendezvous request MAY have an
“eager” portion of data that is transferred with it.
Eager transfers are payload transfers before the
buffer for the transfer has been identified at the
target.

UET_PROVIDER_DEF_DATA_TC

uint8_t

Optional override of default DSCP codepoint for
data traffic class. See section 2.2.7.

UET_PROVIDER_FALLBACK_JOBID_SUPPORT

boolean

Configuration support for assigning endpoints to a
fallback JobID if one cannot be obtained from the
job provisioning system. See section 2.2.4.2.
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Parameter Data Type Description

UET_PROVIDER_INITIATOR_ID uint32_t Environment variable containing the initiator ID
for endpoints configured through the fallback
JobID mechanism described in section 2.2.4.2.

2.2.4 JoblDs

The JoblID is part of UET addressing, is carried in the SES header as the ses.JobID field, and is used for
authorization. The JobID MUST be assigned by a privileged entity. A privileged entity MUST provide the
assigned JoblD to the provider kernel driver as described in either section 2.2.4.1 or section 2.2.5.3.5.1.
After assignment, the JobID MAY be passed to libfabric user-space software, but JoblDs presented to the
UET provider by libfabric user-space software MUST be validated within a hardware context. Multiple
methods for assigning JoblDs are specified:

1. JoblD assignment at job initialization time
2. JoblD assignment at libfabric endpoint creation time
3. Fallback JobID assignment

2.2.4.1 JoblD Assignment at Job Initialization Time

A privileged entity, such as a job launcher, MAY assign JobIDs at job initialization time. When JobID
assignment is performed at job initialization time, the privileged entity MUST configure {OS Process ID,
Service Name} => {JobID} mappings via the UET Control API with the provider kernel driver, as illustrated
in Figure 2-4. The privileged entity MAY also configure components of the local UET address and security
bindings as part of the mapping.

74

Copyright © 2025 Ultra Ethernet Consortium™. All rights reserved.




Privileged Job Laucher

UET CONTROL API

Job ID Mapping Request:
{OS PID, Service Name, Job ID,
UET Addr, Security Bindings}

A

Job ID Mapping:
{Service Name, Job ID}

‘ Applications

L

\ HPC & Al Middleware (MPI, SHMEM, *CCL)

{Job ID Validation Info}

Figure 2-4 - JobID Assignment at Job Initialization Time

The UET Control API JobID mapping parameters are specified in Table 2-8.

Table 2-8 - UET Control API JobID Mapping Parameters

——————————————————————————————— libfabric APIs
\
‘ libfabric Core ‘
it ProviderAPls
Vendor UET Provider
Implements libfabric features required by UET
Control = Communication = Completion = Data Transfer
——————————— i— ——— Vendor APIs
Vendor Low-Level NIC HW Library
Y Kernel
Kernel Driver Bypass

Parameter Name Size (bits)

Description

Flags 8

Valid Flags
Bit 0:0 — Indicates validity of UET Address Field
0 => UET Address field is NOT valid
1 => UET Address field is valid
Bit 1:1 — Indicates validity of security bindings field
0 => Security bindings field is NOT valid
1 => Security bindings field is valid
Bits 2:7 — Reserved, MUST be 0

JobID 24

JoblID assigned
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Parameter Name Size (bits) Description

OS PID 32 Operating system process ID that JoblD is assigned to
Service Name 136 Null-terminated string identifying a service that JoblID is assigned to. A
NULL string indicates the JobID is assigned to all services of the process.
UET Address See Table MAY be used to assign components of the local UET address (e.g.,
2-10 PIDonFEP or Initiator ID)

The UET address format is specified in Table 2-10

Security Bindings See Table MAY be used to assign security bindings
2-33 Security binding parameters are specified in Table 2-33

A ‘C’ structure representation of the UET Control APl JobID mapping request is shown in Figure 2-5.

#define UET CTRL FLAG ADDR V (1 << 0) /* uet address field wvalid */
#define UET CTRL FLAG SEC V (1 << 1) /* security bindings field valid */
#define UET MAX SERVICE NAME CHARS 64 /* max len of service name str */

struct uet ctrl job id map req {
uint8 t flags;
uint32 t job id;
uint32 t os pid;
char service[UET MAX SERVICE NAME CHARS+1];
struct uet addr uet addr;
struct uet sec bindings sec_bindings;

}i
Figure 2-5 - UET Control APl JoblD Mapping Request Structure

Security bindings MAY be assigned for the entire JobID mapping using the sec_bindings field of the
uet_ctrl job_id_map_req structure. Alternatively, in the Linux implementation of the UET Control API
(see section 2.2.11), security bindings MAY be assigned for each allocated resource index using a series
of UET_NL_ATTR_SEC_BINDINGS Netlink attributes.

JoblID mappings MAY be removed using the UET Control APl JobID unmapping request. A ‘C’ structure
representation of the UET Control APl JobID unmapping request is shown in Figure 2-6.

struct uet ctrl job id unmap req {

uint8 t flags;

uint32 t job id;

uint32 t os pid;

char service[UET MAX SERVICE NAME CHARS+1];
struct uet addr uet addr;

}i
Figure 2-6 - UET Control APl JobID Unmapping Request Structure

More than one JobID MAY be assigned to the same {OS PID, Service Name}. When multiple JobIDs are
assigned to the same {OS PID, Service Name}, the libfabric FI_AV_AUTH_KEY capability MUST be used to
select the JobID associated with a data transfer operation. As an example, multiple JobIDs allow a single
libfabric endpoint of a server to communicate with multiple client jobs. Another use case is when
multiple jobs need to communicate with one another.
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When JobIDs are configured at job initialization time by a privileged entity, the provider kernel driver
MUST maintain the configured JoblD mappings for subsequent use. The privileged entity MAY also pass
the JoblIDs to user-space applications for use as parameters to subsequent libfabric API calls.

A UET provider MUST support at least one JobID per libfabric endpoint and MAY support multiple. When
a single JoblID per libfabric endpoint is provided, the JobID MAY be carried in the libfabric auth_key
attribute (the FI_AV_AUTH_KEY capability MAY also be used to support a single JobID per endpoint).
When multiple JobIDs per libfabric endpoint are supported, the JoblDs MUST be inserted into the
address vector bound to the endpoint using the fi_av_insert_auth_key() API (i.e., the JobIDs are inserted
as authorization keys). The inserted JoblDs MAY then be used for:

e Authorization of posted receive buffers,
e Authorization of registered memory regions, and
e Selection of the JobID used for message transmission operations.

When the auth_key_size attribute is set to FI_AV_AUTH_KEY, all authorization keys are associated with
the address vector. The auth_key size MUST be set to FI_AV_AUTH_KEY when multiple JoblIDs are
supported. Otherwise, the auth_key size MUST be set to either 0 or 3. When the auth_key_size is set to
0, the UET provider supplies the assigned JobID on behalf of the user. When the auth_key_size is set to
3, the JobID MUST be carried in the auth_key attribute. The max_ep_auth_key domain attribute
indicates the maximum number of authorization keys that are supported per libfabric endpoint.

For notation convenience, the following terms are defined:

e Indirect JobID method (auth_key_size = 0) — this is the default behavior
e Direct JobID method (auth_key size = 3)
e AV JoblID method (auth_key size = FI_AV_AUTH_KEY)

The HPC profile MUST support the AV JobID method.

The AV JobID method MUST support the fi_av_insert_auth_key and the fi_av_lookup_auth_key libfabric
APIs.

JoblID assignment MAY also occur when the libfabric endpoint is created as specified in section
2.2.5.3.5.1 and illustrated in Figure 2-9.

2.2.4.2 Fallback JobID Assignment

The provider configuration may enable fallback JoblID assignment. In this mode, if an endpoint’s JobID
cannot be determined through the previous methods it is assigned a fallback JobID. The value of fallback
JoblD is 16777215. When fallback JobID support is enabled, the Initiator ID of the endpoint is sourced
from the UET_PROVIDER_INITIATOR_ID environment variable. If the environment variable is unset,
endpoint creation MUST fail.
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2.2.4.3 Authorization

The authorization procedures described in this section MUST be implemented for absolute addressing
mode. The procedures are not required for relative addressing mode because the JoblID is a component
of the addressing information that is used to locate the buffer and memory region. Please refer to the
SES specification for a description of the absolute and relative addressing modes.

Authorization allows access to receive buffers and registered memory regions to be controlled. The
JoblID is used for authorization of access to receive buffers and registered memory regions. The specific
requirements defined in the SES specification are:

e Implementations MUST allow an option for buffers and memory regions to be exposed for
exactly one JobID.

e Implementations MUST allow an option for buffers and memory regions to be exposed for “any”
JobID.

The JoblID associated with a receive buffer is determined when the buffer is posted using one of the
fi_msg() APls. The JoblID associated with a memory region is determined when the memory region is
registered using the fi_mr APIs. The procedures for determining the JoblID that is associated with a
posted receive buffer or registered memory region are specified in the following subsections.

Authorization is performed by checking that the ses.JoblID field in the SES header is allowed to access
the targeted receive buffer or registered memory region.

2.2.4.3.1 Untagged Message Buffer Authorization

This section covers how the authorization requirements are managed for untagged message buffers.

The JoblID for buffer authorization is obtained differently based on whether the JobID method used is
the indirect, direct, or AV JobID method.

With the indirect JobID method, the UET provider supplies the assigned JobID, and untagged message
buffer access MUST be authorized only for operations carrying that ses.JoblID field in the SES header.

With the direct JobID method, the JobID for untagged message buffer authorization is taken directly
from the auth_key attribute of the libfabric endpoint, and buffer access MUST be authorized only for
operations carrying that ses.JoblID field in the SES header.

With the AV JobID method, the JobID for untagged message buffer authorization is determined using
the src_addr parameter of the fi_recvmsg() APl when the FI_AV_AUTH_KEY flag is set. In this case, the
src_addr is treated as a source authorization key returned by the fi_av_insert_auth_key() APl when the
JoblD was inserted into the address vector bound to the libfabric endpoint. Buffer access MUST be
authorized only for operations carrying this ses.JoblID field in the SES header. In all other cases (e.g.,
fi_recv() APl used, fi_recvv() APl used, FI_AV_AUTH_KEY not set):

e The posted buffer MUST be for any JobID, and
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e Components of the UET address referenced by the src_addr parameter MAY be used to direct
received messages to specific buffers according to the FI_DIRECTED_RECV semantics.
2.2.4.3.2 Tagged Message Buffer Authorization
The tagged message buffer authorization requirements are the same as specified for untagged message
buffers in section 2.2.4.3.1.
2.2.4.3.3 Memory Region Authorization

This section covers how the authorization requirements are managed for registered memory regions.
To associate a registered memory region with a JoblID, the fi_mr_regattr() APl MUST be used.

When the auth_key_size field of the attr parameter to fi_mr_regattr() is 0, the memory region MUST be
for any JobID.

When the auth_key_size field of the attr parameter to fi_mr_regattr() is 3, the memory region MUST be
associated with the JoblID carried in the auth_key attribute of the libfabric endpoint.

When the auth_key size field of the attr parameter to fi_mr_regattr() is set to FI_AV_AUTH_KEY:

e The auth_key field of the attr parameter to fi_mr_regattr() MUST point to a user-defined struct
fi_mr_auth_key that specifies:
o An address vector, and
o An address that has been inserted into the address vector.
e The memory region MUST be associated with the JobID represented by the authorization key of
the address specified in the fi_ mr_auth_key struct.

In all other cases (e.g., use of fi_mr() registration APIs other than fi_ mr_regattr()), the memory region
MUST be for any JobID.

When a registered memory region is associated with a JoblID, access MUST be authorized only for
operations carrying that ses.JoblID field in the SES header.

2.2.4.4 JoblD Selection for Data Transmission Operations
Using the indirect JobID method, the provider references the assigned ses.JobID field within the SES
header to facilitate data transfer operations..

In the direct JobID method, the ses.JobID field within the SES header of data transfer operations MUST
be taken directly from the auth_key attribute of the libfabric endpoint.

With the AV JoblID method, the ses.JoblID field within the SES header of data transfer operations MUST
be determined from the fi_addr_t dest_addr parameter of the libfabric API (i.e., the authorization key
associated with the destination address when it was inserted into the address vector).
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2.2.5 Libfabric APIs
This specification targets the libfabric v2.0 release.

Libfabric provides many APIs that are currently documented in the groups summarized by Table 2-9.

Table 2-9 - Libfabric API Groups

APl Group Name Description
fi_atomic Remote atomic operations
fi_av Address vector operations
fi_av_set Address vector set operations
fi_cm Connection management operations
fi_cntr Completion and event counter operations
fi_collective Collective operations
fi_control Fabric resource operations
fi_cq Completion queue operations
fi_domain Fabric domain operations
fi_endpoint Fabric endpoint operations
fi_eq Event queue operations
fi_errno Fabric error operations
fi_fabric Fabric network operations
fi_getinfo Fabric discovery operations
fi_msg Message data transfer operations
fi_mr Memory region operations
fi_peer Provider to provider operations
fi_poll Polling and wait set operations (being deprecated by libfabric)
fi_provider Provider operations
fi_rma Remote memory access operations
fi_tagged Tagged data transfer operations
fi_version Library interface version operations

Each individual API is not explicitly covered in this specification. Instead:

o Detailed coverage is limited to the key APIs in each of the four main API categories identified in
section 2.2 (i.e., control, communication, completion, and data transfer).

e Requirements for other libfabric APIs are specified in section 2.2.5.5.

e Unless explicitly stated otherwise, all libfabric APIs SHOULD be supported.
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Some of the libfabric APIs also have parameters that were not covered by the UET profile parameter
requirements specified in section 2.2.2, and a subset of those parameters require special handling by a
UET provider. An effort has been made to identify such parameters and specify the required handling.

Figure 2-7 provides a top-level depiction of relationships between key libfabric objects and the
associated APls. The purpose of the diagram is to provide context that promotes easier understanding
of subsequent text in this specification. A typical API flow for creating the objects is summarized in the
following bullets:

e The fi_getinfo() APl is used to identify locally available providers and their capabilities.
o fi_getinfo() returns a list of fi_info structures.
e The application selects the fi_info structure associated with the desired provider and uses the
fi_info structure as a parameter to the fi_fabric() APl, which creates a fabric object.
o Inlibfabric, a fabric represents a network.
e The fi_eq _open() APl is used to create an event queue that is bound to the fabric.
o Event queues are used to report the completion of asynchronous control operations and
events.
o The fi_domain() APl is used to create a domain object that is bound to the fabric.
o Inlibfabric, a domain represents a NIC.
e The fi_endpoint() APl is used to create an endpoint object that is bound to the domain.
o Inlibfabric, an endpoint represents a transport-level communication portal.
o The fi_cq_open() APl is used to create one or more completion queues.
o Completion resources (i.e., completion queues or completion counters) are used to
report the results of submitted data transfer operations.
e The fi_cntr_open() APl is optionally used to create one or more completion counters.
e The fi_ ep bind() APl is used to bind the resource to the endpoint, such as event queues,
completion queues, completion counters, address vectors, or shared transmit/receive contexts.
e The fi_ mr_reg() APl is used to create a memory region that is bound to the domain.
o The fi_mr_bind() APl is used to bind the memory region to the endpoint (instead of the domain).
o UET requires memory regions be bound to endpoints as specified in Table 2-4.
e The fi_ av_open() APl is used to create an address vector under the domain, to be bound to the
endpoint.
o Address vectors are used to efficiently represent destination endpoints.
e The fi_av_insert() APl is used to insert one or more entries in the address vector.
e The data transfer APIs are be used for endpoint communication.
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Figure 2-7 - Key Libfabric Objects and Associated APIs

2.2.5.1 Libfabric Addressing

Libfabric provides flexible endpoint addressing, where the available address formats are defined by an
enumeration. A new value, FI_ADDR_UET, is added to the enumeration to identify the UET address
format. Support for representation of UET libfabric endpoint addresses in the FI_ADDR_STR format is
NOT required.

The components of a UET libfabric endpoint address are shown in Table 2-10.

Table 2-10 - UET Libfabric Endpoint Address

Field Name Size (bits) Description
Version 8 Version number that identifies the format of the address
e The fields in this table are associated with version 0
Flags 16 Valid flags, see footnote 1

Bit 0:0 — Indicates validity of fabric endpoint capabilities field

0 => Fabric endpoint capabilities field is NOT valid

1 => Fabric endpoint capabilities field is valid
Bit 1:1 - Indicates validity of fabric address fields (fabric address
type and fabric address)
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Field Name

Size (bits)

Description

0 => Fabric address fields are NOT valid
1 => Fabric address fields are valid
Bit 2:2 - Indicates validity of PIDonFEP field
0 => PIDonFEP field is NOT valid
1 => PIDonFEP field is valid
Bit 3:3 - Indicates validity of index fields (start resource index and
num resource indices)
0 => Resource Index fields are NOT valid
1 => Resource Index fields are valid
Bit 4:4 — Indicates validity of Initiator ID field
0 => Initiator ID field is NOT valid
1 => Initiator ID field is valid

Other Flags

Bit 5:5 — Indicates whether relative or absolute address mode is
used
0 => Relative addressing
1 => Absolute addressing
Bit 6:6 — Fabric address type, IPv4 or IPv6
0=>IPv4
1=>IPv6
Bit 7:7 — Indicates if maximum message size is limited to MTU
0 => Maximum message size not limited to MTU
1 => Maximum message size = MTU
Bits 8:15 — Reserved, MUST be 0

Fabric Endpoint Capabilities

16

Bit 0:0 — Indicates support for Al Base profile
0 => Al Base profile NOT supported
1 => Al Base profile supported
Bit 1:1 — Indicates support for Al Full profile
0 => Al Full profile NOT supported
1 => Al Full profile supported
Bit 2:2 — Indicates support for HPC profile
0 => HPC profile NOT supported
1 => HPC profile supported
Bits 3:6 — Reserved, MUST be O
Bit 7: 7 — Indicates support for optimized non-matching SES
header
0 => Optimized non-matching SES header NOT supported
1 => Optimized non-matching SES header supported
Bits 8:15 — Reserved, MUST be O

PIDonFEP

16

Process ID in context of fabric endpoint
Meaning depends on the address mode

Fabric Address

128

IP address

Start Resource Index

12

Service Identifier
e Index O is reserved for a UET provider-to-provider control
channel
o No standardized provider-to-provider control channel
operations have been defined
o The provider-to-provider control channel MAY be used
for vendor-specific operations

Num Resource Indices

12

Number of sequential indices assigned to the service

Initiator ID

32

Initiator identifier (as defined in the SES specification)
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Field Name

| Size (bits) |

Description

Note:

1. The valid flags enable requests for specific components of a UET address on the fi_getinfo() API (see section
2.2.5.2.2) and the fi_endpoint() API (see section 2.2.5.3.5).

Informative Text:

The Resource Index field of the UET address enables a multi-threaded application supporting multiple
services to open a libfabric endpoint for each service. Each service gets a unique index that is used to
differentiate the endpoints.

Libfabric endpoint addresses are allocated when libfabric endpoints are opened, as discussed in section

2.2.5.3.

A ‘C’ structure representation of a UET Libfabric Endpoint Address is shown in Figure 2-8.

#define
#define
#define
#define
#define
#define
#define
#define
#define
#define

#define
#define
#define
#define

#define

UET ADDR FLAG FEP CAP V
UET ADDR_FLAG_FA V

UET ADDR_FLAG_PID V

UET ADDR_FLAG RI V

UET ADDR FLAG INI V

UET _ADDR FLAG_ABS_ MODE

UET ADDR FLAG_REL_MODE

UET ADDR _FLAG_IPV6

UET ADDR_FLAG_IPV4

UET ADDR FLAG MTU MSG_SIZE

—~ o~~~
P ORORRRE R R,

UET ADDR FEP AI MIN
UET ADDR FEP AI FULL
UET ADDR_FEP HPC

—_~—
= e

UET ADDR FEP OPT NM SEM (1

UET ADDR _IPV6 ADDR OCTETS 16

struct uet fa { /* fabric address */
union {

}i

uint32 t v4;

<<
<<
<<
<<
<<
<<
<<
<<
<<
<<

<<
<<

<<

<<

o oUW N O

/*
/*
/*
/*
/*
/*
/*
/*
/*
/*
/*
/*
/*

/*

FEP capabilities valid flag */
fabric address valid flag */
PIDonFEP valid flag */
resource index valid flag */
initiator id valid flag */
absolute address mode */
relative address mode */

IPv6 fabric address type */
IPv4d fabric address type */
max message size is MTU */

AT base profile supported */
AT full profile supported */
HPC profile supported */

non-matching hdr supported */

uint8 t v6[UET ADDR IPV6 ADDR OCTETS];

struct uet addr { /* UET address */
uint8 t ver;

uint8 t reserved;

uintlé_t flags;

uintlé_t fep cap;

uintl6 t pid on fep;

struct uet fa fa;

uintl6 t start resource index;
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uintl6é_t num resource indices;
uint32 t initiator_ id;

}i

Figure 2-8 - Libfabric UET Endpoint Address Structure

2.2.5.2 Discovery APIs
Discovery APls are used to discover the available libfabric communication services.

The following two discovery APls are discussed in this section:
uint32 t fi version(void);

<https://ofiwg.github.io/libfabric/main/man/fi_version.3.html>

int fi getinfo(int version, const char *node, const char *service,uint64 t
flags, const struct fi info *hints, struct fi info **info);

<https://ofiwg.github.io/libfabric/main/man/fi_getinfo.3.html>

2.2.5.2.1 fi_version() API

The fi_version() APl is used to discover the libfabric version. The API returns an encoded version, which
can be decoded using the FI_MAJOR () and FI_MINOR () macros. The information MAY be used to ensure
the libfabric version meets the minimum that the application requires. For UET, this minimum should be
Major Version 2 and Minor Version 0.

2.2.5.2.2 fi_getinfo() API

The fi_getinfo() APl is used to identify locally available providers and their capabilities. The parameters
to fi_getinfo() in Table 2-11 merit additional description:

Table 2-11 - fi_getinfo() Parameters

Parameter Description
node The node parameter is usually set to NULL and ignored by the provider, but
MAY be used as a filter to limit the returned providers. For UET, if the node
parameter is non-NULL, it MUST point to a UET address. If the node
parameter is non-NULL and the FI_SOURCE flag is set, UET providers
SHOULD filter the returned info based on the fields of the UET address that
are valid (see Table 2-10). If the node parameter is non-NULL and the
FI_SOURCE flag is not set, UET providers SHOULD NOT return info.

service Previously, the service parameter has usually been set to NULL and ignored
by the provider. For UET, the service parameter MAY contain a service
name string. The string MAY be a pre-defined value associated with a
particular service supported by UET or a user-defined value read by the
provider from an optional service configuration file as described in section
2.2.3. The set of pre-defined service strings is shown in Table 1 10 below. If
a pre-defined service string value appears in the service configuration file,
the mapping defined in the service configuration MUST take precedence.
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Parameter Description

When the service parameter is specified, UET providers MUST filter the
returned providers based on the service parameter, and only return
providers that support the specified service.

flags UET providers MUST support the following flag values:
e FI_SOURCE

hints->addr_format Indicates the format of addresses referenced by the fabric interfaces and
data structures. If the value is not FI_ADDR_UET, UET providers MUST NOT
return info.

hints->src_addr This parameter MAY be used as a filter to limit the returned providers in a

manner like the case where the node parameter is non-NULL and the
FI_SOURCE flag is set. If hints->src_addr is non-NULL, the UET provider
SHOULD filter the returned info based on the fields of the UET address that

are valid.

hints->dst_addr This parameter is intended as a filter to limit the returned providers. If the
hints->dst_addr parameter is specified, UET providers SHOULD NOT return
info.

(*info)->src_addr Because full UET addresses are not available until the libfabric endpoint is

opened, the components of the UET address that MUST be returned are
limited to the following:
e Version
e Flags
e  Fabric address type
e Fabric address
e  Startresource index
o Thereturned start resource index is NOT required to be the
actual start resource index, but the provider MUST be able to
identify the service based on the returned start resource index
value (i.e., when this src_addr is used as a parameter to the
fi_endpoint() API).
o If the service parameter is not specified, the start resource
index is associated with the generic service.
e  Fabric endpoint capabilities

(*info)->dst_addr The UET provider MUST NOT return a destination address.

Table 2-12 - Pre-Defined UET Service Names

Pre-Defined Service Name Reserved Starting Resource Number of Resource Indices
Strings Index Value
“generic” None (dynamically allocated) 1
“ccl” 1 5
“mpi” 6 5
“shmem” 11 5

Multiple resource indices MAY be assigned to a service. Scalable endpoints (created with the
fi_scalable_ep() APl) MUST assign a unique resource index to each rx context (see fi_rx_context() API).
The UET address of an endpoint created with the fi_endpoint() APl MUST be assigned a single

86

Copyright © 2025 Ultra Ethernet Consortium™. All rights reserved.




application-visible resource index (there MAY also be an additional resource index associated with the
endpoint that is not application-visible but used as a provider-to-provider control channel).

2.2.5.3 Communication and Completion APIs
The communication and completion APIs are used to perform the setup required for data transfer and
to report data transfer operation results.

The following communication and completion APIs are discussed in this section:

int fi fabric(struct fi fabric attr *attr, struct fid fabric **fabric,
void *context);

<https://ofiwg.github.io/libfabric/main/man/fi fabric.3.html>

int fi eq open(struct fid fabric *fabric, struct fi eq attr *attr,
struct fid eq **eq, void *context);

<https://ofiwg.github.io/libfabric/main/man/fi eq.3.html>

int fi domain(struct fid fabric *fabric, struct fi info *info,
struct fid domain **domain, void *context);

<https://ofiwg.github.io/libfabric/main/man/fi domain.3.html>

int fi mr reg(struct fid domain *domain, const void *buf, size t len,
uint64 t access, uint64 t offset, uint64 t requested key,
uint64 t flags, struct fid mr **mr, void *context);

uint64 t fi mr key(struct fid mr *mr);

<https://ofiwg.github.io/libfabric/main/man/fi mr.3.html>

int fi endpoint (struct fid domain *domain, struct fi info *info,
struct fid ep **ep, void *context);

int fi ep bind(struct fid ep *ep, struct fid *fid, uint64 t flags);

<https://ofiwg.github.io/libfabric/main/man/fi endpoint.3.html>

int fi getname(fid t fid, void *addr, size t *addrlen);

<https://ofiwg.github.io/libfabric/main/man/fi cm.3.html>

int fi cq open(struct fid domain *domain, struct fi cqg attr *attr,
struct fid cg **cq, void *context);

<https://ofiwg.github.io/libfabric/main/man/fi cqg.3.html>
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int fi cntr open(struct fid domain *domain, struct fi cntr attr *attr,
struct fid cntr **cntr, void *context);

<https://ofiwg.github.io/libfabric/main/man/fi cntr.3.html>

int fi av open(struct fid domain *domain, struct fi av attr *attr,
struct fid av **av, void *context);

int fi av _insert(struct fid av *av, void *addr, size_ t count,
fi addr t *fi addr, uinted4 t flags, void *context);

<https://ofiwg.github.io/libfabric/main/man/fi av.3.html>

2.2.5.3.1 fi_fabric() API

The fi_fabric() APl is called to open a fabric network provider object. A fabric represents a collection of
hardware and software resources that access a single physical or virtual network. A pointer to a fabric
attributes structure is a parameter to fi_fabric(). The fi_info structure returned by the fi_getinfo() API
contains a pointer to a fabric attributes structure.

2.2.5.3.2 fi_eq_open() API

The fi_eq_open() API is called to create a new event queue for the fabric. EQs are for control operations
and are not for completion of data transfer operations such as sends and receives. EQs are used to
collect and report the completion of asynchronous control operations and events. EQs are used for
control events that are not directly associated with data transfer operations such as:

e Asynchronous completion of libfabric control API calls
o Some libfabric control APIs support either synchronous or asynchronous operation
e Asynchronous error notification for problems with fabric resources such as completion queues
or endpoints

EQs are typically implemented completely in software.
An EQ MAY also be bound to a domain using the fi_domain_bind API.

UET providers MUST support event queues. A minimum of one event queue per libfabric endpoint MUST
be supported.
2.2.5.3.3 fi_domain() API

The fi_domain() APl is called to open an access domain on the fabric. A domain is a logical connection
into a fabric, often corresponding to a physical or virtual NIC. The fi_domain() API takes a pointer to a
fi_info structure as a parameter. The fi_info structure returned by the fi_getinfo() API contains a pointer
to a domain attributes structure.
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2.2.5.3.4 fi_mr_reg() and fi_mr_key() APIs

A memory buffer MUST be registered with a resource domain before it can be used as the target of a
remote RMA or atomic data transfer. Additionally, a fabric provider MAY require that data buffers be
registered before being used in local transfers (e.g., the buffer is the source for a write operation or the
destination for a read operation). The fi_mr_reg() APl is used to register a memory region on the
domain. A memory region is bound to an endpoint using the fi_mr_bind() API.

The fi_mr_key() APl is used to obtain the key that remote endpoints need to access a registered memory
region. Libfabric offers options that enable the key for a memory region to be assigned by the
application or the provider. A UET provider SHOULD support user-assigned keys and therefore SHOULD
NOT require the FI_MR_PROV_KEY mode flag.

Informative Text:

Support for user-assigned keys can enable applications to avoid exchanging memory keys if the
application uses a convention where the appropriate key values are well-known.

2.2.,5.3.4.1 Memory Key Format
For interoperability, the format of the memory region key is standardized as specified in Table 2-13.

Table 2-13 - Memory Region Key Format

Field Name Bit Size Description
Location | (bits)
IDEMPOTENT_SAFE 63 1 0 => Memory region MUST NOT be used as target of idempotent

transport operations.

1 =>Memory region MAY be used as target of idempotent
transport operations (i.e., there are no completion counters
bound to the memory region).

Idempotent operations can improve the efficiency of the
transport protocol.

OPTIMIZED 62 1 0 => Memory region does not support optimized non-matching
headers (the optimized non-matching header format is defined in
the UET SES specification; optimized refers to a header that is
smaller than the standard SES request header).

1 =>Memory region supports optimized non-matching headers.

RESERVED 56:61 6 Reserved for future UET definitions; MUST be 0.
VENDOR_SPECIFIC 48:56 8 MAY be used in vendor-specific manner for provider-assigned
memory keys; MUST be 0 for user-assigned memory keys.
OPTIMIZED =0
RKEY 0:47 48 Memory key for MR.

OPTIMIZED =1

RESERVED 12:47 36 Reserved for future UET definitions; MUST be 0.

RKEY / INDEX 0:11 12 Index for MR.
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The memory region key format shown in Table 2-13 MUST be used for both user-supplied keys and
provider-supplied keys. The full 64-bit key format MUST be passed across the fi_ mr() APls. Bit mask
definitions will be provided to assist in forming keys with the desired format. The size of the RKEY field is
fixed at 48 bits, but the range of RKEY values that are supported MUST be based on the value of the
mr_key_size attribute in the fi_domain_attr structure. If mr_key_size is < 6, the unused most-significant
bits MUST be 0.

The format of provider-supplied RKEYs is provider-specific (since the format is only locally significant at
the assigning provider). The provider implementation MUST choose how the RKEY is used in identifying
a registered memory region (e.g., the key MAY be used as a table index, part of hash lookup tuple, etc.).
A UET provider MAY choose to partition the RKEY into a portion that carries the memory key and
another portion that carries additional authentication information.

The RKEY values in the range [0..4095] merit additional discussion, since these values MAY be used in
conjunction with the optimized non-matching SES header in some cases. The optimized non-matching
SES header SHOULD be used when the criteria specified in Table 2-14 are satisfied. The RMA operations
that the criteria specified in this section are applied to are associated with the libfabric APIs defined in
the fi_rma() API Group <https://ofiwg.github.io/libfabric/v1.20.1/man/fi_rma.3.html>.

Table 2-14 - Criteria for Optimized Non-Matching SES Header for RMA Operations

Criteria for Use of Optimized Non-Matching SES Header for RMA Operations
OPTIMIZED bit is 1 in Memory region key format
RMA operation size <= MTU
FI_REMOTE_CQ_DATA is NOT set for the RMA operation

When the optimized non-matching SES header is used for RMA operations, the RKEY/INDEX value MUST
be carried in the ses.resource_index field of the SES header.

The criteria that MUST be satisfied to use the small RMA SES header for RMA operations are shown in
Table 2-15. The small RMA SES header SHOULD be used for RMA operations when the criteria specified
in Table 2-15 are satisfied.

Table 2-15 - Criteria for Small RMA SES Header with RMA Operations

Criteria for Use of Small RMA SES Header for RMA Operations
RMA operation size <= MTU
FI_REMOTE_CQ_DATA is NOT set for the RMA operation

If the criteria for use of the optimized non-matching SES header is NOT satisfied and the criteria for use
of the small RMA SES header is NOT satisfied, then the standard SES header MUST be used for RMA
operations.
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The criteria that MUST be satisfied to use the RUDI packet delivery mode for RMA operations are shown
in Table 2-16. The RUDI packet delivery mode is optimized for idempotent operations and is described in
the PDS reliability specification. If supported, the RUDI packet delivery mode SHOULD be used when the
criteria specified in Table 2-16 are satisfied.

Table 2-16 - Criteria for RUDI Packet Delivery Mode with RMA Operations

Criteria for Use of RUDI PDC for RMA Operations
Libfabric endpoint is NOT configured for R/W message ordering
IDEMPOTENT_SAFE bit is 1 in memory region key format
Target supports use of RUDI packet delivery mode
As indicated by the fabric endpoint capabilities field of the destination UET address

Both user-supplied and provider-supplied memory keys MAY be marked as IDEMPOTENT_SAFE and/or
OPTIMIZED. A UET provider SHOULD honor the IDEMPOTENT_SAFE and OPTIMIZED bits in the
requested_key parameter of the fi_mr() APls even when FI_MR_PROV_KEY is configured. If the user
attempts to bind a completion counter to a memory region marked as IDEMPOTENT_SAFE, a UET
provider MUST fail the bind operation. If an OPTIMIZED provider-supplied key is requested but cannot
be allocated, the provider SHOULD fall back to non-optimized operation.

Requirements for the scope of the RKEYs are specified in Table 2-17.

Table 2-17 - RKEY Scope Requirements

Sematic Header Format Scope in Relative Addressing Mode Scope in Absolute Addressing Mode
Optimized, Non-Matching {FA, JobID, PIDonFEP} {FA, PIDonFEP}
All Others {FA, JobID, PIDonFEP, Index} {FA, PIDonFEP, Index}

2.2.5.3.5 fi_endpoint() and fi_ep_bind() APIs

The fi_endpoint() APl is used to open an active endpoint on the domain. Endpoints are transport-level
communication portals. The data transfer interfaces are associated with active endpoints, which
typically have transmit and receive queues. The fi_endpoint() APl takes a fi_info structure as a
parameter. The fi_info parameter is typically the fi_info structure returned by the fi_getinfo() API. The
fi_info structure includes a source address field that is used as part of opening an active endpoint. The
source address field MAY be used to request assignment of a specific UET address. Selected components
of a UET address MAY be requested using the valid bits in the flags field of the UET address.

Libfabric endpoint address assignment MAY be a multi-stage process, where a portion of the endpoint
address MAY be assigned at job initialization time or by the fi_getinfo() API; the remainder is assigned
when the endpoint is opened. An application can learn its full UET address only by calling the
fi_getname() API, which is described in section 2.2.5.3.6.

The JobID MAY be assigned at job initialization time or when the endpoint is opened. The JobID MUST
be programmed into the hardware by a privileged entity.
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UET providers MUST support the following libfabric endpoint types:

e FI_EP_DGRAM
e FI_EP_RDM

Each libfabric endpoint is of a single type, either FI_EP_DGRAM or type FI_EP_RDM.

The fi_ep_bind() APl is used to associate resources with an endpoint, such as event queues, completion
queues, completion counters, address vectors, or shared transmit/receive contexts.

2.2.5.3.5.1 UET Address Assignment Architecture
The following bullets summarize the procedure for assigning UET address fields:

e The UET provider makes a request to a kernel mode driver that is relayed to a privileged user-
mode process, which is part of the provisioning system responsible for UET address assignment.

e The request contains information about the endpoint being opened.

e The privileged entity returns the needed address information.

e Additional information MAY also be returned such as JobID and security domain bindings.

An architecture diagram depicting the UET address assignment procedure is shown in Figure 2-9.
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Figure 2-9 - UET Address Assignment Architecture

The steps shown in Figure 2-9 are:

UET provider makes an address assignment request to the kernel driver.
The kernel driver relays the request to the privileged user process via the UET Control API.
3. The privileged user process communicates with a provisioning system and returns the requested

address information.
4. The kernel driver programs the JoblID validation information and security bindings into the NIC

hardware.
5. The kernel driver relays the response, without the security bindings, to the UET provider.

Requirements associated with this architecture are:

e A UET provider MUST send address assignment requests to the kernel driver.
e The address assignment request MUST contain the following information:
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o FEPIP address
= The FEP IP address is a parameter of the address assignment request from the
UET provider.
= The FEP IP address parameter is used as part of the UET address.
= The UET address assignment request does not configure IP addresses of NIC
interfaces.
o OSprocessID
o Service name
¢ |n Linux implementations, the UET provider SHOULD use a Netlink interface for address
assignment communication with the kernel driver.
¢ The kernel driver MUST relay the address assignment request to a privileged user process using
the UET Control API.
e The privileged user process MUST return the address assignment response to the kernel driver
using the UET Control API.
o In Linux implementations, the kernel driver MUST accept responses only from a
privileged process running as root.
¢ |f not provided at job initialization time (see section 2.2.4), the address assignment response
MUST include the following information:
o JobID
= [f the requesting process was configured with a single JoblID at job initialization
time, a JobID provided in the response SHOULD take precedence.
= [f the requesting process was configured with multiple JobIDs at job initialization
time and the FI_AV_AUTH_KEY capability is enabled, a JobID provided in the
response SHOULD be ignored.
o Address mode
o PIDonFEP
o Initiator ID
e The address assignment response MAY optionally include the following information:
o Security bindings for crypto operations (see section 2.2.9)
= Security bindings are assigned as specified in section 2.2.4.1
o Start resource index
o Num resource indices
= Resource index bindings provided in the response SHOULD take precedence
over other methods of Index configuration.
e The kernel driver MUST program the JobID validation information and security bindings into the
NIC hardware.
e The kernel driver MUST relay the address assighment response, without the security bindings, to
the UET provider and SHOULD use a Netlink interface when relaying the response in Linux
implementations.

The parameters comprising the UET Control APl address assignment request are specified in Table 2-18.
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Table 2-18 - UET Control APl Address Assignment Request Parameters

Parameter Name Size (bits) Description
Flags 8 Bit 0:0 - Indicates FEP IP address type
0=>IPv4
1=>1IPv6
Bits 1:7 - Reserved, MUST be 0
FEP IP Address 128
OS Process ID 32
Service Name 136 NULL-terminated character string identifying service

The parameters comprising the UET Control APl address assignment response are specified in Table

2-19.

Table 2-19 - UET Control APl Address Assignment Response Parameters

Parameter Name Size (bits) Description
Flags 8 Bit 0:0 — Indicates validity of JobID field
0 =>JoblD field is NOT valid
1 =>JoblD field is valid
Bit 1: 1 - Indicates validity of Security Bindings Field
0 => Security bindings field is NOT valid
1 => Security bindings field is valid
Bits 2:7 — Reserved, MUST be 0
JobID 24
UET Address See Table The UET Address format is specified in Table 2-10
2-10
Security Bindings See Table Security binding parameters are specified in Table 2-33
2-33

‘C’ structure representations of the UET Control API address assignment request and response are

shown in Figure 2-10.

#define UET CTRL ADDR REQ FLAG IPV4
#define UET CTRL ADDR REQ FLAG IPV6

#define UET CTRL ADDR RESP FLAG_JOB

#define UET CTRL ADDR RESP FLAG_SEC

struct uet ctrl addr req {
uint8 t flags;

uint8 t reserved[3];
struct uet fa fa;
uint32 t os pid;
char service[UET MAX SERVICE NAME CHARS+1];

}i

struct uet ctrl addr resp {
uint8 t flags;

uint8 t reserved[3];
uint32 t job_id;
struct uet addr addr;

Vv
v

0 <<
1 <<
1 <<
1
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struct uet sec bindings sec;

};
Figure 2-10 - UET Control APl Address Assignment Request and Response Structures

2.2.5.3.6 fi_getname() API

The fi_getname() APl is called to retrieve the local UET address of a libfabric endpoint. The call returns
an address object that is typically shared with other endpoints of the job.

2.2.5.3.7 fi_cq_open() and fi_cntr_open() APIs

Completion resources are used to report the results of submitted data transfer operations. The
completion resource MAY be a completion queue, which is often implemented in hardware, or a
completion counter, which can be implemented in hardware or software. The fi_ep_bind() APl is called
to bind a completion resource to an endpoint.

Completion counters simply return the number of operations that have been completed. Counters are
intended as lightweight completion objects that increment whenever an identified type of data transfer
has occurred, which avoids the overhead of conveying completion queue entries to the application.
Completion counters are used by applications such as MPI. The fi_cntr_open() APl is called to open a
completion counter.

The fi_cq_open() APl is called to open a CQ. Multiple pre-defined CQ entry formats are supported.
Provider-specific CQ entry formats are also supported.

The UET provider MUST support completion queues.
The per-profile requirements for completion counters are specified in Table 2-20.

Table 2-20 - Completion Counter Requirements

Profile Completion Counter Requirements
Al Base None
Al Full FI_SEND, FI_RECV, FI_READ, FI_WRITE
HPC FI_SEND, FI_RECV, FI_READ, FI_WRITE,
FI_REMOTE_READ, FI_REMOTE_WRITE

The profiles that are required to support completion counters MUST support both the
FI_CNTR_EVENTS_COMP and FI_CNTR_EVENT_BYTES event types.
2.2.5.3.8 fi_av_open() and fi_av_insert() APIs

Address vectors are used to map higher-level addresses into fabric-specific addresses. The purpose of
the AV is to associate a higher-level address with a simpler, more efficient value that is used by the
libfabric APl in a fabric-agnostic way.
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The fi_av_open() APl is called to create an address vector, the fi_ep_bind() API is called to bind an
address vector to an endpoint, and the fi_av_insert() API is called to insert the addresses of destination
endpoints into the address vector. The fi_av_insert() API returns a mapped address of type fi_addr t,
which is passed to data transfer APIs to identify the destination endpoint, thereby avoiding the need to
pass the full address of a target endpoint with every data transfer. There are two types of address
vectors:

e FIL_AV_MAP
o Addresses inserted into an AV are mapped to a native fabric address for application use.
The use of FI_AV_MAP requires that an application store the returned fi_addr_t value
that is associated with each inserted address. FI_AV_MAP is being deprecated in
libfabric v2.0. The enum will stay, but the behavior will be like FI_AV_TABLE.
e Fl_AV_TABLE
o Addresses that are inserted into an AV of type FI_AV_TABLE are accessible using a
simple index. When FI_AV_TABLE is used, the returned fi_addr_t is an index, with the
index for an inserted address being the same as its insertion order into the table. The
index of the first address inserted into an FI_AV_TABLE will be 0, and successive
insertions will be given sequential indices. Sequential indices will be assigned across
insertion calls on the same AV.

The AV attributes structure, fi_av_attr, contains a name field and a map_addr field that are useful for
sharing an AV between processes.

The UET provider MUST support the FI_AV_TABLE type. The unspecified type, FI_AV_UNSPEC, MUST be
treated as the FI_AV_TABLE type.

Informative Text:
One approach for using an FI_AV_TABLE is to insert addresses for each rank sequentially such that the
AV table indices are the same as the rank number.

2.2.5.4 OFI Data Transfer APIs
This section covers the following groups of data transfer APls:

e fi_msg() <https://ofiwg.github.io/libfabric/v1.20.1/man/fi_msg.3.html>

e fi tagged() <https://ofiwg.github.io/libfabric/v1.20.1/man/fi tagged.3.html>

e fi rma() <https://ofiwg.github.io/libfabric/v1.20.1/man/fi rma.3.html>

e fi atomic() <https://ofiwg.github.io/libfabric/v1.20.1/man/fi _atomic.3.html>

e fi collective() <https://ofiwg.github.io/libfabric/v1.20.1/man/fi_collective.3.html>

2.2.5.4.1 fi_msg() APIs

The fi_msg() APls are used to perform message data transfer operations. There are APIs to post receive
buffers for incoming messages and APIs for initiating transmission of outgoing messages. The fi_msg()
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APIs MUST be supported for both FI_EP_DGRAM and FI_EP_RDM endpoints. The fi_msg() receive API
requirements are summarized in Table 2-21.

Table 2-21 - fi_msg() Receive API Requirements

fi_msg() API Description Requirements
fi_recv Posts a data buffer to the receive queue of the APl MUST be supported
corresponding endpoint. Posted receive buffers are
searched in the order they were posted to match sends. The requirements for supporting
Message boundaries are maintained. The src_addr the src_addr parameter are
parameter MAY be used to indicate that a buffer should be specified in section 2.2.4.3.1
posted to receive incoming data from a specific remote
endpoint.
fi_recvv The fi_recvv() APl adds support for a scatter-gather list to APl MUST be supported
the fi_recv() API
Maximum size of scatter-gather
list is vendor specific
fi_recvmsg | The fi_recvmsg() APl supports more granular control of the APl MUST be supported
receive operation per call using flag parameters
FI_MULTI_RECV /
The following flags MUST be supported: FI_TAGGED_MULTI_RECV
o FI_COMPLETION capabilities and associated flag
parameters SHOULD be
supported

UET providers SHOULD allocate independent receive queues (i.e., lists of posted receive buffers) for

messages and tagged messages.

Table 2-22 summarizes the fi_msg() send API requirements and shows the mapping of the APIs to the
UET SES opcodes.

Table 2-22 - fi_msg() Send API Requirements

support for a scatter-
gather list to the fi_send() Maximum size of scatter-
API gather list is vendor specific

fi_msg() API Description Requirements SES Opcode
fi_send The fi_send() API transfers | APl MUST be supported UET_DATAGRAM_SEND for
data to a remote endpoint FI_EP_DGRAM endpoint type
UET_SEND for FI_EP_RDM
endpoint type
fi_sendv The fi_sendv() APl adds APl MUST be supported UET_DATAGRAM_SEND for

FI_EP_DGRAM endpoint type

Al Full profile:

UET_SEND or
UET_DEFERRABLE_SEND for
FI_EP_RDM endpoint type

Use of UET_SEND vs.
UET_DEFERRABLE_SEND is
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fi_msg() API

Description

Requirements

SES Opcode

based on message size as
specified in section 2.2.5.4.1.2

HPC profile:

UET_SEND or
UET_RENDEZVOUS_SEND for
FI_EP_RDM endpoint type

Use of UET_SEND vs.
UET_RENDEZVOUS_SEND is
based on message size as in
section 2.2.5.4.1.2

fi_sendmsg | The fi_sendmsg() API API MUST be supported Same as fi_sendv
supports more granular
control of the send The following flags MUST be
operation per call using supported:
flag parameters e FI_REMOTE_CQ_DATA
e FI_COMPLETION
e FILINJECT
e FI_INJECT_COMPLETE
e FI_TRANSMIT_COMPLETE
e FI_DELIVERY_COMPLETE
e FI_FENCE
fi_inject The fi_inject() APl is an API MUST be supported Same as fi_sendv
optimized version of
fi_send() with the following | The message size used with
characteristics: fi_inject() is limited by the
e The data buffer is inject_size attribute of the
available for reuse transmit context, which is
immediately on return | vendor specific
from the call
e No CQentry will be
written if the transfer
completes successfully
e Anerror CQ entry
MUST be written
when used with a
libfabric endpoint of
type FI_EP_RDM and
when the message
cannot be delivered
(this requirement
applies to all inject
operations)
fi_senddata | The fi_senddata() APl is APl MUST be supported Same as fi_sendv

like fi_send(), but allows
for the sending of remote
CQ data as part of the
transfer (the remote CQ
data is written into the
target endpoint CQ)

The remote CQ data is carried
in the ses.header_data field of
the SES header
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fi_msg() API Description Requirements SES Opcode

fi_injectdata | The fi_injectdata() APl is API MUST be supported Same as fi_inject
like fi_inject(), but allows
for the sending of remote The remote CQ data is carried

CQ data as part of the in the ses.header_data field of
transfer the SES header
2.2.5.4.1.1 Unexpected Messages

Unexpected messages MUST be supported using one of the approaches defined in the SES specification,
where the choice of which approach to use at the target is vendor specific. The initiator MUST respond
appropriately to all target behaviors.

2.2.5.4.1.2 Message Rendezvous
The SES specification currently defines two types of rendezvous protocols that are referred to as:

e Rendezvous, and
e Deferrable send.

The Al Full profile MUST support the deferrable send option, while the HPC profile MUST support the
rendezvous option.

Additionally, the SES specification describes two rendezvous approaches for mapping *CCL send and
receive APIs to the libfabric and UET semantics APIs. Both approaches utilize protocols implemented by
*CCL plugins that are layered on top of the libfabric APls. One approach utilizes the fi_tagged() APIs, and
the other approach is based on the fi rma() APls.

For the Al Full profile, messages with sizes >= UET_PROVIDER_MSG_RENDEZVOUS_SIZE bytes SHOULD
be sent with the UET_DEFERRABLE_SEND semantic opcode.

For the HPC profile, messages SHOULD be sent with the UET_RENDEZVOUS_SEND semantic opcode
when the following criteria are met:

e Message size >= UET_PROVIDER_MSG_RENDEZVOUS_SIZE bytes, and
e The source buffer is associated with a local memory region registered for remote read access

The amount of eager data sent as part of a UET_RENDEZVOUS_SEND operation MUST be <=
UET_PROVIDER_MAX_EAGER_SIZE bytes.

2.2.5.4.2 fi_tagged() APIs

The fi_tagged() APIs are used to perform tagged data transfer operations. There are APIs to post receive
buffers for incoming messages and APIs for initiating transmission of outgoing messages.

The fi_tagged() APIs are NOT supported for FI_EP_DGRAM endpoints.

The fi_tagged() APIs MUST be supported by the Al Full and HPC profiles.
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The fi_tagged() Receive APl requirements are summarized in Table 2-23.

Table 2-23 - fi_tagged() Receive APl Requirements

fi_tagged() API Description Requirements
fi_trecv Like fi_recv() but with a tag. Posted API MUST be supported by Al Full and HPC
receive buffers are searched in the order | profiles
they were posted to match sends.
The ignore parameter contains a bitmask | The Al Full profile is required to support only
that is applied to the tag to support exact match tags. If wildcard tags are not
wildcard tag matches. supported, the UET provider MUST fail the API
request if any of the ignore bits are set
The HPC profile MUST support wildcard tag
matching
fi_trecvv Like fi_recvv() but with a tag APl MUST be supported by Al Full and HPC
profiles
fi_trecvmsg Like fi_recvmsg() but with a tag API MUST be supported by Al Full and HPC
profiles

Table 2-24 summarizes the fi_tagged() send API requirements and shows the mapping of the APIs to the

UET SES opcodes.

Table 2-24 - fi_tagged() Send APl Requirements

fi_tagged() API Description Requirements SES Opcode
fi_tsend Like fi_send() but with tag API MUST be Al Full profile:
supported by e UET_TAGGED_SEND or
Al Full and HPC e UET_DEFERRABLE_TSEND
profiles Use of UET_TAGGED_SEND vs.
UET_DEFERRABLE_TSEND is based on
message size as described in section
2.2.5.3.4.1
HPC profile:
e UET_TAGGED_SEND or
e UET_RENDEZVOUS_TSEND
Use of UET_TAGGED_SEND vs.
UET_RENDEZVOUS_TSEND is based
on message size as described in
section 2.2.5.3.4.1
fi_tsendv Like fi_sendv() but with tag Same as fi_tsend() Same as fi_tsend()
fi_tsendmsg Like fi_sendmsg() but with Same as fi_tsend() Same as fi_tsend()
tag
fi_tinject Like fi_inject() but with tag Same as fi_tsend() Same as fi_tsend()
fi_tsenddata Like fi_senddata() but with Same as fi_tsend() Same as fi_tsend()
tag
2.2.5.4.2.1 Tagged Message Initiator ID Matching
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The SES header for received tagged messages includes a ses.initiator field used as part of the matching
criteria. The Initiator ID associated with a posted tagged buffer is determined based on the src_addr
parameter of the fi_tagged() APls. If the src_addr parameter is not set to FI_ADDR_UNSPEC, the posted
tagged buffer MUST be matched only when the tag matches the ses.match_bits field in the SES header,
and the ses.initiator field in the SES header matches the Initiator ID component of the UET address
referenced by the src_addr parameter. Other components of the UET address referenced by the
src_addr parameter MAY be used to direct received messages to specific buffers according to the
FI_TAGGED_DIRECTED_RECV semantics. If the src_addr parameter is set to FI_ADDR_UNSPEC, the
ses.initiator field MUST NOT be used as part of the matching criteria.

Implementations of the Al Full and HPC profiles MUST support the use of FI_ADDR_UNSPEC with the
fi_tagged() APIs. Implementations of the Al Full profile SHOULD support setting the src_addr parameter
of the fi_tagged() APIs to reference a specific source UET address. Providers can indicate that
FI_ADDR_UNSPEC is not supported and that setting the src_addr parameter to reference a specific
source UET address is supported via the FI_EXACT_DIRECTED_RECV capability. Implementations of the
HPC profile MUST support setting the src_addr parameter of the fi_tagged() APls to reference a specific
source UET address.

Informative Text:

When used with FI_AV_TABLE, the value of ses.initiator on the wire should be the index to the table.
The Initiator ID component of the src_addr should just be the CCL/MPI rank here, and the two should
match.

2.2.5.4.2.2 Tagged Message Rendezvous
The tagged message rendezvous requirements are similar to the message rendezvous requirements
specified in section 2.2.5.4.1.2.

For the Al Full profile, tagged messages with sizes >= UET_PROVIDER_TAG_RENDEZVOUS_SIZE bytes
SHOULD be sent with the UET_DEFERRABLE_TSEND semantic opcode.

For the HPC profile, tagged messages with sizes >= UET_PROVIDER_TAG_RENDEZVOUS_SIZE bytes
SHOULD be sent with the UET_RENDEZVOUS_TSEND semantic opcode.

The amount of eager data sent as part of a UET_RENDEZVOUS_TSEND operation MUST be <=
UET_PROVIDER_MAX_EAGER_SIZE bytes.

2.2.5.4.3 fi_rma() APIs

The fi_rma() APIs are used to perform remote memory access operations. There are APIs for read and
write operations.

The fi_rma() APls are NOT supported for FI_EP_DGRAM endpoints.
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Table 2-25 summarizes the fi_rma() APl requirements and shows the mapping of the APIs to the UET SES
opcodes.

Table 2-25 - fi_rma() APl Requirements

fi_rma() API Description Requirements SES Opcode
fi_read The fi_read() API requests that the API MUST be supported by UET_READ
remote endpoint transfer data from Al Full and HPC profiles

the remote memory region into the
local data buffer

fi_readv The fi_readv() APl adds support for a Same as fi_read() UET_READ
scatter-gather list to fi_read()
Maximum size of scatter-gather
list is vendor specific

fi_readmsg The fi_readmsg() API supports more Same as fi_read() UET_READ
granular control of the read operation
per call using flag parameters The following flags MUST be
supported:
o FI_COMPLETION
fi_write The fi_write() API transfers the data API MUST be supported by Al UET_WRITE
contained in the user-specified data Base, Al Full, and HPC profiles
buffer to a remote memory region
fi_writev The fi_writev() APl adds support fora | Same as fi_write() UET_WRITE

scatter-gather list to fi_write()
Maximum size of scatter-gather
list is vendor specific

fi_writemsg The fi_writemsg() APl supports more Same as fi_write() UET_WRITE
granular control of the write The following flags MUST be
operation per call using flag supported:
parameters e FI_REMOTE_CQ_DATA
e FI_COMPLETION
e FLINJECT

e FI_INJECT_COMPLETE

e FI_TRANSMIT_COMPLETE
e FI_DELIVERY_COMPLETE
e FI_FENCE

fi_inject_write The fi_inject_write() APl is an Same as fi_write() UET_WRITE
optimized version of fi_write() that
provides similar completion semantics | The message size used with

as fi_inject() fi_inject_write() is limited by the
inject_size attribute of the
transmit context, which is vendor

specific
fi_writedata The fi_writedata() APl is like fi_write(), | Same as fi_write() UET_WRITE
but allows for the sending of remote
CQ data as part of the transfer (the The remote CQ data is carried in
remote CQ data is written into the the ses.header_data field of the
target endpoint CQ) SES header
e The ses.hd bit is set in the SES
header to indicate that the
ses.header_data field is valid
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2.2.5.4.4 fi_atomic() APIs

The fi_atomic() APls enable remote atomic operations. There are APIs for:

e Initiating an atomic operation to remote memory (sometimes referred to as non-fetching

atomics).

e Initiating an atomic operation to remote memory and retrieving the initial value (referred to as
fetching atomics).

e Initiating an atomic compare operation to remote memory and retrieving the initial value (which
is a type of fetching atomic).

e Querying provider support for specific atomic operations.

The fi_atomic() APIs are NOT supported for FI_EP_DGRAM endpoints.

UET providers MUST support bulk non-fetching atomics operations; however, fetching atomics MUST be
limited to a single unit of the indicated data type.

Table 2-26 summarizes the fi_atomic() API requirements and shows the mapping of the APIs to the UET

SES opcodes.

Table 2-26 - fi_atomic() APl Requirements

support for a scatter-gather
list to fi_atomic()

by all profiles

Maximum size of scatter-
gather list is vendor
specific

fi_atomic() API Description Requirements SES Opcode
diatomic The fi_atomic() API transfers | APl MUST be supported UET_ATOMIC
the data contained in the by all profiles
user-specified data buffer to
a remote node
fi_atomicv The fi_atomicv() API adds APl MUST be supported UET_ATOMIC

fi_atomicmsg

The fi_atomicmsg() API
supports more granular
control of the atomic
operation per call using flag
parameters

APl MUST be supported
by all profiles

The following flags MUST
be supported:
e FI_COMPLETION

UET_ATOMIC or
UET_TSEND_ATOMIC

UET_TSEND_ATOMIC is
used when the
FI_TAGGED flag is set

e FLINJECT
e FI_FENCE
e FI_TAGGED
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fi_atomic() API

Description

Requirements

SES Opcode

fi_inject_atomic

The fi_inject_atomic() APl is
an optimized version of
fi_atomic() that provides
similar completion
semantics as fi_inject().

APl MUST be supported
by all profiles

The message size used
with fi_inject_atomic() is
limited by the inject_size
attribute of the transmit
context, which is vendor
specific

UET_ATOMIC

fi_fetch_atomic

Fetching version of
fi_atomic()

API MUST be supported
by Al Full and HPC profiles

UET_FETCHING_ATOMIC

fi_fetch_atomicv

Fetching version of
fi_atomicv()

API MUST be supported
by Al Full and HPC profiles

UET_FETCHING_ATOMIC

fi_fetch_atomicmsg

Fetching version of
fi_atomicmsg()

API MUST be supported
by Al Full and HPC profiles

Flag requirements are the
same as fi_atomicmsg()

UET_FETCHING_ATOMIC

fi_compare_atomic

The compare atomic APIs
are used for operations that
require comparing the
target data against a value
before performing a swap
operation

APl MUST be supported
by HPC profile

UET_FETCHING_ATOMIC

fi_compare_atomicv

Adds support for a scatter-
gather list to
fi_compare_atomic()

APl MUST be supported
by HPC profile

UET_FETCHING_ATOMIC

fi_compare_atomicmsg

Supports more granular
control of the compare
atomic operation per call
using flag parameters

APl MUST be supported
by HPC profile

Flag requirements are the
same as fi_atomicmsg()

UET_FETCHING_ATOMIC

fi_atomicvalid

Checks whether a provider
supports a specific non-
fetching atomic operation
for a given datatype and
operation,

APl MUST be supported
by all profiles

The set of supported
operations and data types
are vendor specific

Not applicable

fi_fetch_atomicvalid

Like fi_atomicvalid() but for
fetching atomics

Same as fi_atomicvalid()

Not applicable

fi_compare_atomicvalid

Like fi_atomicvalid() but for
compare atomic operations

Same as fi_atomicvalid()

Not applicable

fi_query_atomic

Advanced atomic valid
operation whose behavior is
based on a flags parameter;
MAY be used to query
whether tagged operations
are supported

Same as fi_atomicvalid()

Not applicable
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2.2.5.4.5 Collective APIs

A collective operation is a group communication exchange that involves multiple peers exchanging data
with other peers participating in the collective call. Collective operations can be thought of as
coordinated atomic operations between a set of peer endpoints.

2.2.5.5 Other APIs
This section summarizes requirements for the set of other libfabric APIs that have not been described
elsewhere in this specification.

Table 2-27 shows libfabric APIs for which support is NOT required.

Table 2-27 - Libfabric APIs for which Support is Not Required

API Group Support is Not Required Description
fi_av fi_av_insertsvc, fi_av_insertsym
fi_cm All APIs in fi_cm API Group except Connection-oriented APIs are not
fi_getname needed by UET
fi_domain fi_domain2, fi_open_ops, fi_set_ops | fi_domain2 for opening peer domain
fi_endpoint fi_endpoint2 fi_endpoint2 for peer transfers
fi_passive_ep, fi_pep_bind Connection-oriented APIs are not

needed by UET
fi_scalable_ep, fi_scalable_ep_bind | Scalable endpoint support is not

required
fi_srx_context, fi_stx_context Shared context support is not required
fi_rx_size_left, fi_tx_size_left Deprecated by libfabric
fi_mr fi_mr_raw_attr, fi_mr_map_raw, Raw memory region key support is not
fi_mr_unmap_key, required
fi_hmem_ze_device
fi_peer All APIs in fi_peer() APl Group Peer APIs are experimental, and support
is not required
fi_trigger fi_trigger

Table 2-28 shows libfabric APl options (e.g., flags, operations, parameters, etc.) for which support is NOT
required.

Table 2-28 - Libfabric API Options for which Support is Not Required

API Group Support is Not Required
fi_av FI_SYMMETRIC flag
fi_cq FI_COMMIT_COMPLETE flag
fi_domain FI_SET_OPS_HMEM_OVERRIDE operation
fi_endpoint FI_OPT_BUFFERED_LIMIT, FI_OPT_BUFFERED_MIN, FI_OPT_CM_DATA_SIZE,

FI_OPT_FI_HMEM_P2P, F|_OPT_XPU_TRIGGER, and
FI_OPT_CUDA_API_PERMITTED options

fi_msg FI_CLAIM and FI_DISCARD flags

fi_mr FI_RMA_PMEM, FI_HMEM_DEVICE_ONLY, F|_HMEM_HOST_ALLOC, and
FI_MR_DMABUF flags
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2.2.5.6 Libfabric API Error Codes

The SES specification describes an extensive set of error codes. A subset of the semantic errors MAY
result in a completion error for the associated libfabric API function via the fi_cq_err_entry data
structure. For semantic errors that result in a completion error, the err field of the fi_cq_err_entry
structure MUST be populated with an appropriate error code. If a libfabric error code corresponding to a
semantic error is not found, the FI_EIO error code MUST be returned. In addition, when a semantic
completion error occurs, the provider MUST populate the semantic error code into the prov_errno field
of the fi_cq_err_entry structure.

2.2.6 Packet Delivery Modes
This section specifies how the UET packet delivery mode is selected.

Libfabric endpoints of type FI_EP_DGRAM MUST use the UET UUD packet delivery mode.
Libfabric endpoints of type FI_EP_RDM MUST use one of the following UET packet delivery modes:

e RUD (supported by all profiles)
e ROD (supported by all profiles)
e RUDI (supported by HPC profile)

The Al Base and Al Full profiles MUST select either ROD or RUD. The selection is based on the operation
type and the message ordering modes that are configured.

To clarify the selection criteria, the following message ordering modes are defined:

e Send message ordering is in effect when any of the following message ordering modes are
configured (send message ordering refers to any ordering mode that specifies the ordering of
send operations relative to other operations):

o FI_ORDER_RAS, FI_ORDER_SAR, FI_ORDER_SAS, FI_ORDER_SAW, FI_ORDER_WAS

e R/W message ordering is in effect when any of the following message ordering modes are
configured (R/W message ordering refers to any ordering mode that specifies the ordering of
read or write operations relative to other operations):

o FI_ORDER_ATOMIC_RAR, FI_ORDER_ATOMIC_RAW, FI_ORDER_ATOMIC_WAR,
FI_ORDER_ATOMIC_WAW, FI_ORDER_RAR, FI_ORDER_RAS, F|_ORDER_RAW,
FI_ORDER_RMA_RAR, FI_ORDER_RMA_RAW, FI_ORDER_RMA_WAR,
FI_ORDER_RMA_WAW, FI_ORDER_SAR, FI_ORDER_SAW, FI_ORDER_WAR,
FI_ORDER_WAS

The Al Base profile MUST select the packet delivery mode according to Table 2-29.

Table 2-29 - Packet Delivery Mode Selection Criteria for Al Base Profile

SEND Ordering R/W Ordering SEND Operation RMA or ATOMIC Operation
N N RUD RUD
N Y RUD ROD
Y N ROD RUD
Y Y ROD ROD
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The Al Full profile MUST select the packet delivery mode according to Table 2-30.

Table 2-30 - Packet Delivery Mode Selection Criteria for Al Full Profile

SEND Ordering R/W SEND or TAGGED DEFERRABLE TAGGED RMA or ATOMIC
Ordering SEND Operation SEND Operation Operation

N N RUD RUD RUD

N Y RUD RUD ROD

Y N ROD Initial/eager data: ROD RUD
Remaining data: RUD

Y Y ROD Initial/eager data: ROD ROD
Remaining data: RUD

The HPC profile MUST select either ROD, RUD, or RUDI. The selection is based on the operation type, the
message ordering modes that are configured, and vendor-specific policy. The HPC profile MUST select
the packet delivery mode according to Table 2-31. In the cases that show RUD/RUDI, the selection of
whether to use RUD or RUDI SHOULD be made based on vendor-specific policy.

Table 2-31 - Packet Delivery Mode Selection Criteria for HPC Profile

Send R/W SEND or TAGGED SEND RENDEZVOUS Operation RMA ATOMIC
Ordering Ordering Operation Operation | Operation
N N RUD RUD RUD/RUDI RUD
N Y RUD RUD ROD ROD
Y N ROD Initial/eager data: ROD RUD/RUDI RUD

Remaining data: RUD
Y Y ROD Initial/eager data: ROD ROD ROD
Remaining data: RUD

2.2.7 Traffic Classes
The SES sublayer is aware of only data traffic classes. The libfabric application is not aware of traffic
classes used by PDS. The default value is shown in Table 2-32.

Implementation Note:

Other sublayers of UET use additional traffic classes with associated DSCP values for services that are
not visible to the libfabric provider. These traffic classes are configured via OS-specific means (e.g.,
Linux TC) and SHOULD be consistent throughout the network.

Table 2-32 - Default Traffic Classes

Traffic Class
Data Traffic Class

Default
Default Forwarding (DF) PHB
DSCP Codepoint = ‘000000’
See RFC 2474 [1]
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The default traffic classes can be overridden by setting the UET_PROVIDER_DEF_DATA_TC configuration
parameters defined in Table 2-7.

The libfabric application controls the data traffic class using the tclass field of struct fi_domain_attr. The
value of the tclass field indicates whether the default traffic class or a specific DSCP should be used for
the data traffic class as specified in Table 2-4.

2.2.8 Transmit and Receive Queues

The libfabric data transfer operations are typically implemented with a set of transmit and receive
qgueues that are accessed by the NIC hardware. This section provides requirements and guidance
regarding the operational characteristics of the transmit and receive queues with the goal of promoting
common NIC behavior and an associated collective understanding of that behavior, which should
simplify performance tuning.

The details of transmit and receive queue operation are vendor specific.

2.2.8.1 Transmit Queues

Transmit queues are used for libfabric APIs that initiate transmissions on the network (e.g., fi_send(),
fi_tsend(), fi_write(), fi_read(), etc.). Transmit queues contain work elements, where the work elements
describe the operation that is to be performed and identify the associated data buffer. The provider
inserts work elements into a transmit queue, and NIC hardware removes work elements from a transmit
qgueue. When the NIC hardware removes a work element, it performs the associated network
transmission.

In the simplest case, a single transmit queue could be used to initiate all network transmissions.
However, use of a single transmit queue might not achieve optimal performance due to head-of-line
blocking issues and lack of support for multiple traffic classes with different transport characteristics.
Figure 2-11 shows an example transmit queue configuration.
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Example has 8 Transmit Queues

TX Queues 0-5 are configured to service
Traffic Class TCa

UET Provider

TX Queues 6-7 are configured to service
{Operation Work Element, TC} Traffic Class TCb

Y
Transmit Queues

TCh Tca Message ordering mode is also a libfabric
E E E E E E E E endpoint property

7 6 5 4 3 2 1 0
Operations for unordered endpoints

associated with TCa are distributed across
TX Queues 0-5

Traffic Class is libfabric endpoint property

Operations for unordered endpoints
associated with TCb are distributed across
NIC Hardware TX Queues 6-7

Operations for ordered endpoints are
constrained to a single TX Queue

Figure 2-11 - Transmit Queue Example

A UET provider SHOULD support multiple transmit queues.

A UET provider SHOULD support mapping a traffic class to one or more transmit queues, such that
different traffic classes MAY be mapped to different sets of transmit queues.

A UET provider SHOULD distribute unordered message operations associated with a particular traffic
class (e.g., TCa) across the set of transmit queues that are configured to service that traffic class (e.g.,
TCa).

When a libfabric endpoint is configured for message ordering, a UET provider MUST constrain the
operations for that endpoint to a single transmit queue. The libfabric message ordering modes were
discussed in section 2.2.6.

2.2.8.2 Receive Queues and Registered Memory Regions

Receive queues are used for libfabric APIs that post buffers to be used for receiving messages from the
network (e.g., fi_recv(), fi_trecv(), etc.). Receive queues contain elements that identify the associated
data buffer and its attributes (such as a tag). The provider inserts elements into a receive queue, and
NIC hardware removes elements from a receive queue. When the NIC hardware removes an element, it
stores message data received from the network in the associated data buffer.
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Memory regions that are registered with the libfabric provider are like receive queues in that they
identify buffers used as the target network operations. Registered memory regions MAY be targeted by
remote RMA operations.

Figure 2-12 shows an example set of data structures for the receive queues and registered memory
regions associated with a libfabric endpoint. In the example:

e Separate receive queues are allocated for untagged messages and tagged messages.
e Atable is used to manage the registered memory regions. The table contains descriptors that
identify the associated data buffer and attributes (such as access permissions).

UET Provider

{Operation Element}

Receive Queues and Memory Regions

Memory Region Tagged Msg Untagged Msg
Table RX Queue RX Queue

= = =

NIC Hardware

Figure 2-12 - Example Receive Queue and Registered MR Data Structures

A UET provider that supports tagged messages SHOULD allocate independent receive queues for
untagged messages and tagged messages on a libfabric endpoint basis.

2.2.9 Security Protocol

This section is devoted to provider support for the optional UET security protocol. The security protocol
support is implemented by the kernel driver associated with the provider under the covers in a manner
that is transparent to the libfabric APls. When a libfabric endpoint is opened, the security binding
parameters are received by the provider kernel driver as part of the UET address assignment procedure
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that is described in section 2.2.5.3.5.1. The security Binding Parameters are specified in Table 2-33. A
UET provider that implements the UET security protocol MUST support the security binding parameters
specified in Table 2-33.

Table 2-33 - UET Security Binding Parameters

Parameter Name Size (bits) Description

Alg 4 Cipher Algorithm
0x00: AES-GCM-256

0x01-0xOF: Reserved

Rekey 4 Rekey Mode

Bit 0:0—0=>not AN, 1=>AN

Bit 1:1 -0 =>not Automatic, 1 => Automatic
Bits 2:3 — Reserved, MUST be 0

Mode 4 Crypto Mode
0x00: Direct

0x01: Cluster
0x02: Client-server
0x03-0xO0F: Reserved

Rekey Shift 6 Shift for automatic rekeying operation
Rekey Mask 64 Mask for automatic rekeying operation
Encap-type 2 0b00 — Native IPv4

0b01 — Native IPv6
0b10 — UDP over IPv4
Ob11 - UDP over IPv6

Coff 12 Crypto Offset (in units of 4B)

Aoff 12 Authentication offset

AN 1 Association Number (i.e., Key Generation ID)
SDI 31 Secure Domain ldentifier

SSI 32 Secure Source ldentifier

A kernel driver that implements the UET security protocol MUST also support rekeying using the rekey
parameters specified in Table 2-34.

Table 2-34 - UET Rekey Parameters

Parameter Name Size (bits) Description
AN 1 Association Number (i.e., Key Generation ID)
SDI 31 Secure Domain Identifier
SSI 32 Secure Source Identifier
current_epoch 16 Current key epoch
IVMASK 96 IVMASK
Key Type 8 Type of Key: Raw or Wrapped
Key Length 16 Length of Key (in bytes)
Key 512 Key / Wrapped Key
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The rekey parameters MAY be requested by the kernel driver or pushed by a key management system.
The architecture for obtaining the rekey parameters is shown in Figure 2-13.

Applications

Y

HPC & Al Middleware (MPI, SHMEM, *CCL)
———————————————— l~—————————————— libfabric APIs

___________________ Pravi
Privileged User 1 roviderAPls

Process Vendor UET Provider
Implements libfabric features required by UET

Communicates with
Key Management

System ~l———— Vendor APIs

Control - Communication = Completion = Data Transfer

Vendor Low-Level NIC HW Library

2 1
Netlink Rekey Parms: UET Control API
{AN, SDI, SSI, Key} Rekey Request:
{AN, SDI, SSI}
Kernel
Kernel Driver Bypass

{Key Parms}l 3

‘ NIC Hardware

Figure 2-13 - Rekey Parameter Acquisition Architecture

The steps shown in Figure 2-13 are:

1. UET provider kernel driver makes a rekey request to privileged user process via the UET Control
API.
2. The privileged user process communicates with a key management system and returns the
requested rekey information.
3. The provider kernel driver programs the key parameters into the NIC hardware.
Requirements associated with this architecture are:

e A UET provider kernel driver MUST support sending rekey requests to a privileged user process
using the UET Control API.

e The privileged user process MUST respond to rekey requests from the provider kernel driver
with rekey parameters.

e The provider kernel driver MUST accept both solicited and unsolicited rekey parameters
received from the privileged user process, and it MUST program the key parameters into the NIC
hardware.

The provider kernel driver MUST include the parameters specified by Table 2-35 in rekey requests.
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Table 2-35 - UET Control APl Rekey Request Parameters

Parameter Name Size (bits) Description
AN 1 Association Number (i.e., Key Generation ID)
SDI 31 Secure Domain Identifier
SSI 32 Secure Source ldentifier

‘C’ structure representations of the UET security binding parameters, rekey parameters, and rekey

request parameters are shown in Figure 2-14.

#define
#define
#define
#define
#define
#define
#define
#define
#define
#define
#define

UET SEC_MAX_ KEY OCTETS 64
UET_SEC_ALG_AES_GCM 256 0
UET SEC_REKEY MODE AN (1 << 0)
UET SEC_REKEY MODE AUTO (1 << 1)
UET SEC_CRYPTO MODE DIRECT 0
UET SEC_CRYPTO MODE_CLUSTER 1
UET _SEC_CRYPTO MODE_CSERVER 2

UET_SEC_AN BIT (1 << 31)
UET SEC_RAW KEY TYPE 1

UET SEC_WRAPPED KEY TYPE 2
UET_SEC_IVMASK_ OCTETS 96

struct uet sec bindings {

uint8 t alg;

uint8 t rekey;
uint8 t crypto mode;
uint8 t rekey shift;
uint64 t rekey mask;
uintlé t reserved;
uintl6é _t coff;

uintlé_t aoff;
uint32 t an sdi;

b

uint32 t ssi;
uint8 t encap_ type;

struct uet ctrl rekey parms {

uint32 t an sdi;

uint32 t ssi;
uintl6é t current epoch;
uint8 t ivmask[UET SEC IVMASK OCTETS];

}s

uint8 t key type;
uint8 t reserved 1;
uintlé_t key len;
uint32 t reserved 2;

/*
/*
/*
/*
/*
/*
/*
/*
/*
/*

uint8 t key[UET SEC MAX KEY OCTETS];

struct uet ctrl rekey req {

}s

uint32 t an sdi;
uint32 t ssi;
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Figure 2-14 - UET Security Structures

2.2.10 Wire Protocol Mapping

This section specifies how the libfabric APIs and associated data structures are mapped to fields in the
following wire protocol headers:

o |P header

e UET TSS header
e UET PDS header
e UET SES headers

Figure 2-15 contains a high-level depiction of the libfabric mapping to UET wire protocol headers.

‘ libfabric

Semantic Opcode, Buffer Offset, Memory Key/Tag, Remate CQ

T

|

|

| (Domain, Src UET Addr, Dest UET Addr, EP tclass,

|

| Data, Completion Type, Packet Delivery Mode, Payload Length}
|

v

Semantic Sublayer

|
{lob |D, Packet Delivery Mode, ;

Source FA, Dest FA, TC}
{Address Mode, lob |D, PIDoONFEP, Index, Initiator 1D, *

[ l !

| | |

| | |

| | |

I | |

. | : |

Semantic Opcode, Buffer Offset, Memory Key/ ! Security

I PDC Selection ‘ ‘

Tag, Remote CQ Data, Completion Type, Payload Length} : ; Management ;
| ‘ I I

| | I

1 | |

| . I {Domain,
PDC | {Domain, 5IP} | Security Bindings) {sIP, DIP, DSCP}

|
A i v \i
PDS Header Security Header IP Header
Generation Generation Generation
I |

[ I
[ I

Y Y Y

PDS Header Security Header IP Header

Figure 2-15 - Libfabric Mapping to UET Wire Protocol Headers

2.2.10.1 IP Header Field Mappings
The libfabric to IP header field mappings are shown in Table 2-36.

Table 2-36 - Libfabric to IP Header Mapping

IP Header Field Libfabric Source
source_ip_address IP address component of UET address assigned to source libfabric endpoint
destination_ip_address | IP address component of UET address assigned to destination libfabric endpoint
dscp tclass field of struct fi_domain_attr associated with source libfabric endpoint

2.2.10.2 UET TSS Field Mappings

The TSS header field generation is based on security bindings from the provider kernel driver and per-
packet information from libfabric. The security bindings are initialized when the libfabric endpoint is

115

Copyright © 2025 Ultra Ethernet Consortium™. All rights reserved.



opened and are refreshed when rekeying occurs. The per-packet information from libfabric includes a
libfabric domain identifier and the source IP address of the FEP. The domain identifier is used to find the
security binding parameters that should be applied, while the source IP address is used by the key
derivation function.

2.2.10.3 UET PDS Header Field Mappings

The PDS headers vary based on the packet delivery mode. The UUD and RUDI packet delivery modes do
not use packet delivery contexts and have small PDS headers. For the RUD and ROD delivery modes, the
libfabric to PDS header field mapping is primarily an indirect mapping, where libfabric data is used to
select the PDC, and then the PDC state determines the PDS header field contents. The libfabric fields
used to select the PDC are shown in Table 2-37.

Table 2-37 - Libfabric Fields Used to Select Packet Delivery Context

PDC Selection Field Libfabric Source
JobID JobID associated with a libfabric APl operation
Source FA IP address component of a UET address assigned to the source libfabric endpoint
Destination FA IP address component of a UET address assigned to the destination libfabric
endpoint
Traffic Class tclass field of struct fi_domain_attr associated with the source libfabric endpoint
Packet Delivery Mode As specified in section 2.2.6

2.2.10.4 UET SES Header Field Mappings
The SES specification describes multiple header formats as summarized in Table 2-38.

Table 2-38 - Summary of Semantic Header Formats

SES Header Format Description
Standard Request Format used by most requests
Non-Matching Request Optimized format for requests that do not require matching or header data

Small Message / Small RMA Specialized format for:
e Single-packet tagged messages
e Single-packet RMA operations that cannot use the non-matching request

format
Deferrable Send Request Specialized format for deferrable send requests that replaces the offset field
in the standard request with a restart token
Ready To Restart Variation of standard request used to restart paused deferrable send
Rendezvous Extension Used in conjunction with rendezvous send operations

e The extension includes an eager length that indicates how much message
payload is being pushed with the request, and the addressing information
needed to issue a read operation

Atomic Extension Used in conjunction with atomic operations
e The extension contains an atomic opcode and datatype derived from
parameters of the associated fi_atomic() API call

Compare and Swap Used in conjunction with compare and swap atomic operations

e |n addition to the atomic opcode and datatype, the extension also
contains the compare value and the swap value parameters from the
associated fi_compare_atomic() API call
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SES Header Format Description

Response Used for SES acknowledgements and responses with data

The libfabric mappings for the SES standard request header are shown in Table 2-39.

Table 2-39 - Libfabric Mappings for SES Standard Request

Request Field Libfabric Source
opcode Based on an associated libfabric API as specified in section 2.2.5.4
delivery complete (dc) Set when an operation completion mode associated with libfabric API call is
FI_DELIVERY_COMPLETE
Relative (rel) Address mode component of UET address assigned to destination libfabric endpoint
header data present (hd) | Set when the associated libfabric API provided remote CQ data
resource_index Resource Index component of UET address assigned to destination libfabric
endpoint
ri_generation Managed by the provider in accordance with the SES specification
JobID JoblID associated with libfabric API operation (see section 2.2.4)
PIDonFEP PIDonFEP component of the UET address assigned to the destination libfabric
endpoint
buffer_offset Offset from the buffer starting address specified in the associated libfabric API call
initiator Initiator ID component of the UET address assigned to the source libfabric endpoint
match_bits Remote memory key for RMA/atomic opcodes, tag for tagged send opcodes
header_data (som=1) Remote CQ data from an associated libfabric API call
payload_length + Managed by the provider in accordance with the SES specification
message_offset (som=0)
request_length Length of the payload provided on an associated libfabric API call

The criteria for using the optimized non-matching SES header for RMA operations are specified in
section 2.2.5.3.4.1. The same criteria MUST be applied for atomic operations. The optimized non-
matching SES deader SHOULD be used only for RMA or atomic operations that satisfy the specified
criteria. The libfabric mappings for the optimized non-matching SES header are shown in Table 2-40.

Table 2-40 - Libfabric Mappings for Optimized Non-Matching SES Header

Request Field Libfabric Source
opcode Same as standard format
delivery complete (dc) Same as standard format
resource_index Resource Index for MR as specified in section 2.2.5.3.4.1
JobID Same as standard format
PIDonFEP Same as standard format
request_length Length of payload provided on associated libfabric API call
buffer_offset Same as standard format

A single-format, small message/small RMA supports multiple use cases. The criteria for the small
message use case are specified in Table 2-41. The small message SES header SHOULD be used when the
criteria specified in Table 2-41 are satisfied.
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Table 2-41 - Criteria for Small Message Header

Criteria for Use of Small Message SES Header

Message size <= MTU

Operation is tagged send

The libfabric mappings for the small message SES header are shown in Table 2-42.

Table 2-42 - Libfabric Mappings for Small Message SES Header

Request Field

Libfabric Source

opcode

UET_TAGGED_SEND

delivery complete (dc)

Same as standard Format

relative (rel)

Same as standard format

header data present (hd)

Same as standard format

resource_index

Same as standard format

ri_generation

Same as standard format

JobID

Same as standard format

PIDonFEP

Same as standard format

request_length

Length of payload provided on associated libfabric API call

header_data

Same as standard format

initiator

Same as standard format

match_bits

Tag

The criteria and requirements for the small RMA use case are specified in section 2.2.5.3.4.1. The same
criteria MUST be applied for atomic operations. The small RMA SES header SHOULD be used for RMA or
atomic operations that satisfy the specified criteria. The libfabric mappings for the small RMA SES
header are shown in Table 2-43.

Table 2-43 - Libfabric Mappings for Small RMA SES Header

Request Field

Libfabric Source

opcode

Same as standard format

delivery complete (dc)

Same as standard format

relative (rel)

Same as standard format

header data present (hd)

MUST be 0

resource_index

Same as standard format

ri_generation

Same as standard format

JobID

Same as standard format

PIDonFEP

Same as standard format

request_length

Length of payload provided on associated libfabric API call

buffer_offset

Same as standard format

initiator

Same as standard format

match_bits

Memory key
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The criteria and requirements for use of the deferrable send operation are specified in section 2.2.5.4.
The deferrable send SES header format is similar to the standard header except the ses.buffer_offset
field is replace by provider-supplied ses.initiator_restart_token and ses.target_restart_token fields.
The ready-to-restart (RTR) message in the deferrable send sequence also carries the
ses.iniator_restart_token and ses.target_restart_token fields. The restart tokens are used to identify
the operation that is being restarted. The provider MUST ensure that all active restart tokens are unique
at the initiating FEP.

The criteria and requirements for use of the rendezvous send operation are specified in section 2.2.5.4.
The libfabric mappings for the rendezvous send extension header, which follows a standard header, are
shown in Table 2-44.

Table 2-44 - Libfabric Mappings for Rendezvous Send Extension Header

Request Field Libfabric Source
eager_length <= UET_PROVIDER_MAX_EAGER_SIZE
read_PIDonFEP PIDonFEP component of UET address assigned to source libfabric endpoint
read_resource_index Resource Index component of UET address assigned to source libfabric
endpoint
read_ri_eneration Managed by provider in accordance with SES specification
read_offset e Offset of source buffer parameter from the send APl within a registered

local memory region (memory region is determined using desc
parameter of send API)
e The source buffer MUST be associated with a local memory region
registered for remote read access in order to perform a rendezvous send
e This offset reflects the start of the message within the memory region
and, therefore, MAY be used to read the entire message

read_memory_key RKEY of the local memory region associated with the source buffer

The atomic extension header is used in conjunction with the fi_atomic() APIs and MAY follow the
standard header or either of the optimized headers. The atomic extension header includes an
ses.atomic_opcode field and an ses.atomic_datatype field. A UET provider MUST map the atomic
operation and atomic datatype specified in the fi_atomic() APl to the associated SES header atomic
mnemonics, which are defined in the UET SES specification.

The compare and swap extension header is a specialized header used with compare and swap atomic
operations. In addition to the ses.atomic_opcode and ses.atomic_datatype fields, the extension also
contains the compare value and the swap value parameters from the associated fi_ compare_atomic()
API. These parameters map to the ses.compare_value and ses.swap_value fields respectively. The size
of the compare and swap parameters MUST be <= 16 bytes.

2.2.11 Linux Implementation of UET Control API

The Linux implementation of the UET Control API described in this section is a proposal to the upstream
community. It is expected that changes and feedback will be incorporated as a part of the upstream
process. The definitive location of the interfaces will be in a Linux include file.
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Multiple UET Control APl messages between the provider KMD and management entities have been
defined previously in this specification. More specifically, the following:

e UET Control APl JobID mapping request message (see section 2.2.4.1)

e UET Control APl address assignment request message (see section 2.2.5.3.5.1)
e UET Control APl address assignment response message (see section 2.2.5.3.5.1)
e UET Control API security rekey message (see section 2.2.9)

e UET Control API security rekey request message (see section 2.2.9

In Linux implementations, the UET Control APl MUST be implemented with Netlink messages. The
Netlink messages are all exchanged with the UET provider kernel driver using the new “UET” family. The
base set of encodings for the Netlink commands that represent each message are shown in Figure 2-16.

enum uet nl cmd {
UET NL CMD JOB ID = 1,
UET NL CMD ADDR REQ,
UET NL CMD ADDR RESP,
UET NL CMD REKEY,
UET NL CMD REKEY REQ,
___UET NL CMD MAX

i

Figure 2-16 - UET Netlink Command Encodings

For extensibility, Netlink does not represent messages as ‘C’ structures but uses a sequence of typed
attributes instead. The base set of attributes used to represent UET Netlink messages are shown in
Figure 2-17.

enum uet nl attr {
UET NL ATTR JOB_ID,
UET NL ATTR OS_PID,
UET NL ATTR SERVICE,
UET NL ATTR FLAGS,
UET NL ATTR FA,
UET NL ATTR UET ADDR,
UET NL ATTR SEC BINDINGS,
UET NL ATTR SEC AN SDI,
UET NL ATTR SEC_SSI,
UET NL ATTR SEC KEY,
__UET_NL ATTR MAX

}i

static const struct nla policy uet policy[ UET NL ATTR MAX] = {
[UET NL ATTR JOB ID] = { .type = NLA U32 },
[UET NL ATTR OS PID] = { .type = NLA U32 },
[UETiNLiATTRisERVICE] = { .type = NLA NUL STRING,
.len = UET MAX SERVICE NAME CHARS },
[UET NL ATTR FLAGS] = { .type = NLA U8 },
[UET NL ATTR FA] = NLA POLICY EXACT LEN (sizeof (struct uet fa)),
[UET NL ATTR UET ADDR] = NLA POLICY EXACT LEN(sizeof (struct uet addr)),
[UET NL ATTR SEC_BINDINGS] = NLA POLICY EXACT LEN (

sizeof (struct uet sec bindings)),
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[UET NL ATTR SEC AN SDI] = { .type = NLA U32 },

[UET NL ATTR SEC SSI] = { .type = NLA U32 },

[UET NL ATTR SEC KEY] = NLA POLICY EXACT LEN(UET SEC_MAX KEY OCTETS)
}s

Figure 2-17 - UET Netlink Attributes

2.2.12 References
[1] IETF RFC 2474, "Definition of the Differentiated Services Field (DS Field) in the IPv4 and IPv6
Headers," 1998. [Online]. Available: https://datatracker.ietf.org/doc/html/rfc2474.
[2] IETF RFC 3246, "An Expedited Forwarding PHB (Per-Hop Behavior)," 2002. [Online]. Available:
https://datatracker.ietf.org/doc/html/rfc3246.
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3 UE Transport Layer

The Ultra Ethernet Transport (UET) layer is designed to handle the most challenging application scale,
deliver packets reliably and securely, manage and avoid congestion within the network, and react to
contention at the endpoints. Its goals are minimal tail latency and highest network utilization. At the
same time, UET is designed to enable simple hardware and software implementations — such as what
might be required for accelerator-integrated endpoints. UET can be programmed through the OFI
libfabric standard interface. It sets out to address the shortcomings of RoCEv2 [1], specifically its
semantics, transport layer, wire operations, implementation complexities, and scale limits.

UET leverages semantics and reliability techniques from HPC to enable extreme scale while providing
advanced congestion management that employs the breadth of techniques and telemetry rising from
hyperscale datacenters for traditional Ethernet environments. The transport supports up to millions of
endpoints (NIC ports) with the ability to address up to billions of processes. Scalability is built into every
aspect of its design — from the state required in the semantic layer down to the way encryption keys are
managed and the way reliability and ordering are achieved.

To enable simplified implementations, subsets of the capabilities are defined in specific profiles that
support specialized use cases in Al domains. The HPC profile offers the most comprehensive
functionality. Some of it is optional to implement; the two Al profiles define subsets of HPC. The Al Full
and Al Base profiles enable full or partial offload of *CCL-like messaging functions to hardware. The Al
Full profile offers deferrable sends, which save up to 1 RTT compared to Al Base in the case when the
receive buffer is not ready. Al Full also provides exact match offload to identify a specific receive buffer.
Al Base requires a prior message exchange to communicate a desired target buffer, which enables
slimmer Al Base implementations.

This overview section has been used by the working group to define the goals and the overall
architecture of UET as well as to design the specifics of the sublayers. It contains an overview of the
architecture and each sublayer as well as some historic context to ease the understanding of readers. It
does not contain normative text outside of section 3.3.

3.1 UET Scope, Scale, and Reach
This section outlines the original design guidelines for UET to limit its scope and enable optimized design
choices. This background information helps readers understand decisions and architectural choices.

UET focuses primarily on the backend scale-out network. UET opportunistically considers support for
frontend networks while not preventing applications in the scale-up network. UET does not define
details of the hardware interface to the endpoints.

UET is designed to operate within one administrative domain. This means that, where necessary, a
single provisioning system is presumed for the assignment of identity and policy.

The workload and use cases are focused on generic Al, HPC, and storage traffic.
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Single applications are expected to span the entire system, single-node jobs filling up the system, and
the full spectrum in between. The objective of UET is to serve the breadth of all those use cases with a
single transport.

3.1.1 Virtualization

Virtualization hides the details of the physical infrastructure from tenants and tenants from each other.
Although there are “bare metal” instances, host virtualization is common, and network virtualization is
almost universal in cloud deployments. This level of virtualization presents a stark contrast between
traditional HPC and clouds: Traditional HPC deployments typically focus on performance first with a
more trusted user base.

Most virtualization technology sits in direct tension with performance objectives. For example,
traditional network virtualization requires O(N) state per endpoint, which UET tries to avoid.
Additionally, using network tunnel techniques introduces substantial packet overheads. In many
environments, however, the added security and isolation provided by virtualization is a fundamental
requirement. UET assumes the following with respect to virtualization:

1) Network tunnel techniques that are used today work in the context of UET, because UET uses IP
packets. UET packets can be encapsulated within VXLAN and similar tunnels; similarly, UET
packets can carry packets of tunneled protocols. Detailed implementations of virtualization
techniques are currently beyond the scope of UET. If UET packets are encapsulated in other
protocols, care must be taken to support UET’s signaling.

2) Host virtualization can be accomplished using traditional techniques — such as SR-10V, SIOV,
unique fabric addresses (IP) per tenant, or others.

3) Deployments focused on the largest scales leverage techniques that simplify the tunnel logic
(e.g., structured addressing techniques).

4) Deployments that need to focus on network packet efficiency may choose to not use
encapsulation.

Nonetheless, some basic support is needed to support tunneling in a network using UET. For example,
systems carrying UET packets inside a tunnel would provide congestion information, such as explicit
congestion notification (ECN), to the encapsulated packets. Solutions such as IETF RFC 6040 [2] are
available to provide this functionality. Furthermore, such systems would copy the entropy value of
encapsulated UET packets to the encapsulating packet to ensure ordering and load balancing. UET does
not currently define details for tunneling and leaves it up to the system administrator to ensure correct
encapsulation and decapsulation.

3.2 UET Layers, Components, and Capabilities

The Ultra Ethernet transport layer is built on four largely independent sublayers: semantics, packet
delivery, congestion management, and security. See Figure 3-1. Each piece is designed to be separable
from the others; however, implementations may choose to build and integrate the functionality in any
way.
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The semantics sublayer (SES) defines addressing, authorization, message types, protocols, and semantic
header formats between endpoints. SES works at the level of transactions, such as messages or remote
memory accesses (RMA), and breaks those into multiple packets to be transmitted by the packet
delivery sublayer. The packet delivery sublayer (PDS) transports a stream of packets reliably to the
destination FEP and passes them to the target’s SES layer for processing. It generates and interprets ACK
and NACK packets to ensure reliable transmission and uses ephemeral state to track outstanding
packets in the network. The congestion management sublayer (CMS) ensures that the packets are
transmitted at highest rate while minimizing network congestion. The transport security sublayer (TSS)
defines scalable encryption and authentication mechanisms for peer-to-peer as well as client-server
communications.

Figure 3-1 shows an overview of the overall UE stack and the UET sublayer structure. The key
architectural features of each sublayer are summarized, including how they are composed to form UET.
Full details of the specification are defined in the respective sections of this document.

Software APIs
libfabrics
. .. - msg —
Application B o )
Semantics

Map ULP APIs to packets,
Transaction tracking, ordering, completions, etc.

o =

Packet Delivery
Reliable delivery,
Packet ordering, ACK/NACK

Congestion
Management Security
Transmit rate control, Encryption, Key Management
Adaptive path selection

' :packets

Ethernet
Fabric

Figure 3-1 - Overview of UET

Each sublayer uses specific header fields in the packet. The UET payload is the data portion of a UET
packet beginning immediately after the SES header fields and of length specified by the length field of
the SES header. The length field of the SES header does not include the UET trailer if present. The total
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size of a UET packet is the sum of UET header, UET payload, and UET trailer. The UET packet structure is
shown in Figure 3-2.

L2 Ethernet header a
L3 IPv4 or IPv6 header i Network heade
L4 UDP header (optional) v
Entropy header (present if no UDP header)
TSS header (optional) i
PDS header
i UET header
UET
SES header v
B
UET payload ' UET payload
UET CRC (optional) or TSS ICV (optional) 5 UET trailer
L2 Ethernet FCS

Figure 3-2 - UET Packet Structure

3.2.1 Semantic Sublayer (SES)

The objective of UET’s semantic sublayer is to provide high-performance and highly scalable messaging
to enable specialized Al and fully featured HPC deployments. The SES bridges between the user-facing
libfabric API and the PDS by mapping libfabric API calls to a set of UET communication operations, such
as tagged and untagged send/receive, RMA read/write, and atomics. Utilizing libfabric inherits benefits
from a wider ecosystem in which user-facing libraries using libfabric already exist and are portable even
beyond UE devices. SES is optimized for common end-user-facing APIs — from *CCL to MPI to
OpenSHMEM. It provides optional message ordering and various optional initiator or target completion
notifications (e.g., global observability). SES supports libfabric’s connectionless API to allow the
underlying hardware to support a large number of endpoints.

SES translates libfabric communication calls into messages that transmit data from or to buffers at the
initiator or target process, respectively. It transmits message transactions by utilizing PDS functionality,
packetizing messages and mapping packets into messages at the destination. PDS interactions include
the packets of the message but also control packets for reliability and status exchanges.

SES defines two protocols for (large)message transmission: rendezvous and deferrable send. The
rendezvous protocol is used for messages that exceed the available temporary eager buffer limit at the
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target. The target waits (“rendezvous”) until the receiving process has posted a matching receive and
then triggers a read from the source. The deferrable send protocol simply sends messages of any size,
and a target that cannot receive it yet sends a message to stop the sender. Later, once the buffer is
posted, the target sends a resume message to continue the transaction. The main difference is that with
the rendezvous protocol, a sender decides before sending the message whether it is sending it using an
eager or a rendezvous transaction, while the deferrable send behaves the same at the sender, and the
receiver reacts dynamically and defers the send if the receive has not been posted and the message
cannot be buffered.

SES supports two fundamental addressing types: relative addressing for peer-to-peer communication in
large compute jobs and absolute addressing for client-server connections. Once a message endpoint is
identified, a buffer is selected with optional matching criteria (based on a packet-carried initiator ID,
e.g., an MPI rank and additional match bits).

OFlI libfabric is an open-source ecosystem with wide adoption — from ISV-certified MPl implementations
to ML communication libraries like *CCL. UEC does not specify how user-facing libraries use libfabric, but
many mappings are natural. For example, *CCL semantics map naturally to fi_tagged(send/recv) with
exact matching semantics, MPI-1 semantics map to fi_tagged(send/recv), and MPI-3 RMA as well as
OpenSHMEM semantics map to fi_rma(read/write) in libfabric. Collective operations can map to
fi_collective() for acceleration. Of course, it is always possible to implement any messaging semantics
(e.g., *CCL) over any lower-layer semantics (e.g., fi_rma()), but this may add additional software
overhead and prevent full offload.

3.2.2 Packet Delivery Sublayer (PDS)

PDS implements reliable packet transmission for the SES. It receives packets from the SES at the initiator
and delivers packets to the SES at the target, which the SES resolves to messages that may update target
memory. It also delivers SES return codes and return data (read and atomics) back to the initiator. The
PDS offers various ordering modes for packet delivery. All packets of a UET message, excluding the last
packet, are of size MTU.

Achieving a scalable reliability solution requires that the state retained in the NIC be based on the
number of simultaneously active (concurrent) communications — not the total number of endpoints in
the application. The reliability layer is designed to cover three key requirements:

1. Extreme scalability
2. Ordered delivery of some packets
3. Unordered delivery of some packets — particularly of bulk payload

Those requirements enable efficient support for packet spraying. PDS defines three packet types:
request, response (aka ACK/NACK), and control packets. PDS request packets flow from the initiator of a
message to the target (reads are an exception). PDS responses flow in the opposite direction. Request
packets usually carry data; ACKs carry SES codes to complete the message or defer it. As an
optimization, PDS responses may also carry small read data directly. Larger reads are handled
differently. The SES response code for a read request indicates “read accepted,” and a separate SES
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response with data is sent using a PDS request from the target to the initiator. Control packets are used

for management purposes, e.g., to request the status of a request packet or to probe a path’s

congestion situation.

In support of the ordering objectives and the use of multiple, concurrent, independent paths, the

reliability layer is designed with four packet delivery modes. Those modes support the semantic needs

of both HPC and Al, while enabling highly optimized, highly scalable implementations. In some use

cases, the same message may utilize more than one packet delivery mode. For example, an MPI

implementation might use an ordered mode to ensure header ordering together with an unordered
delivery mode for the payload. The four packet delivery modes are:

1.

Reliable, unordered delivery for operations (RUD): The RUD packet delivery mode is designed
to enable operations that are passed to the semantic sublayer only once but can tolerate
reordering in the network (e.g., atomic add operations). This allows all bulk data to be routed
unordered across the network. The reliability sublayer detects duplicate packets so that each
packet is delivered to the semantic sublayer only once (i.e., operates on host memory only
once).

Reliable, ordered delivery (ROD): The ROD packet delivery mode maintains the order for all
packets between two endpoints. It is designed for applications that require message ordering,
e.g., MPI's match ordering or OpenSHMEM put-with-signal semantics. As an example, MPI can
transfer a header using an ordered delivery protocol and then transfer the body of the message
using a different protocol. This provides ordering at the message level and unordered bulk data.
The reliability sublayer detects replays and ensures that the operation within each packet
interacts with host memory only once.

Reliable, unordered delivery for idempotent! operations (RUDI): The RUDI packet delivery
mode supports special applications where very small messages need to be delivered between an
extreme number of endpoints. It takes advantage of the fact that some data — like bulk payload
delivery — can be written into memory multiple times up until the final message completion is
delivered at the initiator. RUDI packets can be reordered in the network and replayed due to
loss, leading them to be delivered more than once to the semantic sublayer and in any order.
Because end-user semantics can be complex, this protocol may not be appropriate for all use
cases; yet, due to its stateless nature at the receiver, it is the most scalable of the delivery
modes because it requires no state at the receiver.

Unreliable, unordered delivery (UUD): As with most transport layers, UET provides an
unreliable packet delivery mode. Unreliable packets (or datagrams) can be used if guaranteed
delivery is not required.

Both RUDI and UUD traffic are not subject to UET congestion control and therefore it is not

recommended for their traffic to share the same traffic class with either ROD or RUD traffic.

! ldempotent operations give the same result with the no additional side effects when performed multiple times.
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Informative Text

UET does not use connections but defines various packet transport modes. UET first distinguishes
between reliable and unreliable packet transmission, then between ordered and unordered delivery.
The reliable unordered mode differentiates between idempotent (RUDI) and non-idempotent (RUD)
operations, where the former can be applied multiple times in the context of the same message
transmission (e.g., write or read). Examples for non-idempotent operations are atomic operations and
operations that have other side effects at the target (e.g., delivering header data to a completion
gueue). The ability to apply a packet operation multiple times has implementation benefits.
Idempotent packet operations may not change the message transmission or matching state when

they are applied multiple times.

UET supports in-order message delivery while allowing the majority of the associated bulk data
placement to be out of order. This includes ordered buffer addressing. For example, many Al
applications rely on in-order buffer matching semantics in *CCL libraries. This can be implemented with
UET using user-level message sequence numbers as matching tags. This way, incoming multi-path RUD
messages can be matched at the receiver in the order they were issued at the sender. If wildcard
matching is required by the user code (e.g., in MPIl), a combination of ROD and RUD can be used to
deliver rendezvous messages: The initial part of the message would be delivered in order through ROD,
and the remainder could be delivered as part of rendezvous or deferrable send through RUD.

Extreme scalability is also supported by using dynamically created packet delivery contexts (PDCs). This
means that reliability state is required only between peers with ongoing communications. PDCs can be
created as part of normal packet transmission without incurring additional round trips. Depending on
resource availability, PDCs can be kept alive for extended periods of time (up to 23! packets) as well, and
the mechanism supports cache-like PDC management.

3.2.3 Congestion Management Sublayer (CMS)

UET’s congestion management involves the combination of mechanisms for window-based congestion
control and load balancing that is performed at each FEP. UET defines various congestion-control
algorithms to enable interoperability between vendors. Specific load balancing techniques and
mechanisms to ensure fairness of congestion control in the presence of multiple FEPs are outside of the
scope of UET, as they are not required for FEP-FEP interoperability. By necessity, different vendor
solutions operating in the same fabric plane are required to co-exist. UET exemplifies various possible
algorithms.

CMS reacts to endpoint contention (e.g., incast) and network congestion (e.g., in oversubscribed
scenarios). CMS defines two fundamental congestion control algorithms: Network-signal based
congestion control (NSCC) that runs primarily at the sender and receiver-controlled congestion control
(RCCC) that runs primarily at the receiver. Either can be used in isolation, or deployments can combine
both. NSCC is designed as a generic stand-alone algorithm supporting arbitrary deployments and traffic
patterns. It relies only on round-trip time and ECN, while RCCC explicitly monitors incoming flows at the
receiver. RCCC is expected to work best on fully provisioned (nonblocking) fat trees and can be
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complemented with NSCC in oversubscribed fat trees. UET also specifies optional packet trimming
support for more rapid congestion information provided to both algorithms.

Both algorithms limit the amount of pending data (in unacknowledged packets) in the network. UET
defines a congestion control context (CCC) that contains the state required to implement the congestion
control algorithm(s). The CCC state controls the window size that limits the number of data packets in
the network for the one or more PDCs associated with the CCC. This efficient scheme supports multiple
PDCs between the same two FEPs that share the same traffic class (TC). CCCs may be helpful to
coordinate multiple PIDonFEP endpoints, for example, or different logical types of traffic sharing the
same TC. Such a set of PDCs is called a PDC group and is matched to a single CCC such that all traffic on
the same TC between the same pair of FEPs is coordinated. Multiple CCCs may exist between the same
FEPs to enable co-existing RUD and ROD flows.

Path load balancing algorithms choose which path to utilize for a specific packet. UET does not mandate
any path selection or load balancing algorithm to enable vendor differentiation. It provides examples
where path selection is implemented using equal-cost multi-pathing (ECMP) and is controlled through
changing the entropy in the packet headers. Those example algorithms aim to reduce hash collisions and
congestion and improve performance. The UDP source port is used as the common field in the packet
headers to specify entropy. ECMP forwarding behavior of switches is assumed to guarantee (in the
absence of failures) that packets with the same entropy use the same path.

3.2.4 Transport Security Sublayer (TSS)

Security is a first-class citizen in UET and designed in from the start. UET’s security solution provides the
option to encrypt and authenticate all data payload and most of the transport headers while being
designed to enable packet spraying. The security solution provides a scalable solution using a single key
across an entire parallel application and no per-peer security state for large parallel jobs. It also provides
a scalable mechanism to secure many clients that communicate with a server using key derivation. The
PDS is designed in conjunction with the TSS to enable the detection of replays. TSS is robust against
known attacks on other low-level transport schemes, such as various exhaustion attacks [3].

3.2.5 Layering Summary

UET can run on top of IP/UDP or experimentally on top of IP directly; implementations may be
configured with a protocol number as described in IETF RFC 3962 [4]. Detailed packet header formats
can be found in the SES, PDS, CMS, and TSS sections of this specification. Packet formats include an
entropy value field in the UDP source port to enable compatibility with existing switches and common
ECMP path selection approaches.

Because UET uses a standard IP packet carried over Ethernet, it is implicitly possible for UET to be
tunneled using standard technologies such as VXLAN and NVGRE.

Within a UET packet, there is an optional encryption header followed by a reliability header and then a
semantic header. The encryption and reliability headers both leverage a next-header encoding so as not
to prohibit the UET definition from evolving to allow other traffic — including RoCE or TCP — to be layered
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within the encryption and reliability mechanisms. While the initial design of UET does not consider such
encapsulations, the packet layering is provisioned to enable this as a future option.

3.2.6 Sublayer Interfaces

The sublayers of UET are modularized to specify roles and responsibilities of functionality rather than
indicate implementation requirements. Actual implementations are free to choose whatever modularity
is appropriate, as long as the external observable behavior of the implementation is compliant with the
normative directives in the specification. Interfaces between the UET components and the users of UET,
both above and below, are described in the specification to further delineate the roles and
responsibilities of the modular functionality.

Figure 3-3 depicts the UET components and component interfaces. The UET libfabric provider is the
primary application-facing layer of UE. It is responsible for mapping libfabric API calls to the UET
semantic sublayer to support the communication needs of the libfabric endpoint. Send and completion
gueues are the primary means of interfacing between the UET libfabric provider and the semantics
layer.
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Figure 3-3 - Component Interface Overview

SES connects the UET libfabric provider to the PDS. SES packetizes messages at the source of the data
and deposits the received data into memory at the target. In addition, it implements various higher-level
protocols, such as rendezvous or deferrable sends, to synchronize initiator and target. SES in turn makes
transmission requests to the reliability component of PDS, which (if needed) creates and assigns a
packet delivery context (PDC) and a congestion control context (CCC) for those packets. PDS is
responsible for delivering packets from sender to receiver. PDS implements reliability and is designed to
operate on both lossless and best-effort networks. CMS is optimized to support best-effort networks. It
manages the assignment of packets to traffic classes. The PDS interfaces with the congestion
management sublayer on each packet to determine whether new packets can be sent into the network,

130

Copyright © 2025 Ultra Ethernet Consortium™. All rights reserved.



as well as an entropy value to be used. Send completion notifications and congestion signals from
received packets and ACKs are passed to the congestion management sublayer to manage transmission
windows. The TSS performs encryption and authentication at the sender, and decryption and
authentication at the receiver, of each packet. The data is then forwarded to the output ports of the
fabric interface.

3.2.7 Error Handling

Each layer may generate errors that are either to be passed to the application through the libfabric
bindings (see libfabric mapping section 2.2.5.6) or to the system administrator through logging or other
alert mechanisms. In UET, only the SES layer interfaces to the application directly; other layer errors are
either passed through SES to libfabric or logged in a vendor-specific form.

3.3 Profiles and Capabilities [normative]

UET covers various application use cases utilizing different communication libraries and services with
differing communication requirements for both HPC and Al. Not all use cases require all semantics, and
simplified semantics offer opportunities to specialize and optimize hardware. Thus, UET defines three
profiles called HPC, Al Base, and Al Full, respectively. The HPC profile supports full-fledged HPC
semantics and supports a wide range of applications. The Al Base profile is specialized to support *CCL
and unreliable datagram communication focusing on minimal implementation complexity. The Al Full
profile is intended to support all Al training and Al inferencing requirements to serve that emerging
market most effectively. A specific endpoint implementation can support either the Al Base, Al Full, or
the HPC profile or any combination of the three. However, communication between two endpoints
requires that those endpoints both support the same profile.

Within each profile, specific features of the protocol may be defined as being optional. For example, all
profiles define encryption as optional. This means that devices choosing to implement a profile would
implement the upper layers of semantics with or without encryption, and then a deployment could
decide whether to enable encryption. A device that does not implement encryption can be compliant to
a profile, and deployments using that device could not enable encryption. Yet, communication between
devices of the same profile shall be possible through the least common denominator feature set.

The following specifies the UET features included in each of the profiles. The keyword “MUST” indicates
that a feature must be implemented. If a cell is empty, it means that the feature does not have to be
supported, but vendors are free to support it in enhanced profiles (e.g., Al Base + Read). In this case,
vendors should be sure to track all dependencies. Optional features may be disabled at runtime. That
means that an implementation declaring support for Al Base may implement all features (which would
make it also HPC and Al Full compliant). The following tables assume familiarity with the respective UET
subsections. All requirements apply to both best-effort and lossless deployments unless otherwise
specified.

3.3.1 SES Transactions
Table 3-1 defines the requirements for supporting various transactions to be compliant with each
profile. Multi-packet transactions such as UET_WRITE, UET_READ, and UET_SEND MUST use a consistent
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payload MTU size to transport the SES payload. Therefore, a deployment MUST use a consistent payload
MTU size across all FEPs communicating in a fabric.

Table 3-1 - Profile Requirements for Supporting libfabric Transactions

Transaction Description Al Al HPC
Base Full
NO_OP Null message as MUST MUST MUST
defined by the
UET_NO_OP

opcode in SES
section 3.4.6.2

SEND Send a message MUST support at MUST support MUST support
that uses the buffer least 1 payload 4GB-1 request size | 4GB-1 request size
at head of the MTU request size
receive queue

DATAGRAM SEND Used for UUD MUST MUST MUST

TAGGED SEND Exact tag match MUST MUST

(EM)

TAGGED SEND Wildcard tag match MUST

(WC)

WRITE RMA write MUST MUST MUST

WRITE IMM RMA write with
immediate

READ RMA read MUST MUST

Non-fetching Atomics support MUST MUST MUST

ATOMIC

Fetching Atomics support MUST MUST

ATOMIC

Tagged Atomics Both fetching and MUST
non-fetching

DEFERRABLE Send operations MUST

SEND that can be

deferred by the
target until the
corresponding
receive buffer is

posted
DEFERRABLE Deferrable send MUST
TSEND with matching
RENDEZVOUS with unexpected MUST

msg support

Note:
1. The libfabric provider advertises the max SEND message size
2. Atomic operation support is determined via libfabric capability discovery (see SES section 3.4.1.5.4).

3.3.2 Buffer Addressing Mechanisms

Implementations of all profiles MUST conform to all basic buffer addressing schemes (described in SES
section 3.4.1.3) except for matching (described in SES section 3.4.1.3.5). Implementations of all profiles
MUST support the use of memory keys for UET_WRITE operations. All implementations MUST support
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the use of memory keys for UET_READ and UET_ATOMIC operations if RMA read is supported. Exact
matching support may be implemented using wild card matching.

Table 3-2 - Addressing Requirements for Implementations of Profiles

Operation Description Al Al HPC
Base Full

Relative Addressing Select libfabric endpoint using: MUST MUST MUST
{FA, JobID, PIDonFEP, Rl[range]}

Absolute Addressing Select libfabric endpoint using: MUST MUST MUST
{FA, PIDonFEP, Rl[range]}

Exact tag match Exact tag match for send operations MUST MUST

Wildcard tag match Wildcard tag match operations MUST

3.3.3 Authorization

All profiles MUST implement the authorization semantics (SES section 3.4.1.4). All profiles MUST be able
to insert the JobID according to SES section 3.4.1.4.1. The profile implementation MUST check the JobID
before allowing buffer access. All profiles MUST support at least one JobID per FEP.

3.3.4 Buffer Behavior
The profiles MUST support the buffer behaviors shown in Table 3-3.

Table 3-3 - Profile Buffer Behavior Requirements

Transaction Type Notes Al Al HPC
Base Full
Use-Once RMA Use-once applicable to RMA operations MUST
Memory Key Full range (standard header) MUST MUST MUST
Limited range (optimized header) MUST
Tagged Operations: Applicable to tagged send and MUST MUST
Exact Match deferrable tagged send and rendezvous tagged
send (if supported)
Tagged Operations: Applicable to tagged send and rendezvous MUST
Wild Card Match tagged send
Multi receive Support FI_MULTI_RECV

3.3.5 Packet Formats

Table 3-4 lists the SES header formats (SES section 3.4.2) that implementations of each profile MUST
support. All fields and flags in the headers MUST be supported unless specifically called out as an
exception in the table.
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Table 3-4 - Profile Summary — SES header formats

Header Format Description Al Al HPC
Base Full
Standard 44 B full header MUST MUST MUST
Deferrable Send 44 B header with restart token MUST
Deferrable Send RTR | 44 B header with restart token MUST
Deferrable Send as Target should treat arriving deferrable sends as MUST MUST MUST
Send send
Optimized 20 B header without match, initiator ID, header MUST
Non-matching data, and
message D fields (single packet)
Optimized 32 B header without message ID and with either MUST
Small Message header data OR offset (single packet)
Rendezvous 24 B header with eager length and address MUST
Extension information for read
Atomic 4 B header with opcode, datatype, control MUST MUST MUST
Extension
Compare-and-Swap Two operand header format (if CAS is MUST MUST
Header supported)
Response 16 B header with return code MUST MUST MUST
Response with Data Variable size header with 20 B response header MUST MUST
+ data
Optimized Response | 8 B compact header MUST
Delivery Complete Delivery complete (DC) as implemented with MUST MUST MUST
(GO) global observability (GO)

3.3.6 PDS Ordering Modes
Table 3-5 lists the PDS ordering modes and network behavior that implementations of each profile
MUST support.

Table 3-5 - Profile Summary — PDS ordering modes

Service Description Al Al HPC
Base Full

Reliability and Reliable, unordered delivery (RUD) MUST MUST MUST

Ordering Modes
Reliable, ordered delivery (ROD) MUST MUST MUST
Reliable, unordered delivery for idempotent MUST
operations (RUDI)
Unreliable, unordered delivery (UUD) MUST MUST MUST

134

Copyright © 2025 Ultra Ethernet Consortium™. All rights reserved.



3.3.7 CMS Congestion Control Algorithms

The CMS offers two complementary congestion control algorithms: NSCC and RCCC. The following tables
specify the implementation requirements in each profile. Independent requirements are provided for
best-effort and lossless networks. Each implemented algorithm must support a mechanism to disable it
at deployment time such that either NSCC or RCCC can run in isolation or together if the implementation
supports both.

Table 3-6 - Profile Summary — Best Effort

Service Description Al Al HPC
Base Full
NSCC Network-signal-based congestion control MUST MUST MUST
RCCC Receiver-controlled congestion control

Table 3-7 - Profile Summary — Lossless

Service Description Al Al HPC
Base Full
NSCC Network-signal-based congestion control
RCCC Receiver-controlled congestion control

3.3.8 Encapsulation

Many of the transport components of all profiles inherently rely on consistent lower-level protocol
encapsulation (e.g., IPv4 vs. IPv6 as network layer encapsulation and native UET vs. UDP encapsulation
at the transport layer). For example, TSS uses confidentiality and encryption offsets for the secure
domain specific to the encapsulation type, and CMS uses a nominal packet size to calculate bandwidth.
An implementation SHOULD use consistent encapsulations on all packets on a FEP, PDC, and TSS security
domain.
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3.4 Semantics Sublayer (SES)

UET specifies a semantic sublayer (SES) that supports the OFI libfabric API. To support libfabric, the
semantic sublayer uses concepts that have been deployed in HPC networking products as part of
libfabric implementations. This specification defines optimized profiles for Al and HPC deployments that
allow seamless interoperability between the common features of the profiles. Mappings of the popular
send/receive semantics in *CCL to the proposed Al semantics are discussed in section 3.4.9.

The products that have seeded this initial effort are inspired (to varying degrees) by the semantics
exposed through the Portals 4.x API [5]. In particular, various pieces of nomenclature are similar to what
is found in Portals 4, as is much of the addressing and authorization model. Portals 4 is mentioned here
as a resource for additional insight into some of the concepts.

Informative Text:

SES uses the terms “initiator” and “target” in various places. Whereas many implementations use
“sender” and “receiver”, respectively, those terms are often difficult when talking about transactions
like “read” or even more complex transactions like rendezvous. For example, in a rendezvous
transaction, an initial request is sent from the initiator to the target. The target then issues a “read” to
pull the data from the initiator.

Because libfabric was modeled after Portals 4, a strong semantic match remains between the two.
However, libfabric does not define how to handle various challenges for a wire protocol that lie beneath
the API (e.g., unexpected messages). Portals does not define a wire protocol either, and many of the
Portals semantics relate to NIC or software behavior that is beyond the scope of UET (e.g., event
delivery). By necessity, UET defines some behaviors of network hardware and software, but only to the
extent necessary to build compatible devices. The UET on the wire protocol does not intend to achieve
compliance with any existing semantics (neither IBTA nor Portals 4) and interoperates only with a peer
UET device.

SES defines the behavior of processing the wire protocol only to the extent that is necessary to achieve
interoperability between implementations of the libfabric APl over the wire. FEP semantics and
implementation details are left to individual implementation choices, and the split of the
implementation between hardware and software is not defined. Several details of the libfabric
implementation requirements are not defined by the wire protocol. The libfabric mapping specification
covers some additional requirements for achieving interoperable providers.

3.4.1 Definition of Semantic Concepts

This section articulates the semantics provided by the UET to support Al and HPC applications. Fields
within the header are articulated in this section, and the proper semantic handling of those fields is
described; additional normative text is found in section 3.4.3. The section starts by describing
addressing: how is a buffer selected. This is followed by a discussion of authorization: the process of
determining whether a message is allowed to access a buffer. In addition, this section covers the
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network operation types, how the ordering modes interact with the semantics provided, and network
protocol security.

Informative Text:

Throughout the semantic section, the text refers to “buffers” or “data buffers.” In this specification,
the term buffer is used generically to refer to an addressable section of memory. This includes a
libfabric “memory region” (i.e., the target of an RMA operation) as well as the pointers passed into an
fi_tsend()/fi_trecv() that refer to memory to send from or receive into. It includes areas described by a
scatter/gather list as well.

3.4.1.1 Operations, Messages, and Transactions

A “transaction” is composed of all of the packets needed to eventually deliver the payload desired by
the user and implement the libfabric request. A “message” consists of a set of packets sharing a single
message ID. A transaction consists of one or more messages and supporting packets. As an example, a
32 KB libfabric fi_send() would carry the payload in 8 packets with the same message ID that would be
the send. A send transaction would include the acknowledgments and semantic responses to the send
message packets. A more complex example would be a large fi_send() using rendezvous (3.4.4.3). This
would consist of one or more packets as part of an eager message plus one or more packets as part of
the read message (a second message). Each of those messages would have associated responses and
acknowledgments. All of these together would make up the rendezvous transaction.

The term “operation” is reserved for the behavior implemented at the endpoint. The operation is
encoded in the opcode (3.4.6.2) and specifies operations such as reads and writes to memory, sending
of messages, and atomic operations on memory. Operation is also used in a handful of cases when
referring to libfabric concepts (e.g., a receive operation).

3.4.1.2 Services and Resources

A “service” is a libfabric-level construct that encapsulates all of the resources associated with a higher-
level library (e.g., *CCL, MPI). Resources can include constructs such as buffers, completion queues, and
completion counters. A “Resource Index” is an addressing construct used to select an addressable set of
resources within a service. Three Resource Index spaces exist, corresponding to three operation types:
RMA, SEND, and TAGGED. That is, Resource Index 0 for an RMA opcode (e.g., UET_WRITE) has a
different meaning from Resource Index O for a SEND opcode (e.g., UET_DEFERRABLE_SEND). Similarly,
TAGGED opcodes (e.g., UET_RENDEZVOUS_SEND) have a third meaning for Resource Index 0.

Informative Text:

Tagged and untagged messages inherently require two different “lists” at the target, which requires
two different addressing points. The original mechanism considered was to have a single opcode (e.g.,
UET_PUT) for all, with the target resources addressed based on the configuration of the target
resource. An alternative mechanism considered was to have each resource index be configured for
what type of operation could be performed on it and reject operations of other types.
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3.4.1.3 Addressing

Addressing describes the entire process of selecting a target and identifying a data buffer at the target.
This may be the destination of data (e.g., for a Send (3.4.1.5.1)- or a Write (3.4.1.5.2), the source of the
data (e.g., for a Read (3.4.1.5.3), or both a source and destination of data (e.g., for atomic operations).
There are two types of addressing: relative addressing and absolute addressing. Both types rely on a
Fabric Address (FA), PIDonFEP (3.4.1.3.2), and set of Resource Index (3.4.1.3.3) values to select a
libfabric endpoint. They differ in how a PIDonFEP is interpreted. In relative addressing, the PIDonFEP is
relative to the JobID (3.4.1.3.1). In absolute addressing, the PIDonFEP is interpreted without a JobID. The
libfabric endpoint has a variety of resources that can include such things as a receive queue for
send/receive operation, a set of matching buffers, RMA resources, and completion delivery — both
completion queues and counters. This list does not attempt to be exhaustive, and the exact types and
nature of the resources are not intended to be prescriptive.

For each matching, nonmatching, or RMA operation that an implementation supports, separate
resources are identified by the combination of a Resource Index and operation type. Buffers provided
for different operation types are addressed independently, as illustrated throughout the following
examples; however, none of the following text or illustrations should be interpreted as suggestive,
prescriptive, or proscriptive of any implementation architecture in any way other than the resolution of
a message to a buffer.

The addressing hierarchy begins with a Fabric Address. An FA selects a fabric endpoint (FEP). Once a FEP
is selected, two addressing modes are defined. Relative addressing is intended to enable scalable
addressing for parallel communication within a distributed application, which is called a job. Absolute
Addressing is intended to enable scalable addressing for client/server operations where the server is not
required to be part of the application. In both cases, the initiator of a transaction is assigned a JobID
(3.4.1.3.1) that is inserted in each packet in a trusted way (3.4.7.1). The JoblID is an identifying property
of the initiator only, and then is used as part of addressing and authorization (3.4.1.4) at the target.

In relative addressing, the FEP uses JobID to define the scope of the PIDonFEP. Within the PIDonFEP, a
Resource Index (Rl) is associated with a “service”. A service can correspond to a specific use case or
library. In libfabric, a libfabric endpoint is opened for the service, and the number of Resource Index
values used depends on the service. The details of the usage of the Resource Index is hidden beneath
the libfabric endpoint? that was opened in association with the service. The mapping of services to
Resource Index values is covered in the libfabric mapping specification [6]. Within a service, each
Resource Index creates a unique addressing space where a send operation, tagged send operation, or
RMA operation can select a buffer. This is highlighted in Figure 3-4. Figure 3-4 specifically illustrates the
operation of send/receive and tagged send/receive, where there is a pool of buffers behind a Resource
Index. For send/receive, the first buffer is consumed from the queue by an incoming message. For
tagged send/receive, the buffer is selected using the matching criteria. An initiator identifier is provided

2 Implementation of various libfabric features (e.g., scalable endpoints) can lead to a limited level of application
level visibility of index values.
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Figure 3-4 - Overview of Relative Addressing

as part of the matching criteria (3.4.1.3.4). Note that send/receive and tagged send/receive have a
different pool of buffers — even when they use the same Resource Index.

While Figure 3-4 provides an overview of how the addressing might be used in a complete HPC software
stack — where multiple complex applications might share a node — it is also possible to implement a
simplified version of this hierarchy for more purpose-built use cases (e.g., an integrated FEP in an Al
accelerator). As illustrated in Figure 3-5, a FEP may choose to support only one JoblID at a time to
effectively remove the first level of indirection. In this model, the FEP is expected to validate that the
received JoblID is the same as the one JobID using the FEP. In addition, while the PIDonFEP plus Resource
Index space is drawn hierarchically, the total number of bits dedicated to this addressing (24 bits) is
consistent with implementation as a flat address space, if desired. PIDonFEP and Resource Index select a
receive queue at the target, which is a resource that scales based on the messaging patterns rather than
the total size of the system (in endpoints or ranks). Thus, similar solutions for direct mapping to
resources could be employed. Finally, UET defines return codes and recovery mechanisms for how to
cleanly handle transactions that go beyond the resources implemented by a particular device.

Informative Text:

A libfabric implementation associates multiple types of resources with a libfabric endpoint. This
includes things such as completion queues, memory regions, and receive buffers. Because a PIDonFEP
combined with a Resource Index is how an endpoint is addressed, this effectively selects a set of
resources — some of which are directly addressable from the network (e.g., a memory region) and
others which are not (e.g., a completion queue). Within a space selected by a PIDonFEP and Resource
Index, a memory key can also address a memory region. Each resource may have an (implementation-
defined) limited range.
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Figure 3-5 - Overview of Absolute Addressing

Absolute addressing differs from relative addressing in that the PIDonFEP is an absolute number that
spans the process space on the target node instead of being relative to a JoblID. This allows a service to
exist that is not associated with any job and allows addressing of those services within the UET
framework. An absolute address facilitates a client directly addressing a process that is not part of its
job, and the authorization model (3.4.1.4.1) enables scalable authorization using the JobID. For example,
a client can use this approach to access a service residing at a well-known PIDonFEP (or a PIDonFEP
obtained through some form of address resolution) on a server node. The JoblID at that point is used
only as part of authorization to access a buffer (3.4.1.4.1). Buffer authorization in this scenario is
expected to occur on a per-buffer basis (e.g., per memory region or per receive buffer).

Receiver
Descriptor
Resolution Receive Queue
(Send/Recv — Simplified) | set of buffers
Network IP Address {PIDonFEP,
(Fabric Address) Resource Index} —>D E‘ I:J
— 00
Descriptors

Figure 3-6 - Overview of Simplified Absolute Addressing

RMA operations (e.g., fi_read() and fi_write()) use a Resource Index space independent from
send/receive (and tagged send/receive) operations. At the libfabric level, a target memory region is
accessed using a memory key. A Resource Index defines a context within which a memory key has
meaning. Figure 3-7 illustrates this concept. A given Resource Index (e.g., Rl 0) selects a service (e.g.,
SHMEM). Within that service, a memory key is mapped to a descriptor of a memory region in a vendor-
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defined way that is compliant with the memory key structure definition in the libfabric mapping
specification. Each combination of FA, JoblID (in the case of relative addressing), PIDonFEP, Resource
Index, and Memory Key selects a unique buffer.

Figure 3-8 illustrates the case where optimized headers (Figure 3-13) that do not include a memory key
can be used. Here, a single buffer is associated with a Resource Index. A Resource Index is one of many
associated with a service (e.g., SHMEM); thus, the Resource Index can directly select a buffer.
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Memory Function

endor Defined
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Figure 3-7 - Overview of Relative Addressing for RMA Operations

3.4.1.3.1 Job Identifiers (JobID)

A JoblID identifies an application (spanning one or more FEPs) that a communicating process belongs to
(e.g., within a distributed parallel application). The JoblD is assigned to the initiating process and is part
of both addressing and buffer access authorization. In relative addressing for a FEP, it defines the scope
of the PIDonFEP within the FEP. In absolute addressing for a FEP, JoblID is used only for buffer access
authorization. See 3.4.1.4.1 for an elaboration on the use of JobID for authorization. In both absolute
and relative addressing, the JobID is populated with the JoblID of the initiating application.

Job identifiers are useful in a traditional parallel computing environment (e.g., both HPC and Al) to
segregate different user applications. They also provide a scalable authorization field when
communicating in a client/server environment. A JobID is assigned by a provisioning system — much like
a VXLAN ID would be. The numerical relationship of the JobID to the security domain is not defined by
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Figure 3-8 - Overview of Relative Addressing for RMA Operations Using Optimized Headers

UET. The JobID MUST be unique for all jobs that are concurrently executing within the reachable
network, and it could potentially utilize an existing ID if that is how the provisioning system is designed.
Phrased differently, two entities that can reach each other across the network MUST have different
JobIDs unless they are allowed to communicate. A distributed parallel application MAY be associated
with more than one JobID.

Informative Text:

An example of a parallel application being associated with more than one JobID is the case where two
separately launched distributed parallel applications need to communicate. These two jobs may be
launched at somewhat different times such that the first job has no knowledge of the details of the
second job at launch time. Multiple mechanisms can achieve this. The two historical solutions are: 1)
Create a spanning JoblD where each process uses relative addressing in two different jobs, and 2) Use
absolute addressing. In either case, separate resources (e.g. separate sets of receive buffers and
completion queues) are used for communicating between the two jobs.

Informative Text:

JobID assignment is conceptually similar to VXLAN ID assignment. The relationship of the JobID to a
VXLAN ID (or other virtualization ID) is not defined by UET. In either case, the JobID could potentially
be the same as a virtualization ID or a security domain, but that is not a requirement.

3.4.1.3.2 Process ldentification (PIDonFEP)

UET provides a process identification field in the SES header called ses.PIDonFEP, which is used to select
a set of resources associated with a specific process. Because operating systems tend to evolve
independently of network protocols, the UET PIDonFEP is decoupled from the OS process ID as well as
the PClI Express PASID. The PIDonFEP-to-OS process mapping is many-to-one. That is, each OS process
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using the network stack MUST have a different PIDonFEP, but more than one PIDonFEP may be assigned
to an OS process. A PIDonFEP MUST have either a scope that is relative to a JobID (relative addressing)
or a scope that is relative to a Fabric Address (absolute addressing).

Informative Text:

A PIDonFEP used in relative addressing mode can be thought of as a “rank on node.” Relative
addressing mode is designed to allow hierarchical, algorithmic addressing so that a “rank” — such as
for MPI or *CCL — can be expressed as a logical node and rank on that node. Thus, a CCL or MPI rank
would be decomposed into “node X and PIDonFEP Y” — such as an application with 8 ranks per node
translating Rank 33 into node 4 and PIDonFEP 1. In this case, PIDonFEP 1 says that Rank 33 is the
second rank on node 4.

Informative Text:

Multiple PIDonFEPs have been bound to a single OS process in historical implementations to expand
the flexibility of resource management. In most hardware architectures, this is “harmless” since the
hardware must map PIDonFEP to some address translation context and typically uses structures that
are agnostic to N:1 mappings. For example, if the Resource Index space proves to be too small for
multi-programming model applications, it may be possible to map a service to an alternate PID to give
it the full range of Resource Index values.

3.4.1.3.3 Separation of Services within a Process (Resource Index)

Within a process, it is often necessary to separate different usages of the network stack. For example, a
user-level networking stack — such as MPI or *CCL — would want a separate set of communication
resources from a user-level object storage system (e.g., Distributed Asynchronous Object Storage
(DAOQOS) [7]). A specific set of resources within a process is a libfabric endpoint. A libfabric endpoint may
acquire more than one Resource Index — as defined by the service that was used to open the endpoint.
A communication context within that endpoint (e.g., a receive queue) is selected by the Resource Index.
Different operation types (e.g., UET_SEND, UET_READ, and UET_TAGGED_SEND) have different
Resource Index spaces. When used with a tagged operation on the wire, a Resource Index refers to a set
of buffers using tag matching for buffer resolution (accessed using TSEND opcodes). The same numerical
value of Resource Index used with a SEND opcode accesses a nonmatching queue. One or more RMA
resources (accessed using UET_READ, UET_WRITE, UET_ATOMIC, and others) can be associated with a
Resource Index. An RMA operation using an optimized header (Figure 3-13) MUST select exactly one
RMA resource using the Resource Index. An RMA operation using the standard header (Figure 3-9) MAY
target a Resource Index that has exactly one RMA resource. This configuration is part of the Resource
Index configuration at the target FEP.
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Informative Text:

The text above notes that send/receive, tagged send/receive, and RMA opcodes have three different
Resource Index spaces. That is, a Resource Index using send/receive selects different resources
(completion queue, set of target buffers) from a tagged send/receive using that same Resource Index
value. Similarly, an RMA opcode using that same numeric value accesses a third set of resources.
Whether that is thought of as three separate Resource Index tables or one table with three sets of
resources selected by the operation type is an implementation detail beyond the scope of this spec.

3.4.1.3.4 Initiator Identifiers

The ses.initiator field is included in the UET header and is part of the matching criteria (3.4.1.3.5). The
ses.initiator field contains the job level “rank” of the initiating process. An initiator has meaning only
within the context of a JoblD (i.e., it is a rank numbered from 0 to N-1, where N is the total number of
ranks in the application). As such, it MAY be assigned by a user-controllable resource. In many
messaging APIls — including various CCL libraries and MPI — the receive operation (e.g., MPI_Irecv())
specifies the rank that a message must come from in order to match to that receive. This ses.initiator
field is intended to carry that rank — or a proxy for that rank (e.g., the source rank could be translated to
a global rank rather than the communicator-specific rank used in MPI). This is expressed in libfabric
through the FI_DIRECTED_RECV portion of the API.

Informative Text:

The ses.initiator field is currently defined as the initiator ID and is relative to the JoblID in both relative
addressing and absolute addressing. The initiator ID does not currently have a separate trust model or
addressing model for absolute addressing, because there is not a currently known use case for the
initiator ID in absolute addressing mode. Future extensions of the specification may include updates
to the initiator ID definition for absolute addressing if a well-defined use case emerges.

3.4.1.3.5 Matching and Nonmatching Operations

The UET header defines a set of fields to enable either matching or nonmatching operations. When the
message indicates it is a tagged send (e.g., UET_TAGGED_SEND, UET_RENDEZVOUS_TSEND), the
“matching criteria” (the 64 ses.match_bits field and the ses.initiator_id field) are used for buffer
selection. When matching is not requested (e.g., UET_SEND, UET_RENDEZVOUS_SEND), a network
message selects the next buffer provided by the Resource Index. The matching (if present) and
nonmatching resources associated with a Resource Index are logically separated.

Matching operations exist in various forms. The traditional form of matching as defined through the
libfabric fi_trecv() APl uses matching criteria — specifically the ses.match_bits and the ses.initiator fields
of the message — to select the buffer. In this approach (as exemplified in fi_trecv() and other historical
software APIs), the matching criteria can provide ignore bits for each of the 64 match bits and/or be set
to receive from “any source” (i.e., using FI_ADDR_UNSPEC —see fi _trecv()). Support for MPI matching
requires wildcard matching for both a tag field and a source field, and this is accomplished through a
combination of ignore bits and FI_ADDR_UNSPEC. For *CCL implementations that support send/recv,
their matching behaviors are typically a subset of this behavior, where the matching criteria may not be
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wildcarded; however, that is a property of the libfabric endpoint and not the wire protocol. When
wildcard matching is used with ROD, the message MUST consume the entries in the FIFO order provided
by software amongst all buffers that match the matching criteria; thus, for a given {FA, JobID, PIDonFEP,
Resource Index} matching is performed in the order that buffers were added to that Resource Index.
When RUD is used, the matching process SHOULD consume the entries in the FIFO order provided by
software amongst all buffers that match the matching criteria — whether exact matching or wildcard
matching is used; however, because RUD is unordered, the fabric is allowed to reorder packets. Entries
are allowed to be consumed in any order when using RUD.

The match bits MAY be used as part of the RMA operations for libfabric. In this use case, the target of an
RMA operation configures the resources identified by a {JoblID, PIDonFEP, Resource Index} tuple in an
RMA operation (e.g., fi_write(), fi_read(), fi_atomic()) as expressed as an RMA opcode (e.g., UET_WRITE,
UET_READ, UET_ATOMIC, UET_FETCH_ATOMIC) for access using a “key” provided as a parameter of the
fi_write() or fi_read() APl. The implementation MUST map the key into the match bits on the wire. On
some implementations, this key (as carried in the match bits) MAY have a very limited range and simply
index a table of memory regions affiliated with a {JobID, PIDonFEP, Resource Index} tuple. On other
implementations, some values of this key MAY use a hash table to identify a buffer associated with that
{JobID, PIDonFEP, Resource Index, key} tuple. On still other implementations, the hardware MAY be
simply configured to use the matching logic used to support tagged messaging. Each of these modes is
enabled through the libfabric mapping because the libfabric APl allows implementations to control the
actual values of a memory key and how those values are used. Interoperability between various
implementation strategies for the use of match bits is discussed in the libfabric mapping specification.

Informative Text:

The design of SES always provides an ses.initiator field to be part of the matching criteria. This
enables libfabric to support FI_DIRECTED_RECV. An endpoint could be opened without
FI_DIRECTED_RECV. In this case, the target side endpoint would ignore the ses.initiator field. This is a
topic for coverage in the libfabric mapping specification but is noted here for the sake of the reader.

3.4.1.3.6 Memory Addressing

The UET header provides an offset within the buffer selected through the above processes. The offset is
zero based (with respect to the buffer start) and matches the default memory region behavior for
libfabric (formerly known as FI_MR_SCALABLE). Implementations MAY support the FI_MR_VIRT_ADDR
option. FI_MR_ENDPOINT is required to be set by the user of the libfabric provider.

3.4.1.3.7 Addressing Summarized

A message that uses relative addressing selects a set of resources associated with a libfabric endpoint
using a JoblID, PIDonFEP, operation type, and Resource Index combination. For an untagged operation, a
given {JoblD, PIDonFEP, Resource Index} tuple MUST be used to select one buffer. If the message uses a
tagged operation, the FEP uses the match bits as part of selecting a buffer. In a matching operation, a
given {JobID, PIDonFEP, Resource Index, Match Criteria} tuple MUST be used to select one buffer;
however, the FEP MAY use one or more mechanisms to uniquely identify that buffer (as defined in
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section 3.4.1.3.5). The mechanism used MAY depend on the {JobID, PIDonFEP, Resource Index} tuple. An
RMA operation MAY include a memory key in the same header field used for match bits (i.e.,
ses.memory_key). If a memory key is not used, the {JobID, PIDonFEP, Resource Index} tuple MUST
uniquely select one buffer. Note that the Resource Index space used for untagged operations, tagged
operations, and RMA operations are three separate spaces.

A message that uses absolute addressing selects a set of resources associated with a libfabric endpoint
using a PIDonFEP and Resource Index combination. Within this set of resources, addressing proceeds in
the same way as it does for relative addressing.

3.4.1.3.8 Addressing and libfabric [Informative]

This section is informational and provides the design intent for the addressing modes and how they are
used in libfabric. Addressing for libfabric utilizing a UET provider is standardized in the libfabric mapping
specification (see section 2.2.5.1).

A libfabric endpoint is part of one or more JobIDs. It exists only in the context of one OS process, and it
would typically exist on one PIDonFEP. A libfabric endpoint may allocate one or more values of Resource
Index.

A libfabric endpoint is likely to utilize one or more {JobID, PIDonFEP, Resource Index} tuples. At least one
motivation is to provide a control channel within the provider. Here, a control channel is defined as a
mechanism through which two instances of a provider in different processes can exchange control
information.

In libfabric, the fi_addr_t (e.g., dest_addr) determines whether relative addressing or absolute
addressing is used.

For an fi_send(), the {JoblD, PIDonFEP, Resource Index} tuple selects a set of resources in a libfabric
endpoint that is similar to a shared receive queue.

For an fi_tsend(), the {JobID, PIDonFEP, Resource Index} tuple selects a construct similar to a shared
receive queue in a libfabric endpoint. Within the resources selected by that tuple, the matching criteria
(ses.match_bits plus ses.initiator) select a buffer based on the corresponding matching criteria provided
in the fi_trecv(). It is expected that libfabric will be extended to allow an endpoint to specify that it
supports only exact matching (i.e., that all of the ignore bits must be 0). Exact matching is a property of
the libfabric endpoint — particularly the target libfabric endpoint — and not the wire protocol itself. The
exact matching semantic is defined as not allowing a wildcard to be applied to the match field. It is
intended to be used with exactly one copy of the matching criteria (ses.match_bits plus ses.initiator) in
flight at any given time on the wire and exactly one copy of the match bits in use in the tagged receive
list; however, that is not required. If these criteria are violated, then the order in which buffers are
matched is undefined.

In libfabric, RMA operations (e.g., fi_write(), fi_read()) utilize a 64-bit memory key. The wire formats
provide two encodings of the key information for these operations. In one mechanism, only the {JoblID,
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PIDonFEP, Resource Index} tuple is available in the UET header, and this chooses exactly one buffer. In
this mechanism, the key pass through the libfabric APl uses an encoding that is compatible with an
abbreviated encoding on the wire — essentially placing all key information needed for addressing into
the Resource Index itself. In the second mechanism, the wire protocol provides 64 bits for transporting
the memory key (i.e., ses.memory_key). The {JobID, PIDonFEP, Resource Index} tuple selects a set of
resources associated with a libfabric endpoint where the key has meaning and selects the completion
qgueue for delivering libfabric completion data (i.e., the ses.header_data field in the transport header
that is analogous to the immediate data for an RDMA Write-with-Immediate). The libfabric mapping
specification fully defines the memory key encoding and how that encoding is utilized to create the
relevant transport header formats.

Informative Text:

In libfabric, a memory key uniquely identifies a memory region that is the target of an RMA operation
(e.g., fi_read()). The memory key in libfabric may be used to encode various information. The
memory key is controlled by the provider implementation, which is how various usages and
structures of the memory key achieve interoperability.

3.4.1.4 Authorization

After addressing a buffer, access to that buffer MUST be authorized as specified in 3.4.1.4.1 and
3.4.1.4.2. The security mechanisms outlined in the security chapter assist in establishing the identity of
the sending device and authenticity of the header fields. Beyond that, the JobID plays a key role in
buffer access authorization.

3.4.1.4.1 Job Identifier (JoblD) and Authorization

The JobID MUST be assigned by or validated by a trusted layer within the initiating node (3.4.7.1). This
can be within the FEP or OS — if the OS is part of the network trust boundary for a given deployment.
The JoblID can be assigned in any way that the provisioning system sees fit.

For every access to a buffer (either RMA memory region or receive buffer), the implementation MUST
apply a mechanism to validate that the JoblID is allowed to access the buffer. This mechanism can be as
simple as the JobID being a required part of the mechanism to address the buffer (e.g., in relative
addressing). In absolute addressing, this can require checking the JoblID for each buffer.
Implementations MUST support at least one JobID, and an implementation MAY support only one JobID
and support only relative addressing; such an implementation can simply check the JobID of every
inbound transaction. However, an implementation that simply checks that a JoblID is one of a set
supported by the FEP, without further applying a mechanism (e.g., relative addressing or a per-buffer
check) to validate that JobID can access the buffer, is not sufficient.

3.4.1.4.2 Encryption and Authorization

Encryption is optionally supported and described in the transport security subsystem. The primary
purpose of encryption in UET is to secure data and authenticate headers. Enforcement of fabric
addresses and JoblIDs is covered in section 3.4.7.1. To prevent server state scalability issues, UET does
not require server-side mappings between a secure domain identifier (SDI) and JobID. The JobID is part
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of the identity of the initiating process in absolute addressing and is part of the shared identity of the
initiating process and target process in relative addressing.

When encryption is enabled, a secure domain is logically mapped to a service from an application
perspective. Only members ‘bound’ to the domain are allowed to use that secure domain. This is
achieved by first selecting the endpoint using the {FA, JobID, PIDonFEP, Resource Index} tuple for
relative addressing mode or the {FA, PIDonFEP, Resource Index} tuple for absolute addressing mode.
When encryption is enabled, the FEP MUST validate that the SDI is allowed to access that endpoint. If
this validation fails, the message MUST be dropped and reported as defined in the transport security
sublayer (TSS) section 3.7.4. An SES response MUST NOT be sent in response this failure. A PDS NACK
MUST NOT be sent in response to this failure.

Implementation Note:

The SES is allowed to respond with UET_NO_RESPONSE before determining that the SDI validation for
the endpoint failed. This can cause PDS to later indicate a UET_DEFAULT_RESPONSE for a given
packet, but a message that fails SDI validation will never successfully complete. The PDC will not
survive this and will eventually be torn down due to the lack of responses.

Informative Text:

UET is designed to avoid an amount of state that scales with the number of communicating peers
(e.g., in a client/server environment, the number of clients of one server). As an example, the security
specification includes a mode to allow all clients of a server to use a single SDI in order to minimize
the required key storage state at the server — to make it independent of the number of clients. Having
an SDI to JobID mapping would then require that the SDI maintain a list of all client JobID values that
could use the SDI, which is an amount of state that scales with the total number of clients.

3.4.1.5 Network Transaction Types

Network transactions include various forms of tagged and untagged sends, RMA operations, and atomic
operations. Not all transaction types may be supported on all networks. Graceful behaviors are defined
for when an unsupported network transaction type is received (3.4.5.4.2). In general, all network
transaction types work in conjunction with the full set of addressing options described above.

Network transactions that carry bulk payload (i.e., reads, writes, sends, tagged sends) MAY transfer up
to 23%— 1 bytes (4GB — 1) in a single message. This message size limit is defined by the maximum value
that can be represented in the request length in the standard header format. Individual
implementations MAY limit the size of RMA operations and send operations separately. Such a limit is
exposed through the max message size capabilities in libfabric. Implementations MUST break data into
packets containing payload sizes conforming to a Payload MTU (3.4.1.11). All packets in a message —
other than the last packet — carry exactly Payload MTU bytes of data.
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Informative Text:

Where implementations choose different maximum message sizes to export, that decision will
impose requirements on middleware software (e.g., MPI or *CCL implementations). An initiator that
fails to honor the limits of the target FEP will receive a return code indicating a failure to deliver the
message. It is the responsibility of the middleware to coordinate the maximum message size limits
across the environment. In practice, this is not typically a problem, since implementations have
traditionally chosen from a small number of maximum message sizes (either the largest the transport

supports or a single MTU), and the middleware is typically coded to choose from those options.

3.4.1.5.1 Sends - Tagged and Untagged

All sends cross the wire with addressing information — JobID, PIDonFEP, Resource Index, an optional
offset into the target buffer, matching criteria®, header data, and a payload. The target of the operation
(e.g., the receiving process where the data will be deposited) then has some control over the exact
handling of that message and the resulting change in the state of the buffer that addressing information
specifies (3.4.1.6). Sends select the head of the untagged receive queue addressed by the {JobID,
Process ID, Resource Index} and tagged sends use the matching criteria to choose one of the buffers
associated with the tagged receive queue selected by {JobID, Process ID, Resource Index}. Send
operations that arrive at a receive queue that does not have a posted receive buffer are handled using
unexpected header processing (3.4.3.5.1). Similarly, tagged sends that do not find a matching entry
follow the unexpected header processing procedures.

3.4.1.5.2 Writes

A write crosses the wire with addressing information — JobID, PIDonFEP, Resource Index, an offset into
the target buffer, an optional memory key*, header data (immediate data) and a payload. Writes select a
single buffer based on the addressing criteria. The target of the operation (e.g., the memory region
within the target process where the data will be deposited) then has some control over the exact
handling of that message and the resulting change in the state of the buffer that addressing information
specifies (3.4.1.6). For example, a target buffer could be defined as use-once or could be defined as
read-only. For any access violation (e.g., the memory key is not valid, a write accesses a read-only buffer,
etc.), areturn code (Table 3-19) is generated that indicates the error.

3.4.1.5.3 Reads

A read utilizes the same addressing information as a write. Reads select a single buffer based on the
addressing criteria. The target of the operation (e.g., the memory region within the target process from
which the data will be retrieved) then has some control over the exact handling of that message and the
resulting change in the state of the buffer that addressing information specifies (3.4.1.6). For example, a
target buffer could be defined as use-once or could be defined as write-only. For any access violation

3 Matching criteria is currently included in the packet for all types of sends, but it is used only as part of buffer
selection for tagged sends.
4 RMA addressing may work in either of two formats — one with and one without a memory key on the wire.
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(e.g., the memory key is not valid, a read accesses a write-only buffer, etc.), a return code (Table 3-19) is
generated that indicates the error.

3.4.1.5.4 Atomic operations

Atomic operations are defined within UET. Both fetching atomic and non-fetching atomic operations are
included. Atomics utilize the same addressing semantics as RMA read and write. Fetching atomic
operations are limited to a single element of a datatype. Non-fetching atomic operations (or, just atomic
operations) may be as large as a message — up to the full request length. Atomicity is limited in scope to
a single element granularity and limited to the scope of a single {FA, JobID, PIDonFEP, Resource Index,
Memory Key}. Variants of atomic operations using tagged addressing semantics are supported on
profiles that support tagged sends, in which case atomicity is limited in scope to a {FA, JobID, PIDonFEP,
Resource Index, Matching Criteria}. JoblD is not part of determining the scope of atomics when absolute
addressing is used.

3.4.1.5.4.1 Atomic Operations and Datatypes

A broad range of atomic datatypes and operations is supported within the UET definition. These types
and operations target traditional HPC as well as Al/ML workloads. An enumeration of supported
operations and datatypes is found in section 3.4.6.4.

3.4.1.5.4.2 Atomic Operation Control Fields

Atomic operations are tightly tied to the memory model exposed by the network (3.4.8). As such,
controls (Table 3-23) to convey the semantics required for the operation are provided as part of the
atomic header definition.

3.4.1.5.5 Rendezvous Send Transactions

A rendezvous send transaction is defined as an operation that sends a request from an initiator to a
target. On successfully identifying a buffer, the target then “pulls” the data from the initiator. The initial
request MAY have an “eager” portion of data that is transferred with it. Eager transfers are payload
transfers before the buffer has been identified at the target. In a rendezvous transaction, the target
controls how the eager portion of the transfer is handled. If the matching buffer is not found, it may be
buffered, or it may be discarded and requested from the initiator later.

In UET, a rendezvous transaction begins with a rendezvous request (send or tsend). The rendezvous
request includes information about a buffer at the initiator. This information is a full set of addressing
information to enable the read to later retrieve the remainder of the full message payload. The read is
semantically identical to other read operations in UET in all ways — including their packetization and
implementation options as described in the packet delivery sublayer (PDS); however, the read for a
rendezvous transaction requires completion tracking at the target beyond the typical scope of fi_read().
See 3.4.4.3 for additional discussion and for an implementation note on rendezvous implementations.

3.4.1.5.6 Deferrable Send Transactions

A deferrable send is a separate type of send transaction (for send or tsend) that can be deferred by the
target of the send. Deferrable sends can then be resumed later. A deferrable send begins with a
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deferrable send request (send or tsend — see Table 3-17 for a list of opcodes) that includes a restart
token containing a 32-bit portion allocated by the initiator and a 32-bit portion that will be filled in by
the target. The target responds with a semantic response indicating whether the message was accepted
or not. Accepted messages can be accepted in their entirety or partially. If the message was not
accepted in its entirety, a later request from the target to the initiator — a ready to restart — uses a token
to indicate to the initiator that the original message can be restarted. The ready-to-restart request can
include an offset to allow it to start somewhere other than the start of the message. This allows the
implementation to capture the initial portion of the message in an unexpected buffer and copy it when
the matching receive (e.g., fi_trecv()) is posted.

Informative Text:

A deferrable send could be implemented with an “eager” limit; however, this is a matter of device
architecture. In this context, an eager portion does not go into the wire protocol, because it does not
impact the behavior of the target. The eager size is not part of the libfabric API.

Informative Text:

The deferrable send transaction provides a wire protocol implementation and optimization of an
“eager long” protocol [8]. Conceptually, the round-trip time required for a rendezvous operation has
a negative impact on the performance of moderate sized messages when the message is expected.
Eager long protocols optimize for the expected message case. Deferrable sends go one step further by
providing a wire protocol that reduces (though does not eliminate) the wasted bandwidth associated
with unexpected messages using an eager long protocol. Deferrable sends also include a wire
transaction that does not require implementing a read operation to pull the remainder of the data.

3.4.1.5.7 Responses

Two types of responses are defined. The first is a response to send, tagged send, write, read (for large
reads), and non-fetching atomic operations, which indicates the semantic result of that operation
(3.4.3.3). The second is a response with payload, which is returned as the result of a read or fetching
atomic operation.

3.4.1.6 Target Operation Types: Supported Buffer Behavior

UET attempts to minimize the requirements placed on FEPs to maximize the flexibility afforded to
implementations. Nevertheless, it is important that FEPs — and their associated software stacks —
implement certain behaviors. Minimum requirements for hardware are discussed in section 3.4.7. FEPs
have expected behaviors for use-once, multi-receive, tagged, and RMA operations as described below.

3.4.1.6.1 Use-Once Operation

One important buffer behavior for implementing libfabric is use-once behavior. This behavior means
that once a single message has targeted the buffer, the buffer MUST NOT be accessible by other
messages. The buffer MUST continue to be available for the one operation that started on it. The buffer
MUST NOT be released back to the application (e.g., through a completion notification) until the
operation targeting it has completed. Target-side FEP implementations MUST support use-once
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behavior, since this is the defined behavior for fi_send()/fi_recv(). If tagged messaging is supported,
target-side FEP implementations MUST support use-once behavior as part of the tagged API
implementation.

Target-side FEP Implementations of RMA (fi_read()/fi_write()) MAY implement a use-once semantic.
Use-once can be a useful feature for building more secure implementations, as it minimizes the
exposure window of a buffer. It can also be helpful for software to not have to explicitly tear down
exposed buffers.

Informative Text:

Use-once behavior for RMA operations requires libfabric extensions. This behavior can be an
important building block for secure protocols — especially in client/server operation. Many attack
surfaces for unencrypted protocols depend on “guessing” the value of fields such as the
ses.memory_key. Use-once behavior minimizes the lifetime of the exposure of the buffer, which
reduces the success probability of these attacks. Use-once behavior is also a useful (though not
strictly necessary) building block for the rendezvous protocol, since it eliminates the overhead of
tearing down the buffer that was exposed by software to enable the target to issue a rendezvous

read.

3.4.1.6.2 Multi-Receive

Target-side FEP Implementations SHOULD implement support for a multi-receive capability (i.e., the
FI_MULTI_RECV option as specified for API calls such as fi_recv() in libfabric). Multi-receive allows a
single buffer to accept multiple requests with a locally managed offset “until it is full.” This applies to
send and tagged send operations (and their rendezvous variants).

3.4.1.6.3 Tagged Operations

The target side of an implementation of libfabric over the HPC profile for UET MUST include support for
tagged operations. Tagged operations MAY be accelerated with special mechanisms (e.g., dedicated
hardware support); however, implementations that comply with the minimum requirements in section
3.4.7 are also acceptable. Implementation of tagged operations MUST use the matching criteria
(ses.match_bits plus ses.initiator) provided in the UET header.

3.4.1.6.4 Memory Key Size and Range

Target-side FEP implementations MUST support using the match bit field of a packet as a memory key
for an RMA operation (e.g., fi_write()). The structure of the memory key is not defined as part of the
transport definition and is defined in the libfabric mapping specification. Implementations have
significant freedom to choose the exact usage of the memory key while complying with the libfabric
definition.

3.4.1.7 Ordering
Two basic forms of ordering are defined in libfabric; libfabric message ordering and payload ordering.
The first is the ordering between libfabric messages — where a libfabric message here is loosely defined
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as any type of network operation — and the second is payload ordering which is the order in which
bytes targeting a single address are delivered to memory at the target. In contrast, packet ordering is a
property of the packet delivery service (PDS) and is used to implement the ordering requested at the
libfabric layer. The ordering requested at the libfabric layer passes through SES to select a PDS mode
(e.g., ROD, RUD, RUDI) and how that PDS mode is used. Libfabric message ordering — defined as the
order in which message headers are used to select a buffer —is distinct from payload ordering when
utilizing underlying PDS modes. Payload ordering (3.4.1.7.2) refers to the order in which two different
transactions operating on the same target address are applied.

3.4.1.7.1 Libfabric Message Ordering

Message ordering as defined by libfabric (e.g., send-after-send, send-after-write) requires that message
headers be resolved at the target (e.g., matched or consume a receive queue entry) in the order that the
messages were provided by software at the initiator. That is, message ordering begins with the order in
which API calls (e.g., fi_send()) are made from software at the initiating libfabric endpoint and ends
when a buffer has been selected (e.g., tag matching has concluded and the buffer marked as a use-once
buffer is no longer available for other messages to match). Message ordering requirements apply to a
specific {initiator FA, target FA, initiator PIDonFEP, JobID, target PIDonFEP, Resource Index, traffic class}
tuple only. To meet the libfabric message ordering semantics for send-after-send (and other message
orderings), operations MUST use a ROD PDC to transport information required for resolving to a buffer
at the target. This means using a ROD PDC for fi_send() or fi_tsend() when making a request — including
a rendezvous request. Payload may be delivered out of order by using rendezvous transactions (3.4.4.3)
or deferrable send transactions (3.4.4.4). In these transactions, the initial message (e.g., eager portion) is
sent using a ROD PDC, and the remainder (e.g., the rendezvous read) is a separate message that may use
a RUD PDC. section 3.4.9 discusses the mapping of *CCL ordered send/receive over a tagged interface
using a RUD PDC.

Informative Text:
Most implementations are likely to place multiple independent streams of ordered traffic onto a
single PDC.

The mixture of RMA operations (e.g., fi_write()) with messaging (e.g., fi_send()) that requires message
ordering (e.g., send-after-write) MAY use a ROD PDC. If it does not use a ROD PDC, mixed RMA and
messaging MUST use source-side fencing to force the required ordering between messages. Source-side
fencing refers to the action of waiting for the prior operations to complete — conceptually similar to a
memory fence — and then initiating the subsequent transactions. This action would be applied at the
semantic sublayer, if it were implemented.

3.4.1.7.2 Payload Ordering

Payload order refers to the ordering that two different operations from the same initiating PIDonFEP
from a given initiator FEP perceive when accessing the same buffer associated with a single target FEP.
Common ordering modes (i.e., typical CPU memory model ordering modes that are also defined in
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libfabric) include write-after-write (WAW), write-after-read (WAR), and read-after-write (RAW). RMA
operations that request payload ordering MAY use a ROD PDC. This would effectively order the delivery
of payload data such that the order in which it is presented to the target FEP would match the order of
the requests issued by software. Even then, WAR ordering is likely to have a limited size as defined by
the target implementation (i.e., as expressed through the max_order_war_size attribute in libfabric). To
implement WAR ordering, targets using a ROD PDC to achieve ordering MUST buffer the result of the
first read until an indication has been received from PDS that the result has been received by the
initiator. This is indicated by PDS transmitting a Clear packet for the result. Typical implementations limit
the size of data they buffer (e.g., to the maximum payload size of fetching atomic operations). Even with
these mechanisms in place, implementations need to take care in how the host bus interface (e.g., PCI
Express) semantics interact with the chosen ordering mode.

A second alternative for implementing payload ordering is to use initiator-side fencing in conjunction
with a RUD, or even RUDI, PDC. Initiator-side fencing implies that after one operation is performed, the
initiator waits for that operation to complete, and then the next operation is performed.

3.4.1.7.3 Order of Generation of Packets Within a Message

Packets of a single message are generated with packet sequence numbers (PSNs) and offsets within the
message that are ascending through the message. That is, the first packet of the message MUST have
the first sequence number (e.g., PSN=A) used for the message and MUST have the ses.som bit set. The
Nth packet MUST have PSN=A + N-1; thus, in the logical interface from SES to PDS, packets are provided
in order. Similarly, the first packet of a message MUST have an offset within the message of 0. The Nth
packet MUST carry an offset of (N-1) * PAYLOAD_MTU in the ses.header_data field. The final packet of
the message MUST have the ses.eom bit set. Packets from a single message MUST be contiguous in the
sequence number space. That is, two messages MUST NOT be interleaved in their delivery to PDS for a
single PDC.

For the ROD protocol, packets MUST be delivered to the wire in the order of their sequence number. For
the RUD protocol, packets MAY be delivered to the wire in any order.

From the perspective of generating packets within a message, deferrable sends can behave like one
message (i.e., when they are not deferred), in which case they follow single message packet generation
ordering rules. Deferrable sends can also behave like two (or more) messages (i.e., when the deferrable
send is deferred), in which case the two (or more) messages follow the ordering and interleaving rules of
the PDCs that are used. The first message carries an ses.som bit on the first packet and generates M
packets from the N packets that the overall payload of the deferrable send. It concludes with ses.eom
set on the last packet of the original message. The second (and subsequent) message(s) also carries an
ses.som bit on the first packet. Each message generates up to N packets, where N is the number of
packets needed to transfer the entire message. Each message that is part of the deferrable send is
treated as an independent message for the purposes of the above rules.
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3.4.1.7.4 Completion Ordering

SES does not directly provide completion ordering. Completion ordering is a function of the FEP — and
the hardware/software interface of the FEP. When using RUD or RUDI, two operations are not
guaranteed to have any particular relationship in the completion of the network portion of the
transaction — either at the initiator or target. Additional discussion of ordering (3.4.8.1) and completion
ordering (3.4.8.1.2) is provided in the memory model description.

3.4.1.7.5 Ordering of Response Data

For the ROD protocol, a read response (UET_RESPONSE_W_DATA) MUST be generated in the order that
the read requests were received for a given PDC.

3.4.1.8 Protocol Isolation Mechanisms

SES provides mechanisms for isolation between jobs on a system. This consists of controlling access to
buffers using device-enforced identities. A FEP is validated as being within a given security domain using
either cryptographic methods (see section 3.7.4) or other site-specific methods beyond the scope of
UET. In a client/server environment, however, this does not indicate which buffers a message may
access. Buffer access authorization depends on the identify information in a UET header (3.4.1.4) being
properly enforced (3.4.7.1).

3.4.1.9 Header Data

Libfabric defines completion data that can have a size up to 64 bits. UET supports this with a field called
ses.header_data that is 64 bits in size. In libfabric, completion data is delivered as part of the
completion queue entry and does not consume an entry from the receive queue. Header data is
provided only in the start of message packet, and only if the ses.hd bit indicates that it was provided by
software.

3.4.1.10 Additional Control Fields

Some additional bits of control are included in the UET header (Table 3-8). There are two bits of version
information (ses.ver). Multi-packet messages include a ses.message_length field that describes the
entire length of the payload to be delivered. One bit (ses.dc) is included to request that the semantic
response indicates that the packet has been made globally observable (3.4.8.3). One bit is used to
indicate that the message encountered an error at the source (ses.ie) and should terminate the message
in error. As an example, a PCle transaction may fail in the middle of a packet in the middle of a message.
Similarly, an address translation may fail for a packet in the middle of a message. One bit indicates
relative or absolute addressing (ses.rel).

3.4.1.11 Packet Sizes Based on Payload MTU

Packets for SES utilize a programmable Payload MTU. The Payload MTU is the amount of payload (in
bytes) that can be carried in a maximum -sized packet. The Payload MTU is configured (out-of-band) to a
value of 1024, 2048, 4096, or 8192. FEP implementations MUST support a Payload MTU of 4096 bytes.
FEP implementations SHOULD support Payload MTU of 1024 bytes, 2048 bytes, and 8192 bytes. The
default for Payload MTU is 4096 bytes, and this size is used for various architectural decisions.
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The Payload MTU MUST be set such that the resulting packet fits within the limits defined by the
Ethernet MTU along the entire path. The “don’t fragment” bit MUST be set in the IP header. The source
of a message MUST put exactly PAYLOAD_MTU bytes into every packet of the message — except the final
packet. A generated packet MUST NOT be further fragmented by the FEP.

3.4.1.12 Zero-Byte Operations

Zero-byte operations are supported for read, write, send, tagged send, and the atomic put and atomic
get operations. Zero-byte reads and atomic gets issue a memory read at the target using the specified
offset. Zero-byte writes, sends, tagged sends, and atomic puts do not write memory but can generate a
completion at the target. Zero-byte writes, sends, tagged sends, and atomic puts also perform whatever
operation is necessary to honor the delivery complete setting for the message. Zero-byte operations
undergo the same checks (e.g., whether the buffer being written is writeable, whether the address is
valid, etc.) and generate the same return codes as all other operations. Similarly, a zero-byte send or
tagged send consumes the corresponding buffer at the target — using the same target-side controls as a
one-byte send or tagged send would. A zero-byte send or tagged send resolving to a multi-receive buffer
consumes no space in the buffer. Zero-byte operations use the same header formats — both PDS and
semantic headers — as a corresponding one-byte operation would use. The only difference is that the
length field is set to 0. Because the payload length of a zero-byte response is 0, it inherently passes the
PDS test of “payload_len <= PDS_MAX_ACK_DATA”".

3.4.1.13 Interaction of Semantics with Reliability Modes

The packet delivery sublayer (PDS) has four delivery modes. Throughout the semantic specification,
differences in behavior between reliable ordered delivery (ROD) and reliable unordered delivery (RUD)
are specifically enumerated. Unless otherwise stated, all functionality is available for both ROD and RUD
delivery modes. The PDS also supports an unreliable unordered datagram (UUD) mode. The only
semantic provided with UUD is the opcode UET_DATAGRAM_SEND. UUD is provided to enable
applications to use a datagram transport (e.g., like UDP) without having to use a different
communication library. UET_DATAGRAM_SEND utilizes the same addressing mechanisms as ROD and
RUD. As an untagged send, it does not utilize matching. UET_DATAGRAM_SEND supports only single-
packet messages.

The fourth delivery mode — reliable unordered delivery for idempotent messages (RUDI) — has specific
constraints in the way it is utilized. With RUDI, PDS provides reliable delivery but does not provide
deduplication. This means that certain scenarios (e.g., lost acknowledgements) can lead to the duplicate
delivery of packets at the target. RUDI is designed for semantics that are idempotent. For example,
fi_read() and fi_write() are idempotent when they do not deliver a target completion. Semantics that
have side effects are not “safe” when using RUDI. This includes send and tagged send, since both
consume a buffer at the target. Similarly, fi_atomic() would be exposed to delivering the operation to
the target twice.

3.4.1.14 Message ldentifiers and Message Construction
Each multi-packet message contains a message identifier (ses.message_id). Single-packet read request
(UET_READ) messages using the standard header (Figure 3-9) MUST include a message ID for the
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ses.message_id field. Other single-packet requests that have the ses.message_id field MUST include a
message ID or set the value to 0 if no message ID is provided. The message ID MUST be unique across all
messages in flight from one initiator FEP to a given target FEP using a given target PDC. The message ID
MAY be globally unique for a given initiator FEP.

If a message was present in the request, the read responses (UET_RESPONSE_W_DATA) carry the
original message ID from the read request in the ses.read_request_message_id field. Otherwise, the
ses.read_request_message_id field is set to 0. These responses also carry their own response message
ID (ses.response_message_id). The response message ID does not have the same uniqueness
requirements as the message ID in the request.

Informative Text:

The initiator can track all the information needed to implement read transactions without requiring
uniqueness in ses.response_message_id. This frees the target implementation to leverage the
response message ID in whatever way it desires. This includes the full range of implementation
options, from always populating the ses.response_message_id with 0 to inserting a random value to

having a unique response message ID that is used for all responses to a given read.

3.4.1.15 Original Request PSN

Certain optimized header formats for RMA operations do not carry a message ID. These formats use the
PSN from the original PDS Request packet to identify the original request state at the initiator. This
allows an initiator to associate return data with the original SES read request when the original message
ID is not present.

Implementation Note:

The standard SES header carries a ses.message_id that is carried back to the initiator in the SES
“response with data header” (i.e., with read response data). Some optimized SES headers do not carry
a message ID. When the message ID is not present, the original PSN is used to identify the transaction
at the initiator. PDS passes each PSN to SES. The original request PSN is needed only for the optimized
response with data header (Figure 3-20). In these cases, SES passes it back to the initiator in a special
header field.

3.4.2 Semantic Header Formats

Several header formats are needed to implement UET. Those formats are shown here in both illustrated
and tabular forms. Some header fields (e.g., ses.opcode) use enumerated types defined in section 3.4.6.
All reserved fields MUST be set to 0 and ignored upon receipt. Header formats are selected based on the
guidelines in 3.4.2.6.

3.4.2.1 Standard Header Format

The standard header format shown in Table 3-8 is used for most operation types. Table 3-8 illustrates
the fields present when ses.som is set to 1, and Table 3-9 presents the slight variation on the header for
when ses.som is set to 0. Implementations MUST support using the standard header format for any
request operation. It is used for any multi-packet operation and for any operation that requires
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matching criteria — including those that need a full memory key as part of implementing fi_write() or
fi_read(). Either the standard header or the small message/small RMA header in Figure 3-14 MUST be
used when completion data is needed. The field names and sizes are summarized in Table 3-8 below.

Header Start © 31
Byte ‘ byte O ‘ byte 1 ‘ byte 2 byte 3
E| rsvd ‘ opcode ver |dc|ie |rel|hd |eom|som message_id
ri_generation JoblD
rsvd PIDonFEP ‘ rsvd resource_index

buffer offset

-
H

buffer offset

initiator

(8]
=

memory key / match_bits

memory key / match_bits

w
38}

header_data

header_data

request_length

Figure 3-9 - Standard Header Format when ses.som is 1

Table 3-8 - Standard Header Format Fields when ses.somis 1

Field Size Description Section Ref
rsvd 2 Reserved. MUST be 0.
opcode 6 The operation being performed for this packet. (Table 3-17) 3.46.2
version (ver) 2 Semantic protocol version — set to 0 in the initial version.
Delivery Complete 1 Defer the semantic response for this until the packet has 3.4.8.3
(dc) been made globally observable (3.4.8.3). This matches the
FI_DELIVERY_COMPLETE option in libfabric.
Initiator Error (ie) 1 Indicates this packet encountered an error at the initiator. 3.45.4.1
Initiator Error prevents the packet from being written at the
target. Initiator Error should be set only for packets that
MUST cause the message to complete in error. This is
primarily designed for messages consisting of more than
one packet.
Relative (rel) 1 This packet uses relative addressing. 3.4.13
header data present 1 Header data was provided for this message. 3.4.1.9
(hd)
End of Msg (eom) 1 Indicates the last packet of the message. ses.eom MUST be 34173
set on the last packet of a message.
Start of Msg(som) 1 Indicates this is the first packet of a message. Impacts the 3.4.1.7.3
interpretation of header data.
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Field

Size

Description

Section Ref

message_id

16

Message identifier — assists in associating different packets
to one message at the target. Also assists in reverse-
mapping responses to message.

The value of 0 is reserved to indicate that the message ID is
not valid.

3.4.1.14

ri_generation

Resource Index Generation

JobID

24

JobID used for relative addressing and for buffer access
authorization.
Note: Matches size of VXLAN VNI.

34131

rsvd

MUST be 0.

PIDonFEP

12

The PIDonFEP value to be used at the target.

3.4.13.2

rsvd

Reserved. MUST be 0.

resource_index

12

Resource Index field.

3.4.1.3.3

buffer_offset

64

Offset within the target buffer used for 0 based addressing.
The first memory access of the first packet in a message
begins at Buffer Offset bytes from the base of the memory
region selected. In multi-packet messages, Buffer Offset is
the same across packets, so that the Buffer Offset and
Request Length can be used together to determine if the
message fits in the target buffer. The access address of a
given packet is Buffer Base Address (from the memory
region) + Buffer Offset + the offset within the message
(taken from the header data field for packets on which
ses.som=0).

Special use case for deferrable send requests: carries the
restart token. All active restart tokens must be unique at
the initiating FEP. The upper 32 bits of the restart token are
allocated by the initiator, and the lower 32 bits are set to 0.
Usage of FI_MR_VIRT_ADDR: Some implementations may
support the setting of FI_MR_VIRT_ADDR in the libfabric
API. In these cases, the buffer offset field of the packet
carries the absolute virtual address where the payload is
delivered.

initiator

32

Initiator ID used as part of matching criteria.

3.4134

match_bits

64

Used for tagged matching or as a memory key, depending
on the opcode being used. In ready-to-restart requests
(UET_DEFERRABLE_RTR), this field carries the upper 32 bits
of the restart token that was part of the deferrable send
request as well as 32 bits allocated by the target in the
lower 32 bits.

3.4.135

header_data

64

This is the completion data to deliver at the target when
this operation completes when ses.som=1. If ses.hd=0, this
field is ignored. See Table 3-9 for usage when ses.som=0.

3.4.1.11

request_length

32

Length of the payload to be transferred (in bytes). O is a
legal transfer size (0 byte write/read). Maximum size is
2732-1. The request length field MUST be populated both
when ses.som=1 and ses.som=0.
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Header start ©

31

Byte ‘

|E| rsvd ‘

byte 0 ‘ ‘ byte 2 byte 3
opcode ver eom [ som message_id
ri_generation JohID

.
H

]
~

[¥5]
N

rsvd PIDonFEP ‘ rsvd resource_index
buffer offset
buffer_offset
initiator
memory key / match_bits
memory_key / match_bits
rsvd payload_length

message offset

request_length

Figure 3-10 - Standard Header Format when ses.som is 0

Table 3-9 - Standard Header Format Fields when ses.som is 0

Copyright © 2025 Ultra Ethernet Consortium™. All rights reserved.

Field Size Description Section Ref
rsvd 1 Table 3-8
opcode 6 Table 3-8 3.4.6.2
version (ver) 2 Table 3-8
Delivery Complete 1 Table 3-8 3.4.8.3
(dc)
Initiator Error (ie) 1 Table 3-8 3.45.4.1
Relative (rel) 1 Table 3-8 3.4.1.3
header data present 1 Table 3-8 3.4.1.9
(hd)
End of Msg (eom) 1 Table 3-8
Start of Msg(som) 1 Table 3-8
message_id 16 | Table 3-8 3.4.1.14
ri_generation 8 Table 3-8 3.4.3.6.3
JobID 24 | Table 3-8 34.13.1
rsvd 4 Table 3-8
PIDonFEP 12 | Table 3-8 3.4.13.2
rsvd 4 Table 3-8
resource_index 12 | Table 3-8 3.4.1.3.3
buffer_offset 64 | Table 3-8
initiator 32 | Table 3-8 34134
match_bits 64 | Table 3-8 3.4.1.35
rsvd 18 | Reserved
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Field Size Description Section Ref

payload_length 14 | Length (in bytes) of the payload portion of this packet.
message_offset 32 | 32-bit offset (in bytes) from the start of the message.
request_length 32 | Table 3-8. The request length field MUST be populated both

when ses.som=1 and ses.som=0.

A special case form of the standard header format is used for deferrable sends (Figure 3-11). Deferrable
sends are designed for *CCL-style messaging where unexpected messages may occur, and the sequence
of messages in a deferrable send is illustrated in 3.4.4.4. Deferrable sends always deliver data starting at
the first byte of the receive buffer; thus, deferrable sends do not require a buffer offset field. This allows
the offset in the standard header to be replaced by a restart token, which is broken into an initiator
restart token and a target restart token. The upper half of the restart token is entirely defined by the
initiating FEP. This allows implementations to choose how the bits are populated and how they are
encoded. The lower half is set to zero in the initial request and contains the target restart token when
the operation is restarted using a ready-to-restart message.

The ready-to-restart (RTR) message (Figure 3-12) in the deferrable send sequence uses a similar special
case. In the ready-to-restart message, the restart token is placed in the match bits. This consists of an
echo of the initiator restart token as well as a restart token allocated by the target. The target is not
required to allocate a restart token. If the target does not allocate a restart token, it MUST populate the
target restart token field with 0. If the target allocates a restart token, it MUST accept the restarted
deferrable send. If the target does not allocate a restart token, it MAY defer the deferrable send again.
An offset from the start of the buffer originally being sent is placed in the buffer offset field. This buffer
offset is limited to the range 0 to 2*32-2 and is used to select the portion of the transfer that the target

Header start © 31
Byte ‘

byte 0 ‘ byte 1 ‘ byte 2 byte 3

dc | ie |rel | hd |eom|som message id

[=]

rsvd ‘ opcode ver

ri_generation JobID

rsvd PIDonFEP rsvd resource_index

initiator_restart_token

target restart token (must be zero on first send)

[
(=]

initiator
match_bits
match_bits

w
8]

header_data

header_data

request_length

Figure 3-11 - Standard Header Format as Used for Deferrable Sends
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did not capture when it was first transmitted. When the deferrable send restarts, it creates a new
message using the format in Figure 3-11 and carries the full restart token (initiator restart token and
target restart token) that was provided in the RTR message. As with all other send operations, the offset
relative to the start of this new message is carried in the header data field. When the deferrable send
restarts, it MUST set the ses.som bit. A deferrable send can only be restarted if a corresponding buffer is
not found at the target. A deferrable send MUST be restarted using an RTR message containing a target
restart token value other than 0 exactly once and MUST NOT be deferred after being restarted by an
RTR message containing a target restart token value other than 0. Any deferrable send that contains a
target restart token value of 0 MAY be deferred.

Each time the deferrable send is restarted, it MUST carry the addressing fields and header data from the
original request. This allows for implementations where the deferrable send is restarted multiple times
without reserving a buffer at the target. The request length in the restarted deferrable send MUST be
the request length indicated by the target in the RTR message.

Informative Text:
Deferrable sends can utilize the various resource exhaustion sequences described in 3.4.3.5.1. These
sequences do not count as deferrals of the deferrable send.

Implementation Note:

It should be noted that the restarted deferrable send cannot carry a starting offset for delivering the
payload; thus, if the target has buffered a portion of the payload and the restart of the deferrable
send begins at a non-zero offset into the buffer, the target is required to remember this.

Header Start 0 51

Byte ‘ byte 0 ‘ byte 1 ‘ byte 2 byte 3
|E| rsvd ‘ opcode ver |dc| ie |rel|hd [eom|som message_id
ri_generation JobID
rsvd PIDONFEP ‘ rsvd resource_index

buffer offset

=
5

buffer_offset

initiator
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header data

header_data

request_length

Figure 3-12 - Standard Header Format as Used for Ready-to-Restart Requests
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3.4.2.2 Optimized Header Formats

Two use cases of small transfers motivate creating a set of optimized semantic headers. The first of
these is the case of non-matching transfers that do not require header data. These single packet
messages can eliminate the ses.match_bits and ses.initiator fields (i.e., all matching criteria) as well as
the ses.header_data and ses.message_id. They carry an abbreviated (14-bit) ses.request_length field
that enables single packet payloads up to 8192 bytes. It should be noted that the packet sequence
number (PSN) from the packet delivery context (PDC) is needed within the semantic implementation to
resolve responses back to the original request since a message ID is not carried in the optimized header
format. Single-packet messages using the format in Figure 3-13 set both ses.som and ses.eom.

Informative Text:
The 14-bit abbreviated ses.request_length field is focused on the purpose of the optimized header
formats: efficiency at small transfer sizes. The overhead of a standard header (relative to an

optimized header) for messages larger than 8 KB is nominal.

header start © 31
byte ‘ byte 0 ‘ byte 1 ‘ byte 2 ‘ byte 3
E rsvd ‘ opcode ver |dc| ie |rel|rsvd|eom|som | rsvd ‘ request_length
ri_generation JobID
rsvd PIDonFEP ‘ rsvd ‘ resource_index
buffer offset
buffer_offset
Figure 3-13 - Optimized, Non-Matching Format
Table 3-10 - Optimized Header Format Fields
Field Size Description Section Ref

rsvd 1 Table 3-8
opcode 6 Table 3-8 3.4.6.2
version (ver) 2 Table 3-8
delivery complete 1 Table 3-8 3.4.8.3
(dc)
initiator error (ie) 1 Table 3-8 3.454.1
relative (rel) 1 Table 3-8 3.4.1.3
rsvd 1
end of msg (eom) 1 Table 3-8
start of msg (som) 1 Table 3-8
rsvd 2
request_length 14 | Table 3-8
ri_generation 8 Table 3-8 3.4.3.6.3
JobID 24 | Table 3-8 34.13.1
rsvd 4 Table 3-8
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Field Size Description Section Ref
PIDonFEP 12 | Table 3-8 34.13.2
rsvd 4 Table 3-8
resource_index 12 | Table 3-8 3.4.1.3.3
buffer_offset 64 | Table 3-8

A second use case for an optimized transfer is a single-packet message with matching criteria. Most

implementations of this scenario still utilize header data but do not need an offset. A third use case for

an optimized transfer is a single-packet RMA operation with immediate data or extended (memory key)

addressing. Both use cases carry an abbreviated (14-bit) request length and share the format shown in

Figure 3-14. In this format, ses.som and ses.eom must be set.

Header Start 0

31

Byte ‘ byte 0 ‘ byte 1 ‘ byte 2 byte 3
E rsvd ‘ opcode ver |dc| ie |rel|hd |eom|som| rsvd ‘ request_length
ri_generation JobID
rsvd PIDONFEP ‘ rsvd ‘ resource_index
header data / buffer offset
header_data / buffer_offset
initiator
match_bits / memory_key

match_bits / memory_key

Figure 3-14 - Small Message/Small RMA Format

3.4.2.3 Rendezvous Extension Header Format

The wire protocol includes the option for rendezvous transactions. Rendezvous transactions leverage an
extension header shown in Figure 3-15. This extension header includes a 32-bit eager length. The eager
length indicates how much message payload is being pushed with the request. The remaining fields
correspond exactly to the addressing information needed to issue a read operation. Details of how these
fields are used to generate a read are discussed in section 3.4.3.4.

The rendezvous extension header is used immediately following Figure 3-9. It is used when a rendezvous
send or Tsend opcode is used. Rendezvous does not require any additional headers or operation types.
A rendezvous extension header should be placed on every packet using a rendezvous opcode
(UET_RENDEZVOUS_SEND, UET_RENDEZVOUS_TSEND).
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Header start © 51

Byte ‘ byte O ‘ byte 1 byte 2 byte 3
E eager length
read_ri_generation ‘ read_PIDonFEP read_resource_index
read_offset
read offset
read_memory_key
read memory_key

Figure 3-15 - Rendezvous Extension Header Format

3.4.2.4 Atomic Operation Extension Header Format

Atomic operations include an atomic header to describe the atomic operation. The memory model for
atomic operations is discussed in section 3.4.8. Atomic headers — shown in Figure 3-16 — are carried with
every packet of an atomic operation. Atomic headers are used with any of the optimized header formats
or the standard header formats. Atomic headers MUST NOT be combined with the rendezvous header
format. For non-fetching atomic operations, the number of elements in an atomic operation is
determined by the request length of a message (equivalently, the payload length of a packet in the
optimized header formats) divided by the size of the atomic datatype. The payload part of messages
containing atomic operations should be an integral multiple of the atomic datatype size. In messages
where this is not true, an implementation of the target FEP MUST truncate the operation to 0 bytes (i.e.,
a message with an incorrect length is not performed for any of the bytes in the message).

The atomic operation extension header introduces three new types: an atomic opcode, an atomic
datatype, and semantic control. Semantic control (Table 3-23) provides additional information for
handling of atomic operations. Payload for all atomic operations follow the atomic header.

Header Start © 31
Byte ‘ byte 0 ‘ byte 1 ‘ byte 2 ‘ byte 3 ‘
E ‘ atomic_opcode ‘ atomic_datatype ‘ semantic_control ‘ rsvd ‘

Figure 3-16 - Atomic Operation Extension Header Format

Fetching atomic operations are more limited than general atomic operations. Because fetching atomic
operations impose the need to buffer data at the target (i.e., the original data), fetching atomic
operations MUST NOT operate on more than one element. That element is of the size of the atomic
datatype and follows the atomic header in the packet.

A special type of fetching atomic operation is a dual operand fetching atomic. This exists as a compare-
and-swap or swap-under-mask operation. Dual operand fetching atomics use the packet format shown
in Figure 3-17, with the compare or mask value first and the swap value after. The largest supported
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compare and swap (or masked swap) is 16 bytes. The payload length for a compare and swap operation
is exactly 32 bytes, and the atomic datatype defines the total size of the operation. Note that, in the
optimized header formats, this means that the request length is set to 32 bytes and the actual length of
the operation is inferred from the datatype. The compare/mask values and swap values start in the low
order bytes of the respective fields.

Header Start © 51
Byte ‘ byte O ‘ byte 1 ‘ byte 2 ‘ byte 3
E atomic_opcode ‘ atomic_datatype semantic_control ‘ rsvd

compare value

compare_value

compare_value

compare_value

swap_value
swap_value
swap_value

swap_value

Figure 3-17 - Compare and Swap Operation Atomic Header and Payload Format

3.4.2.5 Semantic Response Header Formats

Standard semantic responses are carried in PDS acknowledgements and use the format shown in Figure
3-18. Semantic response headers are used for semantic acknowledgements (e.g., a semantic response to
a Send). The response header includes a field to indicate the modified length. The modified length in a
semantic response indicates the amount of payload that will be delivered as part of processing the
message. Some use cases require message truncation at the target (e.g., the MPI unexpected message
sequence). In other cases, the modified length is used as part of the rendezvous sequence as described
in section 3.4.3.4.

Header Start 0 51

Byte ‘ byte 0 ‘ byte 1 ‘ byte 2 byte 3
E| list ‘ opcode ver return_code ‘ messsage id
ri_generation JobID

modified_length

Figure 3-18 - Semantic Response Header Format
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Table 3-11 - Response Header Fields

Field Size Description Section
Ref
list 2 Indicates if the payload was delivered to the 3.4.6.3
expected or unexpected list.
opcode 6 Indicates type of response (e.g., default 3.4.6.2
response, response with payload, etc.). Table
3-18.
version (ver) 2 Semantic protocol version —set to 0 in the
initial version.
return_code 6 Indicates success conditions and some types of 3.4.6.3
error conditions detected at the semantic
sublayer.
message_id 16 Message ID of the original request 3.41.14
ri_generation 8 Contains the new index generation on a
generation mismatch response.
JobID 24 JoblID of the original request 3.4.13.1
34.14.1
modified_length 32 Indicates the number of bytes of the target
buffer that will be modified by this transaction.
For example, some message may be truncated
because no buffer is available.

Two variations on the semantic response with data are used. The first (Figure 3-19) mimics the basic

semantic response and adds a payload length — to indicate the number of bytes in the packet —and a

message offset — to indicate where within the message this packet falls. The message ID is used to

identify the original read request. At the semantic level, all operations — including read operations — are
packetized based on the Payload MTU. A multi-packet fi_read(), for example, will use the same message
ID in each packet and use that to issue a single completion at the initiator. This format MUST be used for
responses with data to requests that include a request length larger than the Payload MTU. This format
MUST NOT be used to respond to optimized request headers (Figure 3-13), because various fields are
not available in that request to generate this response.

Header Start © 51
Byte ‘ byte 0 ‘ byte 1 ‘ byte 2 ‘ byte 3
E list ‘ opcode ver return_code ‘ response_message_id

rsvd JobID

read request messsage id
modified_length
message_offset

Figure 3-19 - Semantic Response with Data Header Format

payload length

rsvd ‘
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Table 3-12 - Response with Data Header Fields

Field Size Description Section Ref
list 2 Indicates if the payload was delivered to the expected or 3.4.6.3
unexpected list.
opcode 6 Indicates type of response (e.g., semantic ACK, response 3.4.6.2
with payload, etc.).
version (ver) 2 Semantic protocol version — set to 0 in the initial version.
return_code 6 Indicates success conditions and some types of error 3.4.6.3
conditions detected at the semantic sublayer.
response_message_id 16 | Message ID of the response. 3.4.1.14
rsvd 8 Reserved
JobID 24 | JoblID of the original request. 34131
34141
read_request_message_id 16 | Message ID used in the original read request (or of the 3.4.1.14
original fetching atomic operation request).
rsvd 2 Reserved
payload_length 14 | Length of the payload in this specific packet for a
response with data.
Note: These bits are reserved in a semantic response
without payload.
modified_length 32 | Indicates the total number of bytes of the initiator buffer
that will be modified by this transaction. For example, a
message may be truncated because no buffer is available
or the buffer it was targeting is too small.
message_offset 32 | Indicates the relative position in the message that this
payload corresponds to.

The second response with data header format (Figure 3-20) is used for responses with data where the
original operation consisted of an optimized request header (Figure 3-13) with a request length that
described a total payload that could be carried in a single Payload MTU. Here, the payload length is also
the modified length and a message ID is not needed, because PDS can associate the response with the
original request using the packet sequence number (PSN) echoed in this packet format. This MAY be
used for small reads and for fetching atomic operations. The payload length in this format is placed
where the message ID is carried in the full format, and the modified length and message offset are
omitted.

Header Start © 31

Byte ‘ byte 0 ‘ byte 1 ‘ byte 2 byte 3
E list ‘ opcode ver ‘ return_code ‘ rsvd ‘ payload_length
rsvd JobID

original_request psn

Figure 3-20 - Optimized Response with Data Header Format
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Table 3-13 - Optimized Response with Data Header Fields

Field Size Description Section Ref

list 2 Indicates if the payload was delivered to the expected or 3.46.3
unexpected list.

opcode 6 Indicates type of response (e.g., semantic ACK, response with 3.46.2
payload, etc.).

version (ver) 2 Semantic protocol version — set to 0 in the initial version.

return_code 6 Indicates success conditions and some types of error 3.4.6.3
conditions detected at the semantic sublayer.

rsvd 2 Reserved

payload_length 14 | Length of the payload for a response with data. This field

serves at the modified length as well. For two-operand
atomics, this value contains the length of the datatype in the

typical case.
Note: These bits are reserved in a semantic response without
payload.
rsvd 8 Reserved
JobID 24 | JobID of the original request. 34131
34.14.1
original_request_psn 32 | The PSN of the original request (either fetching atomic or 3.4.1.15

read) that yielded this return data.

Informative Text:

The original request PSN is provided for the case where the returned data is larger than the
Max_ACK_Data_Size in PDS. In these cases, the data is returned on the response direction channel
using a separate sequence number space. As such, the original request PSN is needed to reconcile the

optimized response header with the original request.

3.4.2.6 Header Parsing Guide

Table 3-14 provides a summary of how to parse the semantic header. The leftmost column contains the
pds.next_hdr enumeration. For each header enumeration, the middle column enumerates the opcodes
or opcode types that are used with the next header definition. The rightmost column cross-references to
the relevant header formats that are used for that opcode or opcode type. In many cases, the header
consists of a base header and extension header. As shown, a parser can look at the pds.next_hdr field to
determine the base header structure and the ses.opcode field to determine whether an extension
header is present and its type. The base header used for deferrable send and ready-to-restart
operations has the same size and overall structure as the standard request header.

Table 3-14 - Parsing Guide

PDS next_hdr opcode type Format
UET_HDR_REQUEST_SMALL Non-Atomic Opcodes Figure 3-13
Atomic Opcodes Figure 3-13 +
Figure 3-16
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PDS next_hdr opcode type Format
Two Op Atomics Figure 3-13 +
Figure 3-17
UET_HDR_REQUEST_MEDIUM Non-Atomic Opcodes Figure 3-14
Atomic Opcodes Figure 3-14 +
Figure 3-16
Two Op Atomics Figure 3-14 +
Figure 3-17
UET_HDR_REQUEST_STD Non-Atomic Opcodes Figure 3-9
Atomic Opcodes Figure 3-9 +
Figure 3-16
Two Op Atomics Figure 3-9 +
Figure 3-17
Deferrable Send Figure 3-11
Ready to Restart Figure 3-12
Rendezvous Opcodes Figure 3-9 +
Figure 3-15
UET_HDR_RESPONSE UET_RESPONSE Figure 3-18
UET_DEFAULT_RESPONSE
UET_NO_RESPONSE
UET_HDR_RESPONSE_DATA UET_RESPONSE_W_DATA Figure 3-19
UET_HDR_RESPONSE_DATA_SMALL UET_RESPONSE_W_DATA Figure 3-20

Table 3-15 enumerates the legal combination of pds.next_hdr fields and ses.opcode fields. It also

highlights some limitations of the formats that may not be obvious.

Table 3-15 - Header Formats and Legal Opcodes

pds.next_hdr

ses.opcode Allowed

Limitations

UET_HDR_REQUEST_SMALL

UET_NO_OP Payload size must be 0. Single-packet
messages only.

UET_WRITE Payload size must be less than or equal

UET_READ to one Payload MTU.

UET_ATOMIC Must use

UET_HDR_RESPONSE_DATA_SMALL for
response with data.

UET_FETCHING_ATOMIC

Vendor Defined

UET_HDR_REQUEST_MEDIUM

UET_NO_OP Payload size must be 0. Single-packet
messages only.

UET_WRITE Payload size must be less than or equal

UET_READ to one Payload MTU.

UET_ATOMIC

UET_FETCHING_ATOMIC

UET_SEND Payload size must be less than or equal

UET_TAGGED_SEND

to one Payload MTU.

UET_DATAGRAM_SEND

UET_TSEND_ATOMIC

UET_TSEND_FETCH_ATOMIC

Cannot use offset into target buffer.

Vendor Defined
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pds.next_hdr ses.opcode Allowed Limitations

UET_HDR_REQUEST_STD UET_NO_OP Payload size must be 0. Single-packet
messages only.

All Other Request Opcodes

UET_HDR_RESPONSE UET_RESPONSE

UET_DEFAULT_RESPONSE

UET_NO_RESPONSE

Vendor Defined

UET_HDR_RESPONSE_DATA UET_RESPONSE_W_DATA
Vendor Defined
UET_HDR_RESPONSE_DATA_SMALL | UET_RESPONSE_W_DATA Cannot be used for responses to

messages larger than one Payload MTU

Vendor Defined

3.4.3 Semantic Processing

This section contains the normative requirements for how semantic headers are processed. Semantic
processing is expected to be implemented by a combination of hardware and software. The division
between hardware and software is an implementation decision.

The semantic processing definition contained here does not override the profile definition or any
discussion of which features are optional elsewhere in this document. Instead, the semantic processing
defines how operations are performed when they are supported.

3.4.3.1 Buffer Selection

For packets using relative addressing, the tuple {JobID, PIDonFEP, Resource Index} MUST identify a
unique set of one or more buffers. Buffers associated with the Resource Index MUST be configurable to
support either use-once or persistent (i.e., not use-once) semantics. This configuration is associated with
the individual buffers. Packets using absolute addressing have a similar requirement: the pair PIDonFEP
and Resource Index MUST identify a unique set of one or more buffers.

3.4.3.1.1 Send/Receive Operation

The requirements in this section apply only to fi_send()/fi_recv() in cases where tag matching is not
used. Where the behavior varies based on ordering, that is noted in the requirement.

Messages arriving on a RUD PDC MAY consume receive buffers in any order. For implementations that
support ordering, messages arriving on a ROD PDC MUST consume the first receive buffer associated
with the receive queue of the Resource Index that is addressed. All packets associated with one message
MUST be delivered to the same receive buffer. This is accomplished using the message ID in the packet.
If no receive buffer is available on a given index when a message arrives, the implementation MUST use
an unexpected message handling procedure described in section 3.4.3.5.1.

3.4.3.1.2 RMA Operation
Some profiles support the optimized header format for RMA operations (Figure 3-13). In this format, an

RMA opcode used with a {JobID, PIDonFEP, Resource Index} tuple MUST map to exactly one buffer.
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Implementations indicate through the provider when this format can be used following the guidelines
developed for the libfabric mapping (see section 2.2.5.3.4.1).

An implementation MUST support the standard header format for RMA operations. In this format, an
RMA opcode used with a {JobID, PIDonFEP, Resource Index, Memory Key} tuple MUST map to exactly
one buffer.

The libfabric mapping specification defines a memory key format that enables interoperability. Much of
the detail of how the memory key resolved to an actual memory region is implementation-specific. As
an example, the memory key MAY use some of the bits as the memory region lookup and populate the
remaining bits with a random number that is checked before the memory region is accessed.

Informative Text:

The standard way in which memory keys are utilized is for an application to create a memory key and
then share that memory key with the peer that is going to use it. In this way, a memory key is an
opaque token for selecting a memory region. The libfabric mapping spec includes a minimal set of
rules for the construction of the overall memory key that facilitates interoperability while leaving
extensive flexibility for implementations in terms of how a memory key is constructed and used.

3.4.3.1.3 Matching Operation

The requirements in this section apply only to implementations that support matching. Where the
behavior varies based on ordering, that is noted in the requirement. Where the behavior varies based
on wildcarding, that is noted in the requirements.

Messages arriving on a RUD PDC MAY attempt matching in any order, or concurrently across all posted
buffers. This is independent of whether the target uses exact matching or wildcard matching.

If an implementation supports wildcard matching and a message arriving on a RUD PDC matches more
than one buffer that is posted, the implementation SHOULD choose the oldest buffer posted; however,
the implementation MAY choose any matching buffer.

For implementations that only support exact matching, arriving messages MAY attempt matching in any
order — regardless of whether a ROD or RUD PDC was used. The implementation MUST select a
matching buffer if a matching buffer is available. If more than one match is found, the implementation
MAY select any matching buffer. This specification places no bias on which buffer should be selected if
multiple buffers match. If no match is found, the unexpected message procedures are used (3.4.3.5.1).

Informative Text:

The exact matching semantic was created as a way to enable simplified hardware implementations
(e.g., a CAM) to implement matching. While the requirement was relaxed to allow duplicate matches,
the desire was to preserve hardware simplicity. Achieving historical definitions of match ordering with
multiple matches in a CAM is challenging; thus, no preference in match order is defined for cases
where exact matching would return more than one result. Choosing the oldest buffer is marked as a
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SHOULD, because it typically simplifies the management of software resources if the buffers are
consumed in order.

For implementations that support message ordering and wildcard matching, messages arriving on a ROD
PDC:

1. MUST attempt® to match buffers in the order the buffers were provided by the application
through the libfabric API for a given {JobID, Target PIDonFEP, Resource Index} tuple.

2. MUST process headers from a given {JobID, Initiator} tuple in the order that they were sent from
the initiating PIDonFEP for a given {JobID, Target PIDonFEP, Resource Index} tuple on a given
target FEP.

Implementations MAY perform optimizations that preserve the appearance of this ordering.
Implementations MAY implement stronger ordering than required at a target. For example, all messages
MAY be ordered when attempting matching at a given FEP.

3.4.3.2 Buffer Authorization

Buffer authorization is a function of the target FEP implementation, including the libfabric provider
implementation associated with the target FEP. Implementations MUST validate the JobID provided in
the packet to determine whether it is allowed to access the buffer found through buffer selection
(3.4.3.1). Two options for buffer authorization based on JobID MUST be supported. First,
implementations MUST allow an option for a buffer to be exposed for exactly one JobID where the JobID
is authorized as specified in 3.4.1.4.1. Second, implementations MUST allow an option for a buffer to be
exposed for “any” JobID such that the JobID check for that buffer is effectively ignored.

A buffer that is addressed using matching criteria effectively limits the access of that buffer using an
initiator check.

3.4.3.3 Response Generation

Each message MUST receive at least one semantic response. For many messages, this may take the form
of a UET_DEFAULT_RESPONSE using the format in Figure 3-18. The semantic response for the last packet
received MUST NOT be returned until all prior packets have completed semantic processing.

Implementation Note:

The requirement to wait until all packets have completed semantic processing before returning the
semantic response for the last packet received is known to require some implementation effort;
however, the congestion management sublayer (CMS) requires early acknowledgements on most
packets. By guaranteeing that any semantic information will be returned no later than the
acknowledgement for the last packet to arrive for the message, it is possible to allow early

acknowledgements of other packets in the message.

5 “Attempt,” because matching can fail to find a corresponding buffer.
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Informative Text:

There was a trade-off between number of packets on the wire and the need to wait until all semantic
processing had completed before returning the semantic response for the last packet. The congestion
management sublayer needs acknowledgements to be generated quickly in many cases. Other
schemes were considered to meet this goal (e.g., a fast ACK scheme at the packet delivery sublayer),
but those schemes led to two acknowledgements per packet in typical scenarios.

A UET_DEFAULT_RESPONSE contains a ses.JobID, a ses.message_id, a ses.modified_length field that is
equal to the request length, a ses.list field set to UET_EXPECTED, a ses.ri_generation field set to the
generation of the request, and a ses.return_code set to RC_OK. Usage of UET_DEFAULT_RESPONSE
allows PDS to coalesce acknowledgements. Semantic processing MUST complete before setting the
opcode to UET_DEFAULT_RESPONSE. A response opcode of UET_DEFAULT_RESPONSE does not need to
be marked for guaranteed delivery. A message that has received responses for all packets at the initiator
is presumed to be a UET_DEFAULT_RESPONSE unless another response encoding has been sent and
marked for guaranteed delivery at the target. Any response that cannot use the
UET_DEFAULT_RESPONSE opcode (because it does not meet the requirements above) MUST be marked
for guaranteed delivery. Marking a response for guaranteed delivery prevents acknowledgement
coalescing at the packet delivery sublayer, because the packet delivery sublayer cannot communicate
the unique content in a guaranteed delivery response in a coalesced acknowledgement.

Informative Text:
One semantic response per message is a MUST because the transport does not have a way to signal
over the wire that a semantic response is not needed.

Implementation Note:

Acknowledgement coalescing at the packet delivery sublayer is specifically enabled by the
UET_DEFAULT RESPONSE opcode and the UET_NO_RESPONSE opcode (see below).
Acknowledgement coalescing leads to three quirky characteristics that implementors should be aware
of. First, two UET_DEFAULT_RESPONSE semantic responses can be coalesced into a single
acknowledgement. There is no guarantee that the two UET_DEFAULT_RESPONSE messages will have
the same ses.JoblID or ses.message_id. They are certainly not likely to have the same modified length.
Nonetheless, the two can be coalesced, which means that the initiator has no mechanism to retrieve
that required information other than through lookup of the PSN. Second, during coalescing, a
UET_NO_RESPONSE can be coalesced with a UET_DEFAULT_RESPONSE. This effectively promotes the
signal received at the initiator from UET_NO_RESPONSE to UET_DEFAULT_RESPOSE. This semantic
promotion is one of the reasons that the semantic response to a deferrable send is required to wait
for semantic processing to complete. Third, a UET_NO_RESPONSE can be promoted to
UET_DEFAULT_RESPONSE when responding to a retransmit. This is an extreme corner case.
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An implementation MAY provide multiple semantic responses per message; however, three rules apply
in this case. First, an additional semantic response MUST either utilize the same opcode and return code
as the first semantic response or deliver an error response. Second, the first packet with a semantic
error (non RC_OK) MUST be marked for guaranteed delivery. Error responses MAY be replicated for
many packets; however, subsequent errors MUST NOT be marked for guaranteed delivery. Finally, more
than one semantic response MUST NOT be provided per packet.

Implementation Note:

A careful reader may note that the above rules allow for up to two different responses per message
to be generated and marked for guaranteed delivery in the case of a multi-packet message — a first
response that indicates RC_OK with some other condition that requires guaranteed delivery and a
second response that indicates an error that is marked for guaranteed delivery; however, no more
than one response per packet may be marked for guaranteed delivery.

Except in the case of deferrable send, an implementation MAY acknowledge a packet before semantic
processing. In this case, UET_NO_RESPONSE MUST be used as the semantic opcode for any packet
acknowledged before semantic processing. The PDC at the initiator may use this to determine that a
packet was delivered successfully, but that semantic processing had not concluded. This response uses
the same format as UET_DEFAULT_RESPONSE and contains a ses.JobID and ses.message_id. Deferrable
sends MUST include a semantic response with the response to the first packet received for that
message.

Informative Text:

The semantic response is the mechanism by which deferrable sends are deferred. If a deferrable send
is going to be deferred, then the implementation cannot delay the semantic response which would
lead to deferring the send.

If delivery complete (ses.dc) is set for the message, the response to the last packet that is received for a
message MUST NOT be generated until the completion semantics have been met — that is, until the
entire message is globally observable (3.4.8.3). The last packet received may not be the last packet of a
message (e.g., for the RUD protocol).

Responses MUST include the ses.message_id that was included in the request ses.message_id field or
ses.read_request_message_id field (for responses with data). For request formats that do not contain a
message ID, a response that has a message ID field MUST have the value 0 in the ses.message_id field or
ses.read_request_message_id field (for responses with data).

The ses.JobID in the response MUST be the ses.JobID of the request — if one is present. Certain PDS
control packets do not necessarily provide a JobID to use in the response.
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For a response with data that contains a message offset, the ses.message_offset field MUST be 0 when
responding to the start-of-message request and MUST be the ses.message_offset carried in the header
data for other responses.

If a UET_DEFAULT_RESPONSE opcode is not appropriate, the response opcode MUST be UET_RESPONSE
when no data is returned or UET_RESPONSE_W_DATA when data is returned (Table 3-17).
UET_RESPONSE and UET_RESPONSE_W_DATA packets MUST be marked for guaranteed delivery.

The ses.return_code field MUST be RC_OK (Table 3-19) for successful operations. Errors from all
previous packets in the message MUST be aggregated into the ses.return_code field using a first error
model for error precedence (3.4.5.1). Here, “first error” is the first error for this message that SES
encountered. Due to out-of-order packet handling, the first error may occur out of packet order.

In normal message processing, the modified length is typically the requested length; however, target
implementations are allowed to truncate the message for a variety of reasons — including, but not
limited to, managing unexpected messages and server use cases that bound the size of the message that
is accepted. The ses.modified_length field MUST indicate the entire length of the accepted operation —
except in the case of deferrable send responses.

A deferrable send response indicates a ses.modified_length of 0 even if it buffers some of the operation
in an eager buffer. The ready-to-restart message indicates how much of the message to resend.

The ses.payload_length field MUST encode the length of the payload (in bytes) returned in this packet.

3.4.3.4 Rendezvous Processing

Informative Text:
The rendezvous transaction is intended to be implemented by a combination of hardware and
software that resides within the libfabric provider. To provide interoperable operation, the entire

rendezvous transaction must be compatible.

A rendezvous send is provided an eager length from software. The portion of the eager length that is
sent before receiving the semantic response SHOULD NOT exceed the current size of the PDC's
congestion management window at the time the eager portion is attempted to be sent. This is true even
if the congestion control window is increased while the eager portion of the message is in flight. A
rendezvous send operation MUST NOT send more data than the eager length before completing the
rendezvous send. Stated differently, the eager length is the full length of the message as it is transferred
on the wire for a rendezvous send or rendezvous tagged send. On receiving a semantic response, the
rendezvous send implementation SHOULD adjust the eager transfer for this specific message to be no
longer than the modified length provided in the response. If the portion of the eager length already
transferred equals or exceeds the modified length, the implementation MUST send at least one more
packet to mark this portion of the transfer with the ses.eom bit set. This additional packet MAY be

0 bytes, Payload MTU bytes, or the remaining fragment of the eager portion. Implementations MAY
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treat packets in the process of being constructed as if they had already been sent. The last packet of the
eager portion of the message MUST have ses.eom set.

The text above covers the sequence for data delivery when the message is expected. In the unexpected
case, the above scenario would typically have a modified length smaller than the eager length (often 0).
In addition, the unexpected message solution MUST use one of the mechanisms described in section
3.4.3.5.1 to complete the data transfer. When using a RUD PDC, an implementation of rendezvous
SHOULD implement a buffered header solution (3.4.3.6.2.1) and MUST implement a back-off and retry
(0) for when the header space is exhausted. When using a ROD PDC, an implementation of rendezvous
MUST implement a buffered header solution, and MUST implement a resource exhaustion solution
(3.4.3.6.3).

The rendezvous send message contains sufficient information to retrieve the remainder of the payload
using a read operation. The contents of the rendezvous extension header are provided at the initiator by
software or hardware. The rendezvous extension header fields for ses.PIDonFEP, ses.resource_index,
and ses.match_bits MUST be used “as is” for the construction of the read operation that completes the
rendezvous transfer. The ses.read_offset field in the rendezvous extension header MUST be an offset
that can be used to retrieve the entire message. The target of the operation MAY buffer up to the eager
length of the payload if it implements a buffered unexpected message solution (3.4.3.6.2.2). The read
operation uses either the offset provided or the amount of eager payload that was buffered to
increment the offset used in the read.

3.4.3.5 Deferrable Send Processing

A deferrable send from the initiator SHOULD NOT send more data than the current congestion
management window size for the PDC that the deferrable send uses before it receives a semantic
response from the target. On receiving a semantic response with RC_OK, if the ses.modified_length is O,
the deferrable send implementation MUST send at least one additional packet that has ses.eom set.
This additional packet MAY be 0 bytes, Payload MTU bytes, or the remaining fragment of the eager
portion. The deferrable send implementation MUST send the entire payload if the ses.return_code is
RC_OK and the modified length is equal to the request length.

In some cases, the target may not want to accept the entire deferrable send operation. For example, it
may be an unexpected message in a buffered unexpected header implementation (3.4.3.6.2.1). In such
cases, deferrable sends stop the transfer of payload. An implementation of deferrable sends SHOULD
implement a buffered header solution (3.4.3.6.2.1) and MUST implement a back-off and retry (0) for
when the header space is exhausted.

The deferrable send message contains a token to restart the message transfer that consists of a 32-bit
ses.initiator_restart_token — allocated entirely by the initiator — and a 32-bit ses.target_restart_token,
allocated entirely by the target. In the initial request, the ses.target_restart_token MUST be set to 0.
When the target is ready to restart a deferred send, it sends a ready-to-restart (RTR) message containing
the ses.initiator_restart_token to the initiator and restarts the message transfer. The target MAY
allocate a target restart token and include it in the RTR message. If the target does not allocate a target
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restart token, the target MUST set the ses.target_restart-token field to 0. If the target allocates a target
restart token, it MUST guarantee that the restarted deferrable send will match a buffer. Otherwise, the
target MAY defer the deferrable send again. If a deferrable send received a semantic response with a
ses.modified_length of 0, the implementation MUST NOT restart the message until the corresponding
RTR is received. Such a response is a request to defer the deferrable send. The restart MUST send the
portion of the original message requested by the RTR message. An implementation that uses the back-
off and retry method MUST NOT send an RTR message for the corresponding deferrable send. In
contrast with the ses.modified_length of 0 response above, the back-off and retry scheme uses an
RC_NO_MATCH response that indicates that no header was captured and that an RTR will never be
generated.

Implementation Note:

The usage of the restart token is defined to directly signal the state of the transaction to
implementations on both ends. An initiator can know whether the deferrable send may be deferred
again, and the target can know whether resources have been allocated.

Informative Text:

Rendezvous transactions and deferrable send transactions are semantically similar operations with
different optimization points and different implementation implications. Rendezvous is optimized to
not utilize bandwidth when messages are unexpected, which is common in HPC. Deferrable send is
optimized for latency in the expected message case. An implementation of rendezvous could set
eager length to the request length, then truncate the eager portion of the message to the size of the
modified length when the semantic response returned. In this case, the difference between
rendezvous and deferable send would be whether the remainder of the data was transferred using a
read message or by restarting a prior transmit message.

3.4.3.5.1 Supporting Deferrable Send as Send

For implementations that do not support deferrable send, it is possible for a target device to implement
deferrable send operations (UET_DEFERRABLE_SEND) as send operations (UET_SEND) by using a subset
of the functionality defined above (and below). This applies to tagged sends (UET_DEFERRABLE_TSEND /
UET_TSEND) as well. A target can accept a deferrable send and treat it as a send by ignoring the initiator
and target restart tokens. When deferrable send is treated as a send, the target MUST respond with
either a ses.return_code of RC_NO_MATCH and a ses.modified_length of zero, or a ses.return_code of
RC_OK and a ses.modified_length that is equal to the requested length. This is used to cover the case of
unexpected messages and expected messages, respectively.

3.4.3.6 Unexpected Message Handling

In HPC, unexpected messages are common. Unexpected messages may also be encountered in *CCL
implementations. This section documents the unexpected message handling requirements when
implementing *CCL over unordered, tagged send/receive operations in libfabric. It also covers the more
challenging aspects related to the MPI ordered matching cases. As a preface, the traditional way to
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handle unexpected messages is using two mechanisms: For short messages, the payload is captured as
eager payload in an unexpected message buffer at the target. For long messages, a rendezvous protocol
is used so that the payload can be retrieved when the receive is posted. Exact matching simplifies the
implementation of these traditional sequences. The objective of this section is to articulate the
requirements for implementations so that a range of implementations are possible (with different levels
of complexity), while still allowing for interoperability.

3.4.3.6.1 Unexpected Messages over RUD PDC

With unordered packet delivery in general, there is no guarantee of the ordering of resolving a message
to a buffer. This dramatically simplifies the handling of unexpected messages — even in the case of
wildcard tag matching.

Informative Text:

Properly mixing a RUD PDS and wildcard tag matching requires great care; however, it can be done. A
server may have an RPC queue, for example, where the order of arrival of RPCs does not matter. In
such a case, it may accept messages from any source or may use a subset of match bits to divide the
RPCs into types. As long as software has expressed FI_ORDER_NONE, the techniques in this section
can be used.

Three schemes are possible for unexpected message handling with unordered messaging: back-off and
retry (0), buffered headers (3.4.3.6.2.1), and buffered unexpected messages (3.4.3.6.2.2). Buffered
unexpected messages do not require any unique support at the initiator. Target FEPs MUST use at least
one of the three schemes and all three MAY be used in combination. For example, an implementation
can utilize buffered unexpected messages but degrade to buffered headers when the unexpected
message buffering is exhausted. Or an implementation can operate in either buffered headers mode or
buffered unexpected messages mode and degrade directly to back-off and retry.

Informative Text:

A combination mode of operation has been field tested on existing hardware that implements
semantics similar to Portals 4. The exact wire details are different from what is described here, but
the concepts have been deployed for unordered traffic with wildcard matching.

3.4.3.6.1.1 Back-off and Retry

One solution point for unexpected messages is for the target to respond with a semantic response that
indicates that the message could not be matched and was dropped (ses.return_code = RC_NO_MATCH).
If RC_NO_MATCH is set, the ses.modified_length field MUST be set to 0. If a semantic response has an
RC_NO_MATCH return code, the initiator MUST retransmit the message. This retransmit can happen in
hardware or can be performed in software (e.g., inside the provider implementation). The appropriate
back-off time is unknowable, and aggressively short retry times (a few RTT or less) will substantially
increase wasted network bandwidth.
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All implementations MUST support the back-off and retry mechanism with RUD PDCs for all types of
send and tagged send operations.

3.4.3.6.2 Unexpected Messages with Buffering

Buffering at the target can be used to implement unexpected messages for both RUD and ROD PDCs.
Buffering effectively creates the illusion that messages arrived after the receive call from libfabric
instead of before it; thus, buffering of unexpected headers or messages is expected to conform to the
ordering semantics of the underlying PDC. When buffers are exhausted, RUD PDCs can easily fallback to
a back-off and retry scheme; however, a ROD PDC requires more complex handling (3.4.3.6.3).

3.4.3.6.2.1 Buffered Headers

In situations where the payload is recoverable, an implementation SHOULD choose to buffer semantic
information associated with message headers that arrive and drop the payload when unexpected
messages are encountered. The response in this case MUST be RC_OK with a modified length of 0. If an
implementation chooses this mechanism, these message headers MUST be compared against new
receive operations —that is, calls to fi_recv() or fi_trecv() — that were provided. There are two times
when this can occur: when sends utilize rendezvous sends or deferrable sends.

When rendezvous sends are used with a buffered header mechanism, the buffered header MUST
include the information needed to issue the read. When a new receive matches the buffered header,
the rendezvous operation MUST be completed by issuing the read using the information provided in the
rendezvous send. When deferrable sends are used with a buffered header mechanism, the buffered
header MUST include the initiator restart token. When a new receive matches the buffered header, the
ready-to-restart message MUST be generated using the initiator restart token.

Without buffered headers, an implementation cannot generate an RTR and cannot generate a
rendezvous read; thus, failing to support buffered headers substantially defeatures both schemes (this is
inherent to the definition of these operations). This scheme MUST ONLY be used in conjunction with
rendezvous or deferrable sends.

3.4.3.6.2.2 Buffered Unexpected Messages

An implementation MAY choose to buffer both the message header and the message payload when
unexpected messages are encountered. The response in this case MUST be RC_OK with a modified
length equal to the request length for eager messages. Implementations choosing this mechanism MUST
buffer the entire payload for eager messages. If an implementation chooses this mechanism, the
buffered message headers MUST be compared against new receive operations that were provided. If a
new receive operation matches the unexpected buffered header, the implementation MUST provide the
buffered payload to the target user application. This is accomplished via hardware or software. If an
implementation has chosen this mechanism, it MAY degrade to the back-off and retry mechanism at any
point (e.g., if the buffered header space is exhausted).
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Rendezvous sends and deferrable sends® MAY be used with a buffered unexpected message scheme. If a
rendezvous end uses buffered unexpected messages, the implementation MUST return a modified
length less than or equal to the eager part of the rendezvous request. If a deferrable send uses buffered
unexpected messages, the implementation MUST return a modified length of either zero or the request
length. A modified length of zero is the signal in a response to a deferrable send that indicates to the
initiator that the operation was deferred. Note, however, that an implementation MAY combine a
buffered unexpected message scheme for standard sends with a buffered header scheme for
rendezvous sends and deferrable sends.

3.4.3.6.3 Unexpected Messages and Resource Exhaustion over ROD PDC

This section applies to both untagged messages over a ROD PDC and tagged messages using wildcard
matching over a ROD PDC and covers limitations of the resource exhaustion scheme when using
ordering as well as how ordering interacts with resource exhaustion. Handling unexpected messages
over an ordered PDC while using wildcard matching can be a challenging problem. Typically associated
with flow control in MPI, the combination of a strong ordering requirement with the possibility of
matching any receive buffer that has been posted has always been difficult to implement efficiently.
Solutions like back-off and retry do not work well, because a wildcard receive can be posted just after a
message has been rejected as unexpected. For untagged messages, any receive is effectively a wildcard
receive. A subsequent message in flight from the same initiator could match the wildcard receive out of
order because no other mechanism is available to establish ordering. Per-peer sequence numbering at
the MPI level does not work, because one receive is allowed to specify that it wants to receive from
MPI_ANY_SOURCE. The back-off and retry scheme MUST NOT be used for unexpected messages using
wildcard matching over a ROD PDC or for untagged messages over a ROD PDC.

Because these solutions are hard, the general solution implemented is buffered unexpected messages.
Buffered headers with rendezvous sends is also part of the typical solution. Implementations providing
wildcard matching over a ROD PDC MUST implement buffered unexpected messages or buffered
headers as a solution.

Buffered unexpected messages and buffered headers can still run into scenarios where the buffering
resources are exhausted. These scenarios are relatively uncommon but happen deterministically in
some applications. The libfabric over UET definition MUST include a buffer exhaustion solution. Scalable
solutions to buffer exhaustion have long proven challenging. To cover a breadth of use cases, two
solutions are provided in sections 3.4.3.6.3.1 and 3.4.3.6.3.2.

51n this paragraph, “sends” is intended to capture both tagged and untagged sends.
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Informative Text:

Why not receiver not ready (RNR)? Verbs uses an RNR to address this problem. In RNR, a destination
QP enters an RNR state. Recovery uses the process-to-process QP sequence numbering to restore
message ordering. To enhance scalability, UET does not have process-to-process sequence numbers.
Hypothetically, the PDC sequence numbers could be used instead; however, that has several
undesirable characteristics. First, it couples the reliability logic and semantic logic at the target in a
way that makes it hard to achieve high message rates on a single PDC. Second, it couples the
reliability logic and semantic logic at the initiator in a way that stalls the PDC until the semantic
resource issue is resolved. Finally, resource exhaustion on one process using a PDC stalls all other
users of that PDC.

3.4.3.6.3.1 Scalable Parallel Application Deployments

For the most scalable applications, a mechanism is provided to allow a low-state recovery from resource
exhaustion events while still preserving message ordering (i.e., while using a ROD PDC). It is preferable
not to require any per-target tracking at the initiator; thus, the client/server mechanism is less
preferred. The scalable mechanism is simple at a transport level. When resources are exhausted, the
associated target {FA, JobID, PIDonFEP, Resource Index} tuple is disabled. RC_DISABLED is returned for
the target {FA, JobID, PIDonFEP, Resource Index} tuple. All subsequent operations to that target tuple
MUST receive an RC_DISABLED response. That tuple remains in a disabled state until re-enabled by
software. Before being re-enabled, software MUST guarantee that no operations are in flight (i.e., on
the wire) to guarantee that ordering is not violated. Once this condition is met, software MUST re-
enable the tuple at the target. After the target is re-enabled, all initiators MUST retransmit all
operations that received an RC_DISABLED response in their original order.

Informative Text:

In Portals 4, a flow control solution was proposed where the equivalent of a libfabric endpoint (a
portal table entry) is placed into a disabled state. Subsequent operations to that portal table entry
would complete with a bad return code at the initiator until the portal table entry was re-enabled.
Before a portal table entry could be re-enabled, the target with the disabled portal table entry must
first confirm that there were no initiators that were in the middle of an ordered stream. That is, it
must first confirm that no initiators had a message that had been rejected and yet still had other
messages in flight. The proposed solution was to use a barrier amongst all participating processes.
This solution is modeled after that proposal.

3.4.3.6.3.2 Client/Server Buffer Exhaustion

In client/server interactions, the server cannot trust the client to check-in after receiving an
RC_DISABLED response. UET introduces the concept of a “generation” for a Resource Index as a
separate field carried in the header when using tagged or untagged messaging. At the target, a Resource
Index MAY be configured to use a generation. If it is not configured to use a generation, the generation
MUST be zero. A message that arrives at the target MUST contain the correct generation, or the
message MUST receive a semantic response indicating a generation mismatch (RC_BAD_GENERATION).

182

Copyright © 2025 Ultra Ethernet Consortium™. All rights reserved.




This response MUST contain the current generation. A tagged or untagged message using a ROD PDC
that encounters resource exhaustion at the semantic level that prevents accepting the message MUST
disable the target Resource Index. The message MUST receive a semantic response indicating that the
message encountered a disabled index (RC_DISABLED_GEN). The index MUST remain disabled until
additional resources are available and the generation number is incremented.

The implementation — whether in the provider layer or hardware — MUST retransmit messages that
encounter a disabled index. When the message is retransmitted, the implementation SHOULD
increment the index generation before retransmitting the message; however, the implementation MAY
retransmit using the same index until it receives a generation mismatch response. If the implementation
chooses to retransmit the message with an incremented generation, it MUST retransmit only one
message (the oldest message needing retransmission) until it has received a successful semantic
acknowledgement. This avoids a race where the generation could be incremented between the first
retransmitted message and second retransmitted message reaching the target. A message encountering
a disabled index SHOULD defer retransmit using an exponential back-off scheme.

The implementation MUST retransmit messages that encounter a generation mismatch. The
retransmitted message MUST use the new generation returned in the generation mismatch response. A
message encountering a generation mismatch MAY be retransmitted immediately.

Informative Text:

This mechanism is named “client/server buffer exhaustion” because it requires a state per-peer
process. Most of the specification goes through great lengths to avoid per-peer-process state in the
fast path of messaging libraries for compute applications.

Implementation Note:

RC_DISABLED_GEN is a scenario similar to traditional resource exhaustion concepts (e.g., receiver not
ready). Because the target cannot easily track the full list of initiators that have encountered
RC_DISABLED_GEN, initiators can rely only on traditional retransmit heuristics to determine when to

retransmit the message.

3.4.4 Semantic Protocol Sequences

This section describes the general semantic sequences in the protocol. Ladder diagrams are provided for
the various semantic operations to illustrate the relevant concepts. For simplicity, the diagrams do not
illustrate out-of-order packet delivery. PDS-level packets are not shown unless they are relevant to the
semantic processing. Not all information carried on a packet is illustrated. Only those fields that are
needed to illustrate the concept are included. In this section, lossless networks (as noted in the PDS
specification) use TC_request for green and purple arcs, while the blue and orange arcs use
TC_response. Similarly, in best-effort operation, the solid arcs use TC_low while the dotted arcs use
TC_high. Usage of trimming (and the corresponding TC_med) is not covered in the semantic figures.
Section 3.6.4.7 specifies the mapping of UET to traffic classes and DSCP values. In some figures, two
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PDCs are used: a forward-direction PDC (green requests with blue responses) and a reverse-direction
PDC (purple requests with orange responses). Green request/completion arcs are shown in the
interaction between libfabric and SES for initiator to target messages, and purple request/completion
arcs are shown in the interaction between libfabric and SES for target to initiator messages.

3.4.4.1 Requests with Payloads
Requests with payloads consist of sends, tagged sends, writes, and atomics. In the figures here, send
operations are used as a general illustration.

3.4.4.1.1 Single-Packet Requests

As illustrated in Figure 3-21, a single-packet request has a single-packet response
(UET_DEFAULT_RESPONSE) where the semantic ACK is combined with the PDS ACK. The PSN from the
PDS ACK is used to identify the original request. Optimized header formats that may be used for a single
packet message do not contain the message ID field; thus, they MUST use the PSN as the mechanism to
identify the original request. This enables SES to deliver a completion at the initiator. The modified
length is equal to the requested length indicating that the entire message is delivered. The semantic ACK
also indicates that the message was captured in the expected list. This can then be used to build a
lightweight MPI_Ssend(). In this sequence, UET_DEFAULT_RESPONSE SHOULD be used (as illustrated),
but UET_RESPONSE MAY be used (not shown). SES MUST NOT return the semantic response to PDS
before the packet has been processed through SES. If delivery complete is set (DC=1), the semantic
response MUST NOT return until the payload has been made globally observable. The single-packet
sequence illustrated applies to a variety of opcodes, including UET_TAGGED_SEND (shown), UET_WRITE,
UET_ATOMIC, UET_ SEND, and UET_TSEND_ATOMIC. The UET_TAGGED_SEND shown in Figure 3-21 can
use either a standard header or a small message/RMA header (Figure 3-14). The choice of header has
some impact on the addressing operations but does not change the overall sequence.

Initiator Target
SES PDS PDS SES
Messages Msgs + Packets Packets Msgs + Packets Messages
Tagged SEND »_UET TAGG
r%gqu EeT Tagged SEND ED_SEND psn=gq
T, d SEND
aeee »| Request
UET_DEFAULT RESEQ_N_SE_LML—QDEW-:-BLeogml"" D Processed
SEND 09 |€EIRG i PSN=99 MSG
COM_PLETION € ACKPSN=99 *PDS AC COMPLETION
(optional)

Figure 3-21 - Single-Packet Request, Expected Message
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3.4.4.1.2 Multi-Packet Requests

Figure 3-22 illustrates some additional concepts that are relevant to multi-packet transactions. For the
transaction shown, the first PDS ACK includes a semantic response with the UET_NO_RESPONSE opcode.
This indicates that the packet has been received but that the semantic processing is not yet complete. It
is allowable for many packets to generate a UET_NO_RESPONSE opcode. In conformance with the
requirement that at least one semantic response be generated, a later packet — arriving after semantic
processing has completed — generates a UET_DEFAULT_RESPONSE. This is an expected message that has
found a buffer and will be delivered in its entirety. Note that every response in most sequence diagrams
carries a semantic header. Some arcs, such as the final arc in Figure 3-22, are not labeled with the
semantic response opcode to keep the diagram simple, since many options are possible.

3.4.4.2 Requests with Responses That Have Payloads

Read requests (UET_READ) generate payload data in the return direction. There are two mechanisms for
returning data — as illustrated in Figure 3-23 and Figure 3-24. (Note: Neither figure illustrates PDS
acknowledgements.) Both figures illustrate the multi-packet case. For a read request with a request
length that is larger than one Payload MTU, SES breaks the read request into one packet (UET_READ)
per Payload MTU worth of response data. Each read packet associated with one message contains the
same message ID, and each read packet requests one Payload MTU of data — except for the last read
request, which can request the final fragment. The sequence is the same for single-packet read
requests. The choice between the two sequences is based on the value of PDS_MAX_ACK_DATA. When
PDS_MAX_ACK_DATA is greater than the request length or PDS_MAX_ACK_DATA is greater than the
Payload MTU, then the sequence in Figure 3-24 is used. Otherwise, the sequence in Figure 3-23 is used.

Initiator Target
SES PDS PDS SES
Messages Msgs + Packets Packets Msgs + Packets Messages
SEND — —p] UET SEND MID 1 nA n
REQUEST SendMID=1,0ff=0 2P 1L MOO
Send MID 1, Offset 0
UET NO RESPONSEIMID 1) __Le. . _NoResponse._..
------ mmsEemmemmETT
(€=-m=mmT | Semantic
_ > UET SEND MID 1 e Processing Time
SendMID=1,0ff=N = U1, MO N
oN Send MID 1, Offset N
RESP Semanfic g
o 1D — 1 UET SENDMip;  QET Demi;:@h B Buffer Found
Send MID =1, MO N+, T 0 1, MLT.R==""
O =NFMIT0 ——MTU M 20
---------- Send MID 1, .
« e Offset N+MTU
.)E“‘I'jr?:]: [|'-:‘_.'|: 1, > UET SEND MID 1, Mo M
< ACK Send MID 1, Offset M
Final PDS AR o ceeme=m=m™ All Packets Received i
COMSPEINE?'ION Nl PAcket ACK MID L | a7 e e COMPLETION

Figure 3-22 - Multi-Packet Request, Expected Message

When a fetching atomic request (UET_FETCHING_ATOMIC) is issued, the sequence in Figure 3-24 is
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Initiator Target
SES PDS PDS SES

Messages Msgs + Packets Packets Msgs + Packets Messages

—]
fi_read | _UET REA
_read() = L'FI' rihu,
ET_READ
Rea ]
Rea UET_READ,
- UET READ.

Rea T
UET REA
Res EAD,

MID 0, PsN=gq
MID -
MID 0, PSN=107
MID 0, psN=

Rea
Rea
Rea
Real
Reau

(=1 I8 §=4 =1 §=%
[=1 F=N I=W I<H I=N

YvY VY v Y

MID A Read MIDO

. S

LUET RESPONSE W DT&D EST] PS&]—-ISU
D c =

UE RESPONSE W L8, Bess LD

ayload Len = PMT DlAE(V:.DM_ID N=100 [‘) %

= FWD_PSN=101, )Eﬂ 610

SE . Redd MID Q.

PR
L;aylggcsﬁgn = Remainder] FWD_PSN=103, =

£

A A

Read *
CONIPLETION |

........

--------------------- o Read
------- = Final ACK COMPLETION

h A

Figure 3-23 - Multipacket Read Request — Standard

always used. A broader discussion of these sequences can be found in the PDS specification 3.5.19. The
remainder of this section focuses on the semantic sublayer characteristics of these sequences.

When the data that can be carried in an acknowledgment is small, the target issues new messages
containing the read payload data. These messages are technically responses; thus, the
UET_RESPONSE_W_DATA opcode is used. Reads (optionally) complete at the target when all of the
response packets for the read have been acknowledged. Note that the response payload packets
contain the original message ID of the request and the original sequence number. The message ID from
target to initiator is only reflected to the target in the acknowledgements; thus, it is entirely within the
purview of the target how they are assigned. Specifically, all responses to a single request message are
not required to use a single-message ID.

As illustrated, Figure 3-23 allows for a semantic response to the UET_RESPONSE_W_DATA carrying the
read payload. This makes it possible to carry failure information from the initiator to the target;
however, Figure 3-24 does not have this ability to carry failure information. A careful review of Table
3-19 shows that very few error responses could possibly apply when a read response returns to the
initiator of the read. Implementations of the standard read sequence (Figure 3-23) MUST provide a
semantic response to the UET_RESPONSE_W_DATA; however, that semantic response MAY be
UET_DEFAULT_RESPONSE in all cases. Indeed, this is what is illustrated in the figure where there is a
single cumulative acknowledgement. Implementations of the target MUST be prepared to receive an
error response, which implies a guaranteed delivery response, and MUST clear packets that were
marked for guaranteed delivery. Target implementations SHOULD deliver any error response provided in
the read completion.
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Initiator Target

SES PDS PDS SES
Messages Msgs + Packets Packets Msgs + Packets Messages
fi_read() | UET REA
- Read - L'FI' R]L#‘D" MID 0, PSN=g9g
Read ” J‘_‘P (\U\D, MID 0, Psn=10p Read _
Road : lJIl'-I‘ I{F_."\D, MID 0, psn=1 01 Read :
Read | lurtl READ, MID g, PSN=102 Read |
Read M——LREAD, MID 0, PSN=103 Read -
Read :
_________ g erenrnnnrasnasases
_Payload, ACK PSN-99 #EITEESF]’LSTT}SE-— |053%U]'66§KCK S P
Payload, ACK PSN=100 328{:‘5- Pavf%ﬁ‘%uj'ﬁﬁéﬁc'ﬁiw-wo )
-+ a\,‘ T i e RIS SRS |
Payload, ACK PSN=101 #ﬁ.rgaﬁgtg}ﬁﬁ@r%g MTOTPBS RCKPSN=10T | e
"~ Payload, ACK PSN=102 | &Ik -r"iﬁ-fﬁ???*pa 24 L ATOTPES ACK PRN=102 0 P
Read < oad. ACK -103 %a PONS "'"'"'T’§l'\l-'1-0-3""
cOPLETION |2¥102d, ACK PON-103 J[Jpay s NS e s A

Cle ar PSN 03

\ o Read
Lear »| COMPLETION

Figure 3-24 - Multi-Packet Read Request — Large PDS_MAX_ACK_DATA

Informative Text:

Errors related to a UET_RESPONSE_W_DATA can occur when the payload attempts to write memory
that does not have a valid translation available. This can occur due to a programming error or due to
the application terminating.

In Figure 3-24, payload data is carried in the acknowledgement. Read request formation is the same as
in the flow used in Figure 3-23, but response data is carried in the acknowledgements. Because of this,
the read completion is delivered after all of the response packets are cleared.

The choice of protocol for reads impacts the mapping of the flows onto TCs. Acknowledgements are
mapped to the response TC (as illustrated in Figure 3-24). This is the primary reason that bulk data reads
are expected to typically use the sequence in Figure 3-23. It should be noted, however, that lossless
networks map the bulk data onto a response TC in both cases. In addition, deadlock-free operation on a
lossless network may require additional care with resource management for the sequence shown in
Figure 3-23. In both sequences, the initiator MUST guarantee that all response data can be accepted
without generating any wire transactions from initiator to target.

In Figure 3-23, each UET_READ is acknowledged by a PDS acknowledgement. That PDS
acknowledgement carries a semantic response of either UET_NO_RESPONSE, UET_DEFAULT_RESPONSE,
or UET_RESPONSE. SES failures can be carried by the UET_RESPONSE opcode. Errors detected later in
semantic processing are returned with the data. Read request packets that receive a non-RC_OK return
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code as part of the PDS acknowledgement do not receive a UET_RESPONSE_W_DATA. In Figure 3-24,
the semantic response return code is returned as part of the UET_RESPONSE_W_DATA.

3.4.4.3 Rendezvous Transactions

Rendezvous transactions have two parts. The first part consists of the eager send (e.g.,
UET_RENDEZVOUS_SEND). The eager send has 0 or more bytes of payload as indicated by the eager size
in the rendezvous header. The second part is a rendezvous read message (UET_READ) that completes
the transfer by pulling the data. The rendezvous read is an ordinary read transaction using the fields
provided in the rendezvous header. Figure 3-25 illustrates how this works in the expected message case.
A rendezvous send message (i.e., UET_RENDEZVOUS_SEND) is initiated and consists of one or more send
packets carrying eager payload (illustrated with UET_RENDEZVOUS_SEND MID1, Message Offset (MO) 0
through N). Notionally, the eager size is set to cover the round-trip bandwidth delay product, so that the
first packet of the read request arrives just in time to start the read payload transfer’. There are two
completion points at the initiator of the transaction: the completion of the rendezvous send and the
completion of the read. These are delivered as one completion queue entry to software (i.e., through
the libfabric API). Similarly, completion at the target is based on both the arrival of the eager part and
the arrival of the read payload. Due to variations in network timing, the completion of the eager send
and the completion of the read can happen in any order; thus, both points are illustrated here.
Nonetheless, both completion points must be reached before the message completion (e.g., completion
gueue entry) can be returned through the libfabric API.

Note the interaction with PDS for read completion at the initiator of the rendezvous transaction. The
PDS provides reliability for read responses; thus, the completion of the read at the initiator of the
rendezvous occurs when all of the read response packets have been acknowledged.

Figure 3-26 illustrates the unexpected message variation for the rendezvous transaction. The difference
between the two sequences is limited to two features. First, the modified length in the response is
intended to truncate the eager portion of the message to the part that is buffered at the target. In the
figure, it is assumed that the target buffer is matched to the size of the eager portion; however, a
modified length could be shorter (often 0 bytes). In that case, the UET_RENDEZVOUS_SEND can be
completed with a single additional packet — just like the deferrable send transaction. Second, the start
location of the read transaction differs from the expected case. When the message is unexpected, the
read starts from the point in the message that has been buffered at the target.

7 There are a variety of reasons why the eager size may be set smaller. For example, the initial rendezvous send
may be ordered while the read response payload may be unordered.
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Initiator Target

SES PDS PDS SES

Messages Msgs + Packets Packets Msgs + Packets Messages

SEND - ——>1 _UET RENDEZVOUS
REQUEST Send MID = 1, Off =0 SEND, MID 1, Mo o
ves Send MID 1, Offset 0 _
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Figure 3-25 - Rendezvous Transaction, Expected Message Case

When implementing a rendezvous transaction, a target MAY read more data than is strictly necessary.
Any offset within the bounds of the original message is a legal starting point for the read that is part of
the overall rendezvous transaction.
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Read completions can be implemented by delivering a completion after every read response has been
acknowledged. Unacknowledged read responses are retransmitted by PDS until they are
acknowledged.

Initiator Target
SES PDS PDS SES
Messages Msgs + Packets Packets Msgs + Packets Messages
SEND — —>1_UET RENDEzy
REQUEST Send MID = 1, Off =0 QUS_SEND, MID 1, Mo o
e Send MID 1, Offset 0
D1l eee-- DI T
Eagersize UET_NO_RE_SF_o_l\_Ié‘::.[M --------- Found
[€-=omnTT I— ) Bytesof
Payload Buffered
> UET
Send MID = T, OFf =N =RENDEZVOUS_SEND, MiD 1, g (07 Fager)
Send MID 1, Offset N
MO N, MLENGTHZL .oao? >
RESP.QN.SF;M‘-D-}J ----- 4eccc PMOaStt%fgjing Buffer
— €= < <-------
SEND UET_READMID 7, off=) Read MID 7, Off = J
COMPLETION see
UET‘RESPO
NSE_W_DATA, Mip 7
Payload, Off=)
UET READMID T off=4+M “Read MID 7, Off = J+M
UET RE
- SPONSE\WvDATA/ MID 7
S - >
Final Reuabi\lt_\/_f_\g\f --------------- Payload, Off=)+M MSG
-------- COMPLETION
«—
Read
COMPLETION

Figure 3-26 - Rendezvous Transaction, Unexpected Message Case

3.4.4.4 Deferrable Send Transactions

Deferrable send transactions are a similar concept to rendezvous sends. Deferrable sends begin a
transfer of the message. The congestion management sublayer is expected to limit the outstanding
payload based on the current congestion state. This means that approximately one BDP of data at the
current achievable bandwidth should be outstanding when a response returns from the target. In Figure
3-27, the deferrable send (UET_DEFERRABLE_SEND) finds that the matching buffer is available at the
target. This causes a semantic response (UET_DEFAULT_RESPONSE) indicating RC_OK and a modified
length equal to the request length. The deferrable send proceeds as any normal send.

The goal for deferrable sends is that the expected cases (seen in Figure 3-27) will return the semantic
response just in time to keep the wire fully saturated. In conjunction with the congestion management
sublayer, this should be achievable. In this case, there is little difference for any of the processing from a
simple send transaction.
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Figure 3-27 - Deferrable Sends, Expected Message Case

In the transaction illustrated in Figure 3-28, the semantic ACK (UET_RESPONSE) indicates that the
message is to be deferred by setting the ses.return_code field to RC_OK and the modified length to 0.
This response is marked for guaranteed delivery, since it does not use the default set of response values.
Later, a restart token (8675309) is used to restart the message using UET_DEFERRABLE_RTR. In the
illustrated example, the target has chosen to buffer J bytes of the original message. Thus, the ready-to-
restart (RTR) message indicates that the restart should start at message offset J. The restarted message
MUST be delivered to the matching buffer that was provided. The target MUST remember J using some
mechanism (see Implementation Note), since it is not carried in the restarted message.

A second notable feature in Figure 3-28 is that the first message for the unexpected deferrable send
MUST be completed using a packet with ses.eom set. This allows the target to deallocate state
associated with that message.
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Figure 3-28 - Deferrable Sends, Unexpected Message Case

A final variation on deferrable sends is illustrated in Figure 3-29. In this scenario, the target does not
reserve the buffer when a matching buffer is posted. This means that a deferrable send can be started,
deferred, restarted, and redeferred. This sequence can occur an indefinite — even infinite — number of
times. The lack of a reserved buffer is indicated by the passing of a target restart token of 0. A target
restart token of 0 MUST NOT be used for a reserved target buffer. In Figure 3-29, message ID 1 is reused
for the third transmit of the deferrable send, since that message ID was no longer in use for an in-flight

message.
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Figure 3-29 - Deferrable Sends, Unexpected Message Case, No Reserved Buffer
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3.4.4.5 Additional Unexpected Message Sequences

Unexpected messages are common in both Al and HPC and are a requirement as part of the libfabric
provider. To achieve interoperability, various compatible unexpected message sequences are provided.
This includes mechanisms supporting the RUD and RUDI protocols that enable a simple back-off and
retry approach (Figure 3-30) (0) as well as mechanisms that can be used with the ROD protocol to
preserve ordering requirements (3.4.3.6.2.1 and 3.4.3.6.2.2). Further mechanisms are defined to
support recovering from resource exhaustion with the ROD protocol while preserving ordering (Figure
3-31) (3.4.3.6.3). The buffering schemes do not change the wire behavior, other than the insertion of the
list field; thus, they are not illustrated.
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Figure 3-30 - Single Packet Messages using Backoff and Retry

Figure 3-30 illustrates a few features of the RUD transport when implementing a back-off and retry
scheme. Single-packet messages are illustrated, and a message in the middle of the stream (message ID
3) does not find a match at the target. This returns a UET_RESPONSE with a ses.return_code of
RC_NO_MATCH. This indicates to the initiator that the message was dropped at the target because no
match was found. The initiator is then responsible for retrying the message at a later time. Note that
when the message associated with MID=3 and PSN=102 receives the RC_NO_MATCH response, it is
complete from the perspective of PDS and from the perspective of the message ID allocation. When this
message is retransmitted after the back-off time, it MUST allocate a new PSN and MAY allocate a
different message ID. Figure 3-30 also illustrates how semantic processing can have very different
processing times; thus, the response to PSN 101 is somewhat delayed.

Implementation Note:

SES does not specify the backoff time or the implementation mechanisms for the backoff and retry.

For example, the backoff and retry could be implemented as part of the libfabric provider
implementation.

While Figure 3-30 illustrates only single-packet messages, multi-packet messages have similar
characteristics. If the message associated with MID=3 and PSN=102 had been a multi-packet message,
then the diagram would look much the same. While it is expected that the initial send of a message
would complete before the back-off time expired, this is not a strict requirement. For example, a
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Figure 3-31 - Messages using Resource Index Generation

message using the RUD transport would be allowed to initiate an SES retransmit on a different PDC from
the initial transmission. This allows for the PDC to be torn down and re-established between the first
(unsuccessful) transmit of the message and the retransmit of the message. It also allows for both the
original message and the retransmit of the message to be in progress concurrently.

For simplicity, one additional feature of the back-off and retry sequence is not illustrated. In the figure, a
single back-off is shown with a successful retry. In practice, a back-off and retry sequence could have
many failed attempts with successive retries of the message.

Like Figure 3-30, Figure 3-31 uses single-packet messages to illustrate the mechanics of a different
unexpected message approach that applies specifically to ROD PDCs and uses the concept of a Resource
Index generation (0). Because ROD PDCs require that ordering be maintained, a message that
encounters resource exhaustion creates a challenge. If resources were replenished while subsequent
messages were in flight, ordering could be violated if care was not taken. To preserve the ephemeral
nature of PDCs, this resource exhaustion scenario is handled at the semantic sublayer rather than
injecting state into the PDC itself to recover.
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Figure 3-31 illustrates several aspects of the resource exhaustion protocol. First, once a resource is
exhausted (e.g., an unexpected message buffer), the next message and all subsequent messages fail
with an RC_DISABLED_GEN return code — until resources are added. Second, when resources are
replenished, the generation number is atomically updated with the addition of resources. Third,
messages that were already in flight encounter a generation mismatch and are dropped with an
RC_BAD_GENERATION return code being generated. Fourth, to maintain ordering, the first dropped
message is retransmitted with an updated generation number, but subsequent messages are not
retransmitted until a successful return code is received. Once the first message is accepted by the target
semantic sublayer, subsequent messages may be retransmitted with the new generation number.

Some features of this protocol are not illustrated. For example, a third FEP could send a message and
encounter a generation mismatch. It would follow the same recovery procedure as illustrated. Note
that, with multi-packet messages, it is still necessary to wait until the entire message has completed
before starting the next message. This is because PDS can promote a UET_NO_RESPONSE to a
UET_DEFAULT_RESPONSE as part of acknowledgement coalescing. It is not until the entire message has
been acknowledged that the initiator can know for sure that the message was accepted at the target.
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Figure 3-32 - Multi-Packet Request, Expected Message, with Initiator Error

3.4.4.6 Errors Indicated by the Initiator

Two types of error sequences are illustrated in Figure 3-32 and Figure 3-33. Errors that are detected at
the target are delivered to the initiator using return codes in a response using guaranteed delivery.
Errors detected at the initiator can be signaled to the target in two different ways. An error can be
signaled by setting the initiator error (ses.ie) bit in the header as shown in Figure 3-32. This type of error
signaling only marks a packet as bad and results in a message completion in error at the target. The
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Figure 3-33 - Multi-Packet Request, Expected Message, with Message Error

illustration shows an error being delivered to SES for the packet that is in error. It is expected that the
message completion at the initiator would also signal an error in this case.

In other cases, an error at the initiator may need to terminate the message that is in progress. In this
case, the sequence in Figure 3-33 is used. Here, a UET_MSG_ERROR with ses.eom set is sent using the
message ID of the message that is being terminated. As indicated in the figure, a message using this
mechanism may be terminated before delivering all of the packets in the message.

3.4.5 Error Handling

Errors in UET have three possible scopes: message level, PDS level, or device level. Error conditions fall
into three broad categories: recoverable errors, unrecoverable errors, and informational errors. Within
each category, errors are further subdivided into synchronous and asynchronous errors. The UET
Semantic specification covers only errors that are communicated by the semantic sublayer and have a
message-level scope. PDS level errors MAY have message-level scope; however, PDS-level errors are
documented in the PDS specification. Device-level errors are beyond the scope of this specification.

3.4.5.1 Error Precedence

In general, UET uses a first-error model of error precedence. That is, the first error encountered is the
error reported. If multiple errors are encountered for a message (i.e., different packets encounter
different errors), it is the return code (RC) associated with the first error that is returned in the semantic
response. If a single packet encounters multiple errors, the error contribution of that packet can be any
of the return codes associated with an error the packet encountered. The first error encountered may or
may not occur on the first packet (in packet sequence number order) of a message, since packets may
be received out of order.
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Informative Text:
A first-error model is used because errors can often propagate into more severe errors that are a
direct result of the first error.

3.4.5.2 Error Scopes

A message-level error scope impacts one message. It may be recoverable, unrecoverable, or
informational. If it is unrecoverable, a message-level error MUST impact only one message and its
associated transaction.

A PDS-level error scope impacts an entire PDC. Unrecoverable PDS-level errors MUST terminate the PDC.
All transactions in flight on a PDC that terminates MUST terminate in error to the application through
libfabric. In other words, an unrecoverable PDS-level error becomes an unrecoverable message error for
any transaction that has not already successfully completed.

Device-level and device-specific errors are beyond the scope of this document. Each vendor
implementation is responsible for mapping device errors to message-level, PDS-level, or local node-level
in scope. Only device-level errors and PDS-level errors may be asynchronous. That is, only device-level
errors and PDS-level errors are ever delivered in any way other than as part of a message completion.

Informative Text:

Many PDS-level errors also cause erroneous completion of a message; however, some PDS-level
errors may report only through out-of-band mechanisms (e.g., to a driver or to a management
system).

3.4.5.3 Recoverable Errors

Recoverable errors may be retried by an intermediate portion of the communication stack (e.g., the
libfabric provider). Retries of recoverable errors are expected to succeed eventually. The number of
retry attempts MAY be limited by implementation-specific controls. If the number of retry attempts is
limited, then messages that exceed the maximum number of retry attempts MUST terminate in error.

3.4.5.3.1 Handling of Recoverable Errors Detected at the Initiator

Recoverable errors detected at the initiator before a sequence number is allocated SHOULD be handled
by the initiating FEP without allocating a sequence number. Recoverable errors detected at the initiator
after allocating a sequence number MUST poison the FCS in the packet. An example of this type of error
is a parity error on an intermediate buffer that the packet passes through. Recoverable errors detected

at the initiator MUST NOT set the ses.ie bit.

3.4.5.3.2 Handling of Recoverable Errors Detected at the Target

Recoverable errors detected at the target all fall into the class of resource exhaustion errors. These
scenarios are generally recoverable. Handling of the recoverable resource exhaustion occurrences MUST
utilize the mechanisms described in section 3.4.3.5.1.
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3.4.5.4 Unrecoverable Errors

Unrecoverable errors are reported as failed messages. Message-level failures are not fatal to the
connection and are not fatal to the device. Device-fatal errors are beyond the scope of this specification.
Errors that tear down a connection are defined as part of the PDS specification.

3.4.5.4.1 Handling of Unrecoverable Errors Detected at the Initiator

A variety of errors may be detected at the initiator that are fatal to the message. Such errors range from
hardware failures (e.g., a PCl Express read completion timeout) to programming errors (e.g., a user
process initiates a message with an address that cannot be translated) to other errors that make data
unavailable (e.g., a process terminates after starting a message). Each of these cases is unrecoverable
and may occur while a message is in flight. Two mechanisms are provided for signaling of uncorrectable
initiator errors to the target.

The initiator error (ses.ie) bit in the semantic header is used to indicate that the header was properly
constructed, but that the payload cannot be used. Implementations MAY use the ses.ie bit to indicate
errors encountered at the initiator, but implementations are not required to have any class of error that
causes the ses.ie bit to be set. Packets with the ses.ie bit set MUST NOT access memory at the target.
Messages containing packets with the ses.ie bit set MUST use a non-RC_OK ses.return_code. If the
initiator error is the first error, the return code MUST be RC_INITIATOR_ERROR. Messages containing
packets with the ses.ie bit set MUST indicate an error at the target if a completion queue entry is
provided or if a counter is used to indicate completion. Because the ses.ie bit indicates that the header
was properly constructed, any completion delivered at the target MUST include the completion queue
data (i.e., header data from the wire) if the ses.hd bit was set to indicate that such data is available.

The UET_MSG_ERROR opcode is used to terminate messages without transmitting all of the constituent
packets. The UET_MSG_ERROR opcode MAY be sent at any time —including the packet with ses.som set.
When using a RUD PDC, the initiator MAY wait for all outstanding packets of the message to complete,
then issue the final packet of the message with the UET_MSG_ERROR opcode; however, this is not
required, and target implementations MUST NOT depend on it. All header fields within a
UET_MSG_ERROR MUST be set to the value that the packet would have used if it had not been in error —
except for the payload length. The payload length MAY use any size between 0 and the size the original
packet would have taken. Only one packet per message may indicate UET_MSG_ERROR. A
UET_MSG_ERROR packet MUST set ses.eom. Packets with the UET_MSG_ERROR opcode MUST NOT
access memory at the target. Messages terminating with the UET_MSG_ERROR opcode MUST use a
non-RC_OK return code. If UET_MSG_ERROR is the first error indication, the return code MUST be
RC_INITIATOR_ERROR. Messages terminating with the UET_MSG_ERROR opcode MUST indicate an
error at the target if a completion queue entry is provided or if a counter is used to indicate completion.

Informative Text:
The PDS treats a packet using the UET_MSG_ERROR opcode just like any other packet.
UET_MSG_ERROR does not change any packet reliability guarantees.
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3.4.5.4.2 Handling of Unrecoverable Errors Detected at the Target

A broad set of unrecoverable errors may be detected at the target of a message. These errors range
from programming exceptions (intentional or deliberate) such as permission violations
(RC_PERM_VIOLATION) to uncorrectable hardware errors of an unspecified type (RC_UNCOR).
Unrecoverable semantic errors are still limited in scope to a single transaction and do not impact the
state of a PDC, for example. Uncorrectable errors deliver an appropriate return code using a first error
model of error precedence, and that return code MUST be marked for guaranteed delivery.

Responses with data that return with an RC indicating an error MUST NOT write to memory at the
initiator.

3.4.5.4.3 Unrecoverable Errors and Rendezvous

Rendezvous transactions are relatively unique in their composition within UET. There is a eager portion
of the transaction originating from the initiator of the rendezvous using a UET_RENDEZVOUS_SEND (or
TSEND) message and a read portion of the transaction originating from the target of the rendezvous.
Unrecoverable errors in each sub-transaction are delivered with the completion notifications for those
sub-transactions. For example, the eager portion of a rendezvous transaction delivers errors as if it were
a send (or tagged send). The read portion of the rendezvous transaction delivers errors as if it were a
read transaction. These errors are aggregated through the provider to be delivered to software.

3.4.5.5 Informational Errors

A handful of return codes are marked as informational. These errors (e.g., a floating-point underflow)
may be safely ignored by some applications in some use cases. Like other errors, these errors MUST be
provided back to the application (if requested). Informational errors deliver an appropriate return code
using a first error model of error precedence among informational errors. Uncorrectable errors have a
higher error precedence. An implementation that encounters an informational error and then a
subsequent uncorrectable error MUST deliver the uncorrectable error. The return code MUST be
marked for guaranteed delivery.

3.4.5.6 Return Codes

Return codes are defined for a variety of recoverable, unrecoverable, and informational errors. These
codes are standardized for certain well-established error scenarios to provide additional information for
debugging purposes. In addition, portions of the return code space are available for vendor-specific
return codes. The return codes are enumerated in Table 3-19 along with a designation for their scope
and whether they are recoverable (R), unrecoverable (U), or informational (1).

3.4.6 Enumerated Types Used in Headers
This section enumerates field definitions for various header types. This includes opcodes, return codes,
and NACK types.
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3.4.6.1 PDS Next Header Enumerations

The next header field used by the TSS header and the PDS header is enumerated in Table 3-16. The next
header field indicates the size and format of the semantic header following the PDS header (see section
3.5.11.2).

Informative Text:

Future iterations of the specification may include the ability to encapsulate and encrypt other types of
traffic in the UET Security Protocol. This would increase the usage of the next header enumeration
within the encryption header.

Table 3-16 - Next Header Enumeration

Mnemonic Constant Description
UET_HDR_NONE 0x0 No header follows this header.
UET_HDR_REQUEST_SMALL 0x1 The semantic header following the PDS header is the
one illustrated in Figure 3-13.
UET_HDR_REQUEST_MEDIUM 0x2 The semantic header following the PDS header is the
one illustrated in Figure 3-14.
UET_HDR_REQUEST_STD 0x3 The semantic header following the PDS header is the

one illustrated in Figure 3-9, Figure 3-10, Figure 3-11,
or Figure 3-12.

UET_HDR_RESPONSE 0x4 The semantic header following the PDS header is the
one illustrated in Figure 3-18.

UET_HDR_RESPONSE_DATA 0x5 The semantic header following the PDS header is the
one illustrated in Figure 3-19.

UET_HDR_RESPONSE_DATA_SMALL 0x6 The semantic header following the PDS header is the

one illustrated in Figure 3-20.

Reserved 0x7-0xF

3.4.6.2 Opcode Enumerations
The opcode field in the header is enumerated for requests in Table 3-17 and for responses in Table 3-18.
Each opcode space reserves encodings for vendor innovation.

Table 3-17 - Supported Request Messages (Opcode)

Mnemonic Constant Description

UET_NO_OP 0x00 SES message that performs no operation. MUST be a single-
packet message. A FEP is not required to identify a buffer or
completion queue at the target for a UET_NO_OP.

UET_WRITE 0x01 RMA write — used to support fi_write().

UET_READ 0x02 RMA read — used to support fi_read().

UET_ATOMIC 0x03

UET_FETCHING_ATOMIC 0x04 Includes compare and swap.

UET_SEND 0x05 (non-matching) send message.

UET_RENDEZVOUS_SEND 0x06 Incorporated to allow send over ROD (for ordering) with bulk
payload over RUD.

UET_DATAGRAM_SEND 0x07 Legal only when used with UUD PDS type.
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Mnemonic Constant Description

UET_DEFERRABLE_SEND 0x08 A send message where the payload transfer may be deferred
by the target.

UET_TAGGED_SEND 0x09 A tagged send message using match bits for buffer selection.

UET_RENDEZVOUS_TSEND O0x0A A rendezvous version of the tagged send.

UET_DEFERRABLE_TSEND 0x0B A deferrable version of the tagged send.

UET_DEFERRABLE_RTR 0x0C A deferred send is ready to restart.

UET_TSEND_ATOMIC 0x0D Atomic operations with tagged send addressing semantics.

UET_TSEND_FETCH_ATOMIC OxOE Fetching atomic operations (including compare and swap)
using tagged send addressing semantics.

UET_MSG_ERROR OxOF Used to terminate an in-progress message ID. Can be sent as
an early final packet of a message for an in-flight message
that encounters an error.

Reserved 0x10-0x2F

UET_VENDOR_DEFINED[15] 0x30-0x3E | An encoding space to allow vendor extensions for
experimentation and differentiation.

UET_OP_EXTENDED 0x3F This opcode is reserved as an opcode space escape to an

extended opcode location to be defined at a later time.

Table 3-18 - Supported Response Messages (Opcode)

Mnemonic Constant Description

UET_DEFAULT_RESPONSE 0x00 A default response, where the return code is RC_OK, the
modified length is the requested length, and the list is
UET_EXPECTED.

UET_RESPONSE 0x01 A response other than a default response.

UET_RESPONSE_W_DATA 0x02 A response carrying data.

UET_NO_RESPONSE 0x03 An indication that no semantic response is available at this
time.

Reserved 0x05-0x2F

UET_VENDOR_DEFINED[16] 0x30-0x3F | An encoding space to allow vendor extensions for
experimentation and differentiation.

3.4.6.3 Return Codes

SES can encounter a variety of errors — ranging from errors that may be only informational () (e.g.,
RC_AMO_FP_UNDERFLOW) to recoverable errors (R) (e.g., RC_BAD_GENERATION) to errors that are
fatal to the message (U) (e.g., RC_AMO_UNSUPPORTED_OP) to errors that may require more drastic
actions to correct (U) (e.g., RC_UNCOR). SES return codes are listed in Table 3-19.

Table 3-19 - Defined Semantic Return Codes

Mnemonic Constant Scope/ Description
Recover
RC_NULL 0x00 NA/NA | The RC status of this transaction is unknown.
RC_OK 0x01 Msg/NA | The transaction completed successfully at the
target.
RC_BAD_GENERATION 0x02 Msg/R | The generation in the request did not match the
generation at the target index.
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Mnemonic Constant Scope/ Description
Recover

RC_DISABLED 0x03 Msg/R | The targeted resource is disabled. Disabled
resource has precedence over RC_NO_MATCH.

RC_DISABLED_GEN 0x04 Msg/R | The targeted resource is disabled and supports the
index generation. Disabled resource has
precedence over RC_NO_MATCH.

RC_NO_MATCH 0x05 Msg/R | The message could not be matched at the target
and was dropped. This is returned for matching,
nonmatching, and RMA transactions that fail to
find a buffer.

RC_UNSUPPORTED_OP 0x06 Msg/U Unsupported network message type.

RC_UNSUPPORTED_SIZE 0x07 Msg/U | The message was larger than the supported size.

RC_AT_INVALID 0x08 Msg/U Invalid address translation context.

RC_AT_PERM 0x09 Msg/U | Address translation permission failure.

RC_AT_ATS_ERROR O0x0A Msg/U | ATS translation request resulted in either
unsupported request or completer abort.

RC_AT_NO_TRANS 0x0B Msg/U Unable to obtain a translation.

RC_AT_OUT_OF_RANGE 0x0C Msg/U | Virtual address is out of range and unable to
attempt translation.

RC_HOST_POISONED 0x0D Msg/U | The host read (e.g. PCle) indicated the access was
poisoned.

RC_HOST_UNSUCCESS_CMPL 0xOE Msg/U | The host read (e.g. PCle) indicated an unsuccessful
completion.

RC_AMO_UNSUPPORTED_OP OxOF Msg/U Unsupported AMO message type.

RC_AMO_UNSUPPORTED_DT 0x10 Msg/U Invalid datatype at the target.

RC_AMO_UNSUPPORTED_SIZE 0x11 Msg/U | The AMO operation was not an integral multiple of
the datatype size.

RC_AMO_UNALIGNED 0x12 Msg/U | The AMO operation address was not natively
aligned to the datatype size.

RC_AMO_FP_NAN 0x13 Msg/I An AMO operation generated a NaN and signaling
is enabled.

RC_AMO_FP_UNDERFLOW 0x14 Msg/I An AMO operation generated an underflow and
signaling is enabled.

RC_AMO_FP_OVERFLOW 0x15 Msg/I An AMO operation generated an overflow and
signaling is enabled.

RC_AMO_FP_INEXACT 0x16 Msg/I An AMO operation generated an inexact exception
and signaling is enabled.

RC_PERM_VIOLATION 0x17 Msg/U Message processing encountered a permissions
violation (e.g., a mismatch in the JoblID).

RC_OP_VIOLATION 0x18 Msg/U | An operation violation occurred. This includes a
read attempting to access a buffered configured as
write only, a write attempting to access a buffered
configured as read only, or an atomic attempting
to access a buffer that does not have both read
and write permissions.

RC_BAD_INDEX 0x19 Msg/U | An unconfigured index was encountered.

RC_BAD_PID Ox1A Msg/U PID was not found at the target node (within the
JobID for relative addressing, or at all for absolute
addressing).

RC_BAD_JOB_ID 0x1B Msg/U | JobID was not found at the target node.
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Mnemonic Constant Scope/ Description
Recover

RC_BAD_MKEY 0x1C Msg/U | The specified memory key does not map to a
buffer.

RC_BAD_ADDR 0x1D Msg/U Invalid address (not covered elsewhere) (e.g., an
offset that extends beyond the length of the
configured memory region).

RC_CANCELLED Ox1E Msg/U Response indicating the target cancelled an in-
flight message.

RC_UNDELIVERABLE Ox1F Msg/U | Message could not be delivered.

RC_UNCOR 0x20 Msg/U | An uncorrectable error was detected. The error is
not likely to be rectified without corrective action.

RC_UNCOR_TRNSNT 0x21 Msg/R | An uncorrectable error was detected. The error is
likely to be transient.

RC_TOO_LONG 0x22 Msg/U | The message was longer than the buffer it
addressed. The target was configured to reject a
message that was too long rather than truncate it.

RC_INITIATOR_ERROR 0x23 Msg/U | This RC echoes back the initiator error field from
the incoming packet.

RC_DROPPED 0x24 Msg/R Message dropped at the target for reasons other
than those enumerated elsewhere.

RC_RESERVED 0x25-0x2F

RC_VENDOR_DEFINED[0-7] 0x30- Vendor/

0x37 Vendor
RC_RESERVED_WITH_DATA 0x38- This opcode space is reserved for use with
0x3D response-with-data messages. Responses without
data MUST NOT infringe on this space, since they
can easily define an extended RC space using the
reserved bits in the header.

RC_EXTENDED 0x3E Used to extend the RC space. The format for this
extension will be defined when it is needed.

RC_RESERVED O0x3F

When buffered payload schemes are used for unexpected message handling, the initiator cannot

determine whether the message was expected or unexpected at the target. The libfabric provider —

often even the hardware — knows which of those things happened; thus, this information is returned in

the semantic response. By returning this information to the initiator, it significantly simplifies the

synchronous send implementation (MPI_Ssend()).

Table 3-20 - List Where the Message was Delivered

Mnemonic Constant Description

UET_EXPECTED 0x0 Message matched the expected list.

UET_OVERFLOW 0x1 An unexpected header was tracked for this message
(3.4.3.6.2.1 or 3.4.3.6.2.2). Message payload may have
been (3.4.3.6.2.2)

UET_VENDOR_DEFINED[0-1] 0x2-0x3
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3.4.6.4 Atomic Memory Operations (AMO) Enumerations

Table 3-21 enumerates the atomic opcode encodings, while Table 3-22 enumerates the encodings for
datatypes. A broad set of operations and datatypes are defined based on the datatypes that are defined
in libfabric, which was in turn inherited from the MPI definition. Two types beyond the MPI definition
(two 16-bit floating-point types) are specifically included for Al. Space is reserved in both encodings to
allow for vendor innovation. The UET_AMO_INVAL operation can be used in conjunction with the
delivery complete bit to make the cached item globally observable.

Table 3-21 - Atomic Operation Opcodes

Mnemonic Constant Description
UET_AMO_MIN 0x00 Minimum: Target = MIN(Target, Initiator)
UET_AMO_MAX 0x01 Maximum: Target = MAX(Target, Initiator)
UET_AMO_SUM 0x02 Sum: Target = Target + Initiator
UET_AMO_DIFF 0x03 Diff: Target = Target — Initiator
UET_AMO_PROD 0x04 Product: Target = Target * Initiator
UET_AMO_LOR 0x05 Logical OR: Target = Target || Initiator
UET_AMO_LAND 0x06 Logical AND: Target = Target && Initiator
UET_AMO_BOR 0x07 Bitwise OR: Target = Target | Initiator
UET_AMO_BAND 0x08 Bitwise AND: Target = Target & Initiator
UET_AMO_LXOR 0x09 Logical XOR:

UET_AMO_BXOR 0x0A Bitwise XOR: Target = Target ” Initiator
UET_AMO_READ 0x0B Atomic Read: Initiator = Target
UET_AMO_WRITE 0x0C Atomic Write: Target = Initiator
UET_AMO_CSWAP 0x0D Compare and swap if equal
UET_AMO_CSWAP_NE O0xO0E Compare and swap if not equal
UET_AMO_CSWAP_LE OxOF Compare and swap if less than or equal
UET_AMO_CSWAP_LT 0x10 Compare and swap if less than or equal
UET_AMO_CSWAP_GE 0x11 Compare and swap if greater than or equal
UET_AMO_CSWAP_GT 0x12 Compare and swap if greater than
UET_AMO_MSWAP 0x13 Swap masked bits:
Target = (Target & Mask) ~ Initiator
UET_AMO_INVAL 0x14 If the location at the target is cached, invalidate the
cache.
Reserved 0x15-0xDF
UET_AMO_VENDOR[0-30] OxEOQ-OxFE Vendor defined AMO
Reserved OxFF

Table 3-22 - Supported Atomic Datatypes

Mnemonic Constant Description
UET_TYPE_INT8 0x00 8-bit signed integer
UET_TYPE_UINT8 0x01 8-bit unsigned integer
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Mnemonic Constant Description
UET_TYPE_INT16 0x02 16-bit signed integer
UET_TYPE_UINT16 0x03 16-bit unsigned integer
UET_TYPE_INT32 0x04 32-bit signed integer
UET_TYPE_UINT32 0x05 32-bit unsigned integer
UET_TYPE_INT64 0x06 64-bit signed integer
UET_TYPE_UINT64 0x07 64-bit unsigned integer
UET_TYPE_INT128 0x08 128-bit signed integer
UET_TYPE_UINT128 0x09 128-bit unsigned integer
UET_TYPE_FLOAT O0x0A Single-precision floating-point value
UET_TYPE_DOUBLE 0x0B Double-precision floating-point value
UET_TYPE_FLOAT_COMPLEX 0x0C Pair of floats (real, imaginary)
UET_TYPE_DOUBLE_COMPLEX 0x0D Pair of doubles (real, imaginary)
UET_TYPE_LONG_DOUBLE OxOE Double-extended precision floating-point value
UET_TYPE_LONG_DOUBLE_COMPLEX O0xOF Pair of long doubles (real, imaginary)
UET_TYPE_BF16 0x10 16-bit floating-point value (bfloat 16)
UET_TYPE_FP16 0x11 16-bit floating-point value (FP16 format)
Reserved 0x12-0xDF
UET_TYPE_VENDOR[0-30] OxEO-OxFE | Vendor-defined types
Reserved OxFF

Informative Text:

Typical programming interfaces (e.g., MPI, SHMEM) are silent on the details of handling NaN in
floating-point arithmetic and define it as platform-specific.

Table 3-23 - AMO Semantic Control

Field Size Description
UET_AMO_CTRL_CACHEABLE 1 This AMO operation may be cached by the target device.
UET_AMO_CPU_COHERENT 1 This operation should be performed in a way that is coherent with

CPU accesses.
Reserved 3 Reserved
VENDOR_DEFINED[0-2] 3 Vendor-defined encoding space.

The matrix of supported operation types versus datatype is shown in Table 3-24. The tables use ® to

denote a supported operation on a given datatype and O to indicate an optional operation. Blank cells

indicate an unsupported operation. Notable trends in the tables are that product is optional across all

datatypes, and “hard” operations (e.g., 128-bit integer sum) are left as optional. Similarly, only the most

basic operations are required on the complex floating-point formats. Nonsensical operations (e.g.,

logical operations on floating-point numbers) are excluded.
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Table 3-24 - Valid Combinations of Operations and Datatypes (Alternative)

Min
Max
Su
Diff
Prod
LOR
LAND
BOR
BAND
LXOR
BXOR
READ
WRITE
CSWAP
MSWAP

UET_TYPE_INT8

UET_TYPE_UINT8

UET_TYPE_INT16

UET_TYPE_UINT16

UET_TYPE_INT32

UET_TYPE_UINT32

UET_TYPE_INT64

UET_TYPE_UINT64

UET_TYPE_INT128

O|C|e|e|e/eee e
O|C|e|e|e/eee oo
O|C|e|e|e/eee e
O|C|e|e|e/eeeee
O|C|e|e|e/eee e
O|C|e|e|e/eeeee
O|C|e|e|eeeeee

UET_TYPE_UINT128

UET_TYPE_FLOAT

O|o|o|O|e|e|e/e/e e/ e @ cswap LE
o|o|o|o|e|e|e|e/e/ e e e cswap LT
o|o|o|o|e|e|e|e/e/ e e e cswap GE
o|o|o|o|e|e|e|e/e/ e e e cswap 6T

O|O|0|C|eo 0|0 0o|® @0 O
O|O|0|C|o oo 0o|® @0 O

UET_TYPE_DOUBLE

UET_TYPE_FLOAT_CO
MPLEX

UET_TYPE_DOUBLE_
COMPLEX

UET_TYPE_LONG_DO | O| O
UBLE

UET_TYPE_LONG_DO
UBLE_COMPLEX

UET_TYPE_BF16

OO0 O] O] O] O|O|0|OjC|e|e|e e @ e @ & co\wAP NE

O[O0 O] O O] O0O|0|0|0|0|e|e e e e e oo
O[O0 O] O O] O0O|0|0|0|0|e|e e e e e oo
O[O0 O] O O] 0]0|0|0|0|0|0|0|0|0|0|0|0
O[O0 O] O O] O0O|0|0|0|0|e|e e e e e o 0o
O|0| O] O O] O0O|0|0|0|0|e|e e e e e o o
O[O0 O] O O] O0O|0|0|0|0|e|e e e e e oo

O|0
O|0

O|0
O|0
O|0
O|0

UET_TYPE_FP16

Informative Text:

Datatype use in Al applications is a rapidly evolving field. Many modern types (e.g., int4 and smaller,
FP4 and FP6, etc.) are not useful for summation across multiple nodes due to the limited range of the
representation. Similarly, some formats (e.g. MX formats) have variable definitions that are harder to
map well into meaningful network transactions.

3.4.7 Device Expectations
To help ensure high-performance interoperability and a consistent level of isolation between processes
and users, this section provides guidelines for device implementors.

3.4.7.1 Header Field Integrity Enforcement

The JobID MUST be protected within a privileged context that is at the highest level of privilege within
the reachable network. This MAY be achieved by having the privileged context insert the JobID or by
having the privileged context check the JobID at the initiator to confirm that the initiating process is
allowed to use that JobID. One initiating process MAY be part of more than one JoblID, and the number
of JoblIDs it is allowed to utilize is implementation-defined (a number greater than or equal to 1).
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The source FA MUST be protected within a privileged context that is at the highest level of privilege
withing the reachable network. This MAY be achieved by having the privileged context insert the source
FA or by having the privileged context check the FA.

Implementation Note:
It may be difficult to achieve a high-performance implementation if the privileged context performing
JobID and FA validation for each message is privileged software running on the host.

In virtualized environments, the JobID and source FA MUST be protected within a configuration state
that is controllable only by the HyperVisor/VMM. In configurations that support out-of-band
provisioning systems, the JobID and source FA SHOULD be enforced by resources that are controlled by
only the provisioning system to protect against HV/VMM escalation attacks.

3.4.7.2 SDI Assignment to Applications

The secure domain identifier (SDI) is used as part of the selection of an encryption key. Devices MUST
limit how the SDI is utilized by applications. An application MUST NOT be allowed to use an SDI that is
not assigned to it. A device MUST support the pairing of SDI and JobID at the initiator. That is, the device
MUST provide a mechanism to guarantee that a specific SDI is used only with JoblDs that are allowed to
use that SDI.

One JobID MAY be allowed to use more than one SDI. The number of SDIs that are usable by a single
JoblID is implementation-defined (a number greater than or equal to 1).

3.4.8 UE Transport Semantics: Memory Model

The UET Semantics provides a memory model that is consistent with options that are available through
the libfabric API. The memory model includes a set of minimal requirements that is expected for all
implementations as well as how that memory model is controlled to be stronger for implementations
that choose to do so.

3.4.8.1 Ordering

Ordering consists of two components: message ordering and data ordering. Both message ordering and
data ordering are tightly tied to the underlying transport layer.

3.4.8.1.1 Message Ordering

The RUD and RUDI protocols do not make any message ordering guarantees.

Implementations of the ROD protocol MUST provide message processing ordering for a given “flow”
between SES on an initiator FEP and SES on a target FEP. At minimum, a flow is defined as the traffic

from one PIDonFEP at the initiator to a specific Resource Index associated with a PIDonFEP at a target
FEP. One or more flows may be mapped onto a single PDC.

SES MUST process messages in the order presented to it at a target FEP for a specific {JoblID, PIDonFEP,
Resource Index} tuple.
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3.4.8.1.2 Completion Ordering

If requested, implementations MUST deliver completion notifications at the target after all data has
been placed. Messages marked with the delivery complete bit MUST NOT deliver the target completion
until the corresponding global observability has been achieved (3.4.8.3).

The wire protocol does not provide direct support for fully ordered completions at the target. For
example, rendezvous transactions do not use the same sequence number space for payload delivery as
they do for initial request processing. As another example, the fully ordered completion order for
deferrable sends are based on the order in which matching receives are provided to the
implementation. This is beyond the scope of the transport definition.

Implementation Note:

The transport definition does not preclude libfabric provider implementations that deliver stronger
completion ordering; however, such implementations are vendor-defined. One historical completion
model — where send-after-write ordering is guaranteed — delivers the completion for a send
transaction only after all preceding writes have completed. This requires leveraging the information

from the sequence number space to determine when all prior writes have completed.

3.4.8.1.3 Data Ordering

Data ordering refers to the order in which data for a given target location is placed. Specifically, if two
messages access a single memory address from a single source, data ordering describes the order in
which the accesses become globally observable. Ordering between bytes in a given message is not
defined. That is, the last byte of a message MAY become globally observable in host memory before the
first byte. Similarly, the last byte of a message MAY be the last byte of a message deposited in memory.
Implementations MAY provide stronger ordering semantics, but those are beyond the scope of this
specification and are not likely to be portable.

The RUD and RUDI protocols do not make any data ordering guarantees.

Implementations of the ROD protocol that support atomic operations MAY provide an option to achieve
data ordering (RAW, WAW, WAR) for ATOMIC and FETCHING_ATOMIC operations on data that is 16
bytes in size or less. The granularity of such ordering is limited to the size of a single element of the size
of the datatype. Implementations MAY combine atomic operations on the target FEP so that not every
update is globally observable at the target.

Informative Text:

The node and bus architecture that a FEP is attached to are beyond the scope of this specification;
however, the data ordering model is purposefully relaxed based on known limitations in
contemporary (ca. 2025) architectures and implementations.
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3.4.8.2 Consistency and Atomicity
If atomic operations are supported, atomicity MUST be guaranteed at the granularity of a single element
of the size of the datatype.

If atomic operations are supported, concurrent atomic operations MUST be consistent at the target at
the granularity of a single element of the size of the datatype. Concurrent operations are defined as two
operations targeting the same {FA, JobID, PIDonFEP, Resource Index, Memory Key/Match Bits, Offset}
tuple where one or more operations start concurrently with or after one or more other operations that
have not completed. Concurrent operations can be initiated from the same FEP or from more than one
FEP. This includes consistency between ATOMIC and FETCHING_ATOMIC operations. This includes
consistency between UET_AMO_ WRITE, UET_AMO_ READ, and other atomic operations.

Implementation Note:

Concurrent access is scoped to a {FA, JobID, PIDonFEP, Resource Index, Memory Key/Match Bits,
Offset} basis because aliasing to a single physical memory location behind those constructs may not
be detectable by the FEP (e.g., when a host is using an IOMMU).

If atomic operations are supported, implementations MAY support consistency between concurrent
send, write, read, and atomic operations; however, it is not required. Users needing write or read
semantics that are consistent with atomic operations MUST use the atomic versions of those operations.
Concurrent operations are defined as two operations that have not completed back to the initiator.

Informative Text:

The classical definition of consistency is used. That is, consistency is defined as having the operations
appear as if they executed in some order. It is a common limitation in network APIs that consistency
between send and an atomic to the same memory location is not guaranteed. The UET atomic
operations include atomic read and atomic write operations to allow upper-level APIs to achieve
consistency, where needed.

Implementations MAY support stronger atomicity. The UET_AMO_CPU_COHERENT semantic control
allows peers to request atomic operations that are coherent with (and atomic relative to) CPU accesses.
If the requested semantics cannot be provided, the target FEP returns RC_AMO_UNSUPPORTED_OP.

Implementation Note:
There are many ways to provide coherent atomics relative to the CPU. As an example, an
implementation could utilize PClI Express atomic operations to implement the corresponding network

atomic operations.

3.4.8.3 Global Observability
The default for global observability is that global observability is not guaranteed. A FEP MUST NOT
indicate that a message has completed until all of the packets have been acknowledged by PDS. In
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addition, the FEP MUST wait until a semantic response is received before indicating that the message is
complete. This is sufficient for implementing the “transmit complete” semantic in libfabric.

An implementation MAY support stronger global observability. If the DC (delivery complete) bit is set in
a message, an implementation MAY indicate with a semantic failure that the transaction is not
supported. If an implementation does not indicate that the transaction is not supported, then the
implementation MUST defer the semantic response until it can guarantee that the data is globally
observable at the target.

Informative Text:
Global observability can be implemented by issuing a flushing read on PCl Express after issuing a data
write.

While target completion delivery falls largely outside the scope of the semantic specification, libfabric
compliance suggests that target completions should consistently indicate global observability. For
example, in many PCl Express hierarchies, this can be accomplished merely by setting RO=0 for

completion notifications from the FEP.

3.4.8.4 Idempotency

Operations performed using the ROD or RUD protocol MUST appear in memory at the target and at the
initiator as if they were performed exactly once. This creates specific requirements for
FETCHING_ATOMIC operations, which return the “old” data value and then modify the memory at the
target. If a target implements FETCHING_ATOMIC operations, the target MUST buffer the old data to
handle the case where the response is lost. This is true for both the ROD and RUD protocols.

3.4.9 Mapping of *CCL Send/Receive to Proposed Semantics [Informative]

The text in this section is informative and not normative. The section describes two approaches for
mapping *CCL send/receive APIs to the proposed libfabric/UET semantics, where the notation *CCL is
used to denote a generic Collective Communication Library (CCL). Both approaches aim to maintain the
current *CCL buffer usage semantics in conjunction with UET’s reliable connectionless delivery modes.
Other approaches beyond those described in this section are also possible.

The section assumes *CCL APIs of the form shown below:

e *ccl_send: APl to send a message with parameters that identify:
o The buffer containing the message and its size.
o The peer rank that the message is destined to.
o A communication context for the message.
e *ccl_recv: API to post a receive buffer with parameters that identify:
o The address and size of the buffer.
o The peer rank that the buffer is being posted for.
o A communication context for the message.
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In one of the approaches described, the *CCL plugin that implements the *ccl_send/*ccl_recv APIs uses
the libfabric fi_tagged() APIs, while the other approach uses the libfabric fi_rma() APIs.

3.4.9.1 Tag-Based *CCL Mapping

The tag-based *CCL mapping leverages the libfabric fi_tagged() APl beneath the untagged send and
receive operations within a typical *CCL API. The *CCL user APl is unchanged, but the tagged API
implementation allows the ordered send/receive pair to use an unordered protocol underneath for
better network efficiency. To simplify the underlying implementation, libfabric will be extended to allow
the libfabric user to specify that only “exact match” operations will be supported for a given Resource
Index. In this model, libfabric is initialized with FI_ORDER_NONE. This allows the implementation to
choose a RUD PDC.

A *CCL send must match the corresponding *CCL receive based on the order in which they were issued.
To achieve this while using the RUD protocol, the *CCL implementation maintains the following state
per communication context:

1. Asend message sequence number (MSN) per-peer rank
2. Areceive MSN per-peer rank

The tag passed through the fi_tagged() APl is a communication context identifier concatenated with the
appropriate MSN for that peer. For example, an fi_tsend() uses the send MSN combined with the
communication context identifier. The source rank is part of the local endpoint and is placed in the
initiator field of the packet by the provider. The dest_addr field of the fi_tsend() comes from the
destination in the *CCL send. Each time a *CCL send is called, the send message MSN for the
corresponding rank is incremented. Correspondingly, the fi_trecv() uses the receive MSN combined with
the communication context identifier. The source rank is used to populate the src_addr field. Each time
a *CCL receiver is called, the receive MSN for the corresponding rank is incremented.

The use of the MSN tables is illustrated in Figure 3-34.

Rank N-1 Rank 0
Send MSN Table Receive MSN Table
tag is exact match
» BELUESCUST ©  increment send MSN after use with no duplicates rank 0 recy MSN
rank 1 send MSN rank 1 recv MSN
\ e i fi_trecv(tag = {recv MSN, Rank N-1}) | B \
b ! A i = 1

from Rank N-1

1
el co
CLl_SEﬂd rank N-2 send MSN rank N-2 recv MSN
to Rank 0 rank N-1send Msn [ - rank N-Lrecy MSN |
fi_tsend(tag = {send MSN, Rank 0})
.

increment recv MSN after use

Figure 3-34 - Use of MSN Tables

A sequence diagram for tag-based *CCL send and receive operations is shown in Figure 3-35 below.
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Rank S Rank R

*ccl_recv()
fi_trecv() «
kil

Exact match fag,
Nd duplicate [tags
*ccl_send()
fi_tsend()
. — libfabric UET Request — Tagged Send libfabric
*CCL e (Message Data — Packet 0) UET *CCL
Uer — ————— 7
Provider| UET ACK ~ Message Packet 0 ——— Provider
«— -
s
UET Request — Tagged Send
B (Message Data — Packet N-1)
[ — —-— _ cmp
UET ACK — Message Packet N-1 - o cmp
cmp . T .,
Pl
cmp
PR

cmp = completion

Figure 3-35 - Tag-Based Sequence for *CCL Send and Receive

The sequence above illustrates the expected message sequence and does not distinguish the specific
type of tagged send message. The rendezvous tagged send (3.4.3.4) may also be used. Unexpected
messages can be particularly challenging in tagged environments; however, the use of an unordered
PDC (a RUD PDC) simplifies unexpected message handling. The implementation may use any of the
unexpected message handling mechanisms outlined in section 3.4.3.5.1.

3.4.9.2 RMA-Based *CCL Mapping
The RMA-based mapping requires RMA write and RMA write with immediate functionality, both of
which are provided by UET.

The RMA-based mapping uses a rendezvous queue data structure that is illustrated in Figure 3-36 below.

Rendezvous Queue at Each Sender

rank 0 msn 0
rank 0 msn 1

Receive Entry (32B)
Rendezvous Queue
rank 0 msn M-2 Max Size in Bytes [SB]
Each rank allocates this
memory at init time and
pre-shares the RMA BT
Handle with all other

ranks.

rank 0 msn M-1

Memory Key [8B]

rank 1 msn 0

Offset [8B]

Immediate Value [8B]

Ranks know how to index

this based on their rank # -

(0 to N-1) and the # of b Each receiver rank is responsible
receive entries (M) TRk msn 0 for RMA writing entries to this
configured. ki msn L Sender’s memory.

rank N-1 msn M-2
rank N-1 msn M-1
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Figure 3-36 - Rendezvous Queue Data Structure
The rendezvous queue works as follows:

e The rendezvous queue is a set of N descriptor rings, one per rank.
o Each ring contains entries for sending to a particular rank.
o The entries are produced by receivers and read by senders in FIFO order.
o The sender maintains a tail index for each ring that is used for consuming entries.
o The receiver maintains a head index for each rank that is used for producing entries.
o The receiver is also responsible for managing the case where a ring is full.
e When a *CCL receiver of rank R posts a receive buffer for a given sender of rank S:
o The receiver writes a receive entry for the buffer to the rendezvous queue of rank S.
o The entry is written to the ring associated with rank R using the head index for rank S
that is maintained at rank R.
e When a *ccl_send APl is called by rank S to send to rank R:
o The sender uses the ring associated with rank R.
o The sender accesses the ring entry at the tail index.
o Ifthere is a valid receive entry at the tail index, thenthe sender uses the information in
the entry to write the message data to the receiver’s buffer.
o Ifthere is not a valid receive entry at the tail index, then the sender waits for valid
receive entry to be written at the tail index.

A sequence diagram for write-based *CCL send and receive operations is shown in Figure 3-37 below.

Rank S Rank R

*ccl_recv()

UET Request — Write with Immediate
(Write Receive Entry to Rendezvous Queue)

| writedatal() N

cmp )
o UET ACK

*ccl_send()

N fi_write()

sceL . |libfabric UET Request - Write libfabric

UET (Write Message Data — Packet 0) ’ UET *CCL

Provider UET ACK — Message Packet 0 Provider

UET Request — Write
(Write Message Data — Packet N-1)

UET ACK — Message Packet N-1
cmp

«
UET Request — Write with Immediate
(Generate Completion)

fil_writedatp(

cmp
»
> cmp

cmp UET ACK
" cmp

cmp = completion
Figure 3-37 - Write-Based Sequence for *CCL Send and Receive

The write-based sequence proceeds as follows:

e An application call is made to the *ccl_recv() APl by rank R to post a receive buffer for rank S.
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e The *CCL at rank R consults the rendezvous queue data structures and calls the libfabric
fi_writedata() AP| to generate an RMA write with immediate transaction for the purpose of
writing a receive entry for the posted buffer to rank S.

e The completion for the write immediate informs the *CCL at rank S that the receive entry is
available, which is useful when there is a pending send transaction for rank R.

e An application call is subsequently made to the *ccl_send() API by rank S to send a message to
rank R.

e The *CCL at rank S consults the rendezvous queue data structures and calls the libfabric
fi_write() API to generate an RMA write for the purpose of writing the message to the buffer
posted by rank R.

e The completion for the fi_write() is assumed to inform the *CCL at rank S that the message has
been delivered to the posted buffer and is globally observable.

e The *CCL at rank S then calls the libfabric fi_ writedata() APl to generate an RMA write with
immediate for the purpose of generating a completion to the *CCL at rank R.

e The *CCL then delivers completions to the application for the *ccl_recv() at rank R and the
*ccl_send() at rank S.

The above sequence is for the case when a valid receive entry is available at the time *ccl_send() is
called. If a valid receive entry is not available, the *CCL saves the request in a send pending queue.
When the completion of an RMA write immediate indicates that a receive entry has been posted for
rank R, the send pending queue is checked, and if there is a pending send request for rank R, that
request is removed from the queue and serviced using the posted receive entry. In this manner, the
proposal does not require receiver not ready (RNR) functionality from UET.
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3.5 Packet Delivery Sublayer (PDS)

The packet delivery sublayer is the part of the Ultra Ethernet Transport (UET) protocol responsible for
delivering packets over IP/Ethernet networks. The packet delivery service offers reliability and ordering

capabilities. PDS exists as a sublayer in the UET, between the semantic sublayer (SES) and the transport
security sublayer (TSS), as illustrated in Figure 3-38.

libfabric APls

Semantics
Map ULP APIs to packets,
transaction tracking, ordering, completions, etc.

| $
II Packet Delivery
| PDC setup & teardown
Ultra packet delivery & ordering, selective retransmit
Ethernet T
Transport

Congestion Management

| TX rate control, adaptive path selection

|II 1

| Security

II\ Encryption, Key Management ' > E'::r;irrr;: :
AN IP Packets

Figure 3-38 - PDS High-Level Architecture Diagram

3.5.1 PDS Terminology

Table 3-25 contains a summary of PDS terminology. The terms defined here are used in this section and
other Transport layer sections. Some of these terms are previously defined in the UE Specification
frontmatter, section 1.2.2, but are listed here again to provide additional context.

Table 3-25 - PDS Terminology

Term Description

ACK Acknowledgement

cC Congestion control (aka congestion management).

CCcc Congestion control context

e Used to control traffic congestion in one direction for RUD/ROD.

Clear Use to acknowledge an acknowledgement (ACK) when the ACK requires guaranteed
delivery; that is, the ACK is carrying semantic state that must be delivered — such as error
information or return data.

CP

A control packet type used for RUD and ROD delivery services.
Send with option for the target to indicate the receive buffer is not yet available with a

NACK and later send a restart transmission request (RTR) packet when the receive buffer
is available.

Deferrable Send
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Term Description
DEF_RESP Default response, shorthand for UET_DEFAULT_RESPONSE; this SES Response format is
used for ACKs when multiple PSNs are coalesced into a single ACK and if PDS is re-
creating an SES Response that was not guaranteed delivery.
Destination FEP to which a transmitted packet is sent.
DPDCID Destination PDCID

e  PDCID assigned by peer FEP that is the destination of packet (i.e., the FEP on the
other end of the PDC).

Duplicate packet

Refers to a packet that is received at the destination a second time, e.g., if the source
retransmits a packet that was successfully received. For RUD/ROD, duplicate packets are
not passed to SES and may be acknowledged.

Entropy value (EV)

The entropy used to load balance packets depending upon the encapsulation used. For
UE packets in native IP encapsulation the EV is taken from the pds.entropy header field.
For UE packets encapsulated in UDP the EV is taken from the udp.src_port field.

Forward Direction

The direction used by PDS Request packets from initiator FEP to target FEP. ACKs for PDS
Requests packets in the forward direction flow from target FEP to initiator FEP. See
Figure 3-39.

Forward PSN

PSN assigned to packets (initiator requests) on the forward direction; may be carried
with return data on return path.

GTD_DEL Guaranteed delivery; this identifies SES Responses that are guaranteed to be delivered
from target to initiator — that is, the response is stateful. Example stateful responses are
error events, use of unexpected list, and fetching atomic responses (data).

Initiator FEP that initiates establishment of a PDC by sending a packet to another FEP.

IPDCID Initiator PDCID

e Assigned by FEP that initiates PDC establishment.

MID Message identifier — assigned by SES, treated as opaque by PDS; this acronym is used to
clarify ordering implications in the packet sequences figures.

e A message is a group of one or more packets using the same message ID.

MO Message offset — packet number within an SES message; this acronym is used to clarify
ordering implications in the packet sequences figures.

MP_Range Maximum PSN range - defines the maximum number of packets (PSNs) at a destination
that can being tracked on the PDC based on available resources.

This value is carried in compressed format for in PDS ACKs using the pds.mpr field.

NACK Negative acknowledgement

Highest PSN Refers to the highest PSN value, noting that when the PSN space wraps, the highest PSN
may have a lower numerical value than older PSNs.

OOR Out of Resources

PDC Packet delivery context including both a forward direction and return direction. The PDC
is ephemeral with dynamic establishment and close.

PDS ACK Generated by PDS and transmitted over Ethernet fabric to a PDS on another FEP; these
carry SES Responses that are delivered to SES at destination.

PDCID Packet delivery context identifier.

PDS Packet delivery sublayer.

PDS Request

Generated by PDS and transmitted over the Ethernet fabric to a PDS on another FEP;
these PDS Requests carry an SES Request or SES Response with data (in the return
direction) to be delivered to the destination SES.

PSN

Packet sequence number.
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Term

Description

Return Data

Data sent from the target to the initiator in response to an SES Request (i.e., read
response). This may be carried in a PDS ACK in the forward direction or in a PDS Request
in the return direction.

Generated by SES and passed to PDS to request delivery of a packet carrying read
response data on a specific ROD or RUD PDC in the return direction.

Return Direction

The direction used by PDS Request packets from target FEP to initiator FEP. ACKs for PDS
Request packets in the return direction flow from initiator FEP to target FEP. See Figure
3-39.

Return PSN PSN assigned to packets (target return data) on the return direction.

RTR Restart transmission request — this SES Request is used to restart a deferrable send that
was deferred. It uses a separate PDC, as the target for the original deferrable send acts
as an initiator to send the RTR.

ROD Reliable ordered delivery.

RTO Retransmission time out — event when a timer expires before an ACK or NACK is received
for a transmitted PDS Request or CP

RUD Reliable unordered delivery.

RUDI Reliable unordered delivery of idempotent operations.

SACK Selective acknowledgement.

SES Semantic sublayer.

SES Request

Generated by SES and passed to PDS to request delivery of a packet with specified
ordering and reliability service; only the initiator may issue these.
These are relayed to SES at the destination using a PDS Request.

SES Response

Generated by SES at receiver and passed to PDS in response to receipt of an SES Request
— these may be carried in PDS ACKs or PDS Requests. Refer to the description following
Figure 3-39 for more information.

SES RTR Deferrable send ‘restart transmission request’; refer to semantic section.
Set / Clear When referring to fields, set means one, Ob’1, and clear means zero, 0b’0.
Source FEP that transmits the packet.
SPDCID Source PDCID
e  PDCID assigned by FEP that transmitted the packet (i.e., the locally assigned
PDCID for the PDC)
Target FEP that is the destination for a packet from another FEP; establishes a PDC in response
to the initiator.
TC Traffic class.
TPDCID Target PDCID
e Assigned by FEP that is the target of a PDC establishment request.
uuD Unreliable unordered delivery
Note:

e Request —with a capital ‘R’ —is used to refer to refer to SES and PDS header types (SES Request).
e request —with a lower case ‘r’ —is used to refer to SES and PDS actions (SES request to send a packet).

3.5.2 lllustration of PDS Terms
Initiator and target terms are related to a specific PDC. All FEPs may operate simultaneously as both

initiator and as target.

Figure 3-39 uses the following basic sequence with numbers in the ovals matching the following:

1. SES Request generated by FEP-A SES.
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E.g., Send, Write, Read, Atomic, RTR

packetization

SES Response passed to FEP-A SES.

Forward Direction PDC

FEP-A
. INITIATOR
SES <A
Message SES Request| 1)
—

A N\
PDS Request, 2 1/\’/\/-\ I A

Initiator generated PDS Request carries SES Request to target.
SES Request passed to FEP-B SES.

SES Response to this request generated by FEP-B SES.
Target generated PDS ACK carries SES Response to Initiator = this ACK is part of forward

FEP-B
TARGET

| PDSACK! |

)
SES Request | 3
—_———

SES

Message
reassembly

SES Response| [ \ ___________ ‘_/-\w
( [5] 1! (4]
l\ﬁ /: Etherr.let / \J
SES Return Data ke et PDS Request SES Return Data
Message | | 1 R P
reassembly SES Response PDS ACK 1, : ( }/ vl SES Response
77777777777 v/ w 7 packetiz;tion
/ . SES Response with Data
Return Direction
FEP-A FEP-B
INITIATOR TARGET
SES PDS PDS SES
Messages Packets Packets Packets Messages
SES Request
MSG SEND SEND N
REQUEST — DS Request
PSN = 6290, T ——— SES Request
°289 [SEND; SEND BATA
lf(smemmnnmsnaranmanssnnsnanannmn s na I
PR - GENERATE
POS ACK _____oomeerras ) RESPONSE COMPLETION
SES Response | ggcACK — 6290 [RESP SES Response
- CcK= 6290,
RESPONSE A .
MSG ontro|
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Figure 3-39 - lllustrated PDS Terms

The lower arrows depict the same sequence in the return direction for read responses. Congestion

control is not applied to PDS ACKs. The return direction is used to carry large read response packets —
this creates a path from target to initiator where congestion control is applied. Smaller read response
data may be carried in a PDS ACK as described in section 3.5.12.1.

Note that larger read response data is carried in a PDS Request in the return direction. These packets,
labeled ‘SES Return Data’ in Figure 3-39, are technically SES Responses and use a pds.next_hdr field of
UET_HDR_RESPONSE_DATA or UET_HDR_RESPONSE_DATA_SMALL. PDS Requests carry both SES

Requests (in forward direction) and SES Responses with data (in return direction). PDS ACKs carry only
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SES Responses. Throughout this section the term ‘SES request’ refers to a request by SES to transmit a
packet using a PDS Request. The term ‘SES response’ refers to a response from SES to be relayed using a
PDS ACK. The lower case is used to indicate the PDS function and not the SES next header type.

FEP-A
Initiator

Packet 1

3.5.3 Packet Delivery Services
The packet delivery sublayer services include:

o Delivery of requests and responses sourced by the local SES to the destination SES.
o PDS processes SES packets — not messages.
=  SES requests PDS to deliver a packet with specified ordering and reliability.
o PDS processes SES Responses.
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= SES generates a response for each delivered packet, nominally ‘success’ or ‘fail’,
and optionally including a small amount of state (e.g., fail reason) and/or data.
= An SES Response may carry data (e.g., fetching atomic or read data).
= SES indicates which responses are guaranteed to be delivered.
= The SES Response is carried in a PDS ACK packet.
e Receiving and forwarding requests and responses from destination SES to local SES.
e Providing reliability and ordering guarantees for packets received from SES and transmitted on
the wire as well as packets received from the wire and passed to SES.
o PDS offers both reliable and unreliable packet delivery services.
o PDS offers both ordered and unordered packet delivery services.
e Setting up and tearing down dynamic connections between fabric endpoints (FEPs).

o PDS provides a connectionless interface to SES; using dynamically established
ephemeral connections, referred to as packet delivery contexts (PDCs), between FEPs on
an as-needed basis.

o PDS also provides connectionless reliable delivery for idempotent operations; a separate
delivery mode (RUDI — see section 3.5.7.3) is used for this that does not establish any
connection.

PDS defines packet delivery modes that provide varied ordering and reliability services. Each UET profile
defines which packet delivery modes are available within that profile and which congestion
management schemes are available. UET profiles are defined in the UET overview section. UET packet
delivery modes are defined in this PDS section — refer to section 3.5.6.

The UET PDS is designed in close conjunction with SES and CMS. SES is responsible for:

e Segmenting messages into packets provided to PDS for transmission
e Reassembling packets received from PDS into messages
e Generating a response for every request packet received

PDS is unaware of the SES transaction type. Data returned in response to a read request is called ‘return
data’. This is carried in a PDS ACK or in a PDS Request on the return direction as described in section
3.5.12.1.

CMS services include:

e Monitoring telemetry signals to detect network and endpoint congestion.
e Carrying congestion state between sources and destinations.
e Generating signals to control the transmission characteristics of PDS connections. The
transmission characteristics are referred to as transmit controls and are based on the following:
o The amount of data that can be outstanding on a connection or group of connections
(i.e., the window size and/or credit).
e Supporting multipath delivery with congestion aware path assignment.
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UET breaks larger reads at the semantic sublayer into multiple read request packets where a single read
request packet MUST be limited to requesting a maximum of one MTU. This is done by the semantic
sublayer (SES). Refer to SES section 3.4.4.2 for details.

This specification provides a logical interface between PDS and SES that is used to define PDS behavior.
The actual interface between PDS and SES is implementation specific.

Informative Text:
Implementations may choose to merge PDS and SES.

3.5.4 PDS-SES Logical Interface

This section contains non-normative text that describes an example of the SES-PDS interface from a
logical perspective to illustrate the information that crosses the interface. The interface between PDS
and SES is implementation specific. Table 3-27 summarizes an example PDS-SES interface using C
function signatures. The example interface is depicted visually in Figure 3-40. This example is presented
to provide a framework for better understanding the overall architecture but does use some
terminology that is not introduced until subsequent sections.

The following defines logical structures and commands passed between SES and PDS. This is intended to
describe the concepts without establishing requirements for implementation. The interface includes
source FEP fields, which allows multiple FEPs; a single FEP instance would not necessarily pass the
source FEP fields with each call.

struct uet ep *src fep
struct uet ep *dst fep
uint32 t jobid
uint32 t tss context

ptr to struct with source address, etc.

ptr to struct with dest address, etc.

SES passed through JobID

Transport Security Sublayer context (e.g.,
used to limit pkts on PDC to a common SDI

delivery mode = {RUD, ROD, RUDI, UUD}

identifies a ROD send queue, used to keep packets
from a send gqueue on same PDC

1= 0 = do not use resv’d PDC

SDI),

uint8 t mode
uintl6é _t rod context

boolean rsv_pdc

uintl6é t rsv_pdc context
uintl6 _t rsv_ccc context
uintl6é_t tx pkt handle
uintl6_t msg id

void *pkt

uintlé_t pkt len

void *rsp

uintl6é t rsp len

uint8 t tc

unit8 t next hdr

bool
bool
bool

som
eom
lock pdc

bool return data

use reserved PDC,

used to keep pkts in same reserved PDC

used to keep pkts in same reserved CCC

SES assigned packet handle at source

SES assigned message identifier at source

ptr to packet

packet length in bytes

ptr to response

response length in bytes

traffic class

controlled by SES, used to determine the type of
header in the encapsulated UET payload

TRUE => start of message

TRUE => end of message

TRUE => do not close this PDC until SES indicates
the lock can be lifted (separate function)

TRUE => packet must use PDC in orig pdcid,
set for read responses
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unitlé t orig pdcid

bool orig psn val
uint32 t orig psn

bool gtd del

bool ses nack

uintlé_t eager id
uint32 t eager size
uintlé t rx pkt handle
bool pdc pause

bool rudi pause

enum pds_error

PDCID from Read request in fwd direction

[local ID identifying a specific PDC]

TRUE => include orig PSN field in PDS Request hdr
PSN from Read reqg or Def Send in fwd direction
TRUE => SES Response needs guaranteed delivery
SES indication to send a PDS NACK

SES identifier for eager estimate request

size in bytes of eager data

PDS assigned packet handle at destination

TRUE => SES stops sending RUD/ROD packets to PDS
TRUE => SES stops sending RUDI packets to PDS
enum of reasons for PDC reset

S oo S 3k SR S R R e 3 9k o

Contexts are used to group or isolate packets for PDCs or CCCs. Contexts are assigned by SES and used

by PDS in assigning packets to PDCs and/or CCCs.

Table 3-26 - Packet Contexts

Context

Usage

tss_context

Used to limit all packets on a PDC to a common SDI; that is, all packets on a
PDC must have the same tss_context.
SDI, secure domain identifier, is defined in the TSS section 3.7.4.

rod_context

Used to keep all packets with common rod_context on the same PDC. Multiple
rod_contexts may map to the same PDC. If used with security, this includes the
SDI, and tss_context is ignored.

rsv_pdc_context

Used to limit all packets on a PDC to a common reserved group; that is, all
packets on a PDC must have the same rsv_pdc_context. If used with security,
this includes the SDI, and tss_context is ignored.

rsv_ccc_context

Used to control which PDCs share a CCC. If this is non-zero, then used to
associate the PDC(s) with a CCC. Included to support a reserved service that
may want separate or shared CCC for multiple PDCs (e.g., multiple
rvs_pdc_contexts). tss_context is not relevant for CCCs.
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Figure 3-40 - lllustration of Example PDS-SES Interface

Table 3-27 - Summary of Function-Based PDS-SES Interface Example

Function Name Direction Description and Parameters
SES request for PDS Transmission
ses_pds_tx_req() SE? t.o. PDS src_fep, dst_fep, jobid, mode, rod_context, next_hdr, tc, som, eom,
at initiator

lock_pdc, tx_pkt_handle, pkt, pkt_len, msg_id, tss_context,
rsv_pdc, rsv_pdc_context, rsv_ccc_context
e msg_idis used to keep all packets of a message on same
PDC, e.g., PDS maintains msg_id to pdcid mapping from som
to eom, or longer if lock_pdc = TRUE.
o Jock_pdc prevents PDS from tearing down a PDC, see the
description in ses_pds_unlock() for more information.
e rsv_pdc allows reservation of a number of PDCs for a
dedicated service; rsv_pdc_context and rsv_ccc_context
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Function Name Direction Description and Parameters
allows SES to put a set of packets on a common PDC and
CCC without managing PDCIDs.
pds_ses_rx_req() PDS to SES PDS reception of SES request
at target rx_pkt_handle, pkt, pkt_len, next_hdr,
orig_pdcid, orig_psn
e orig_psnis the PSN from the received packet that is used by
SES for some read responses; this is only valid for packets
received on the forward direction.
SES return data for PDS Transmission
ses_pds_tx_ret() SES to PDS src_fep, dst_fep, jobid, mode, next_hdr, tc, som, eom,
at target tx_pkt_handle, pkt, pkt_len, msg_id, return_data, orig_pdcid,
rsv_pdc, rsv_pdc_context
e  When return_data is TRUE, this packet is a read response and
the packet must use the same PDC as read request
(orig_pdcid).
e Animplementation may integrate this into a single
ses_pds_tx_req() function.
pds_ses_rx_ret() PDS to SES PDS reception of SES return data
at initiator rx_pkt_handle, pkt, pkt_len
e Animplementation may integrate this into a single
pds_ses_rx_req() function.
PDS transmission of SES Response
ses_pds_tx_rsp() SES to PDS src_fep, dst_fep, rx_pkt_handle, gtd_del, ses_nack, rsp, rsp_len
pds_ses_rx_rsp() PDS to SES PDS reception of SES Response
tx_pkt_handle, rsp, rsp_len
ses_pds_unlock() SES to PDS SES unlocks the PDC, allowing the PDC to be torn down
msg_id

e The lock_pdc parameter to the ses_pds_tx_req() function
indicates that the PDC may not be closed until the return
data for the read request has been returned on the PDC.
The PDC maintains a counter that is incremented each time
a ses_pds_tx_req() function is invoked with the lock_pdc
parameter set. The ses_pds_unlock() function decrements
that counter. If the counter is non-zero, the PDC cannot be
closed.

ses_pds_eager_req() SES to PDS SES request for estimate of appropriate eager size at Initiator
src_fep, dst_fep, mode, tc, eager_id

e Eager data is used only for rendezvous.

e  PDS reliability determines if a CCC exists for this dst_fep, tc,
and mode tuple. If yes then CMS calculates the eager size
for that CCC. Otherwise it returns the default eager value.

pds_ses_eager_size() PDS to SES PDS response with estimate of appropriate eager size at Initiator

(return for ses_pds_eager_req)
eager_id, eager_size
e Estimated the eager size value.
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Function Name

Direction

Description and Parameters

pds_pause()

PDS to SES
available

pdc_pause, rudi_pause

e No RUD or ROD request packets are passed to PDS while
pds_pause is TRUE. No RUDI packets are passed to PDS
while rudi_pause is TRUE. PDS calls this with pdc_pause =
TRUE or rudi_pause = TRUE and later calls again with
pdc_pause = FALSE or rudi_pause = FALSE.

e Animplementation MAY allow responses when pds_pause()
is invoked with pds_pause = TRUE or rudi_pause = TRUE.

PDS indication to SES that resources are temporarily not

pds_ses_error()

PDS to SES

PDS unrecoverable Error

pds_error, tx_pkt_handle or rx_pkt_handle

e |f a PDC has an unrecoverable error, PDS returns a
pds_ses_error for every outstanding, unacknowledged SES
request packet associated with the error event — this may be
all outstanding packets if PDS is torn down in error.

PDC processing at the initiator and target is largely symmetrical, accepting requests from SES to transmit
a packet and returning the corresponding SES Response. At the target, SES requests are limited to

responses to SES read requests (i.e., return data).

Only the initiator issues a query for an eager window size as only the initiator can transmit Send
messages. These sequences of related functions are shown in the high-level diagram in Figure 3-41 and
are described in more detail ahead.

Figure 3-41 shows how these example APIs would interact between the SES-PDS at both the initiator and
target. The thicker arrow around the (Request/ACK) and (Return Data/ACK) illustrates the independent

PSN spaces used on the forward and return direction. PSNs are described in section 3.5.8.

FEP-A

Message
packetization

SES

Message
reassembly

ry
ses_pds_tx_req

ses_pds_eager_req

ses_pds_unlock | | pds_pause

Y

pds_ses_rx_rsp
pds_ses_eager_size

pds_ses_error

r Y
pds_ses_rx_ret

pds_ses_rx_req | | ses_pds_tx_rsp

pds_ses_error

PDS

INITIATOR

/ PSN spaces T,

Independent

FEP-B

Message

SES

packetization

Message
reassembly

ses_pds_tx_ret
ses_pds_tx_req

Return direction

— RETURN DATA

r Y
pds_ses_rx_rsp

pds_ses_error

ses_pds_tx_rsp

Y
pds_ses_rx_req

pds_ses_error

PDS

TARGET

ACK -~

ACK

Forward direction

REQUEST

Figure 3-41 - lllustration of Example PDS-SES Interface between Initiator and Target
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3.5.5 PDS Configuration Parameters

Table 3-28 contains a summary of the PDS configuration parameters. At least one set of these
parameters MUST be supported for each FEP. If reserved PDCs are supported, a second set of these
parameters MUST be supported for each FEP used for PDCs in the reserved pool. The reserved pool,
discussed in section 3.5.18, is used for special services.

The two pools are distinguished by adding a three-letter acronym to the start of the name. GEN refers to

the general pool. RSV refers to the reserved pool. For example, Gen_Max_ACK Data_Size and

Rsv_Max_ACK_Data_Size.

These parameters MUST be configurable with the specified units. The required range MUST be
supported and larger ranges may be supported. The required quanta MUST be supported and finer-grain

guanta may be supported. The default values shown are for reference for a best-effort network using

UET-CC with packet trimming.

Table 3-28 - PDS Configuration Parameters

Default: N/A?

Name Required Range Description
UET_Over_UDP Boolean This determines if UET runs over UDP (when
Default: 1 UET _Over_UDP is set) or directly over IP (when
UET _Over_UDP is cleared).
UDP_Dest_Port 0-2%-1 When UET is running over UDP, this number in the

UDP destination port indicates the following protocol
is UET.

IP_Proto_Nxt_Hdr 0-255
Default: N/A?

This value is used when UET is run directly over IP.
Until an IP protocol number is assigned for UET, an
experimental number (253-254) can be used?.

Default: TRUE

UET_Data_Protect 0-3 Global configuration — across an entire fabric domain
Default: 1 0 = Neither CRC nor TSS enabled
1 =CRC enabled
2 =TSS enabled
3 = Reserved
Refer to section 3.5.25
Limit_PSN_Range Boolean When set, a PDC will close when the PSN reaches

Start_PSN + 23, This is an optional security feature.
Refer to section 3.5.8.2.2.

Quanta: 16 B or less
Default: 10 KB

Default_MPR 1-255 The default MPR assumed when creating a PDC.
Default: 8 Zero is not valid for the default setting; if set to 0, use
1. Refer to section 3.5.12.5.
Max_ACK_Data_Size 0-8KB Maximum amount of return data that can be carried
Unit: bytes with a PDS ACK sent in response to a PDS Request sent
Quanta: 16 B or less | in the forward direction
Default: 16 B (i.e., from target to initiator in response to a read
request from the initiator).
Refer to section 3.5.12.1
Trimmable_ACK_Size 0-10KB ACK packets carrying read response data which are
Units: bytes larger than this size use a trimmable DSCP.

Support for trimmed ACK packets is optional. If not
supported, set this to a value larger than the
maximum ACK MTU.
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Name

Required Range

Description

ACK_On_ECN

Boolean
Default: TRUE

TRUE: reception of a packet that is ECN marked
triggers an ACK generation.

FALSE: ACK generation is not based on whether a
received packet is ECN marked or not.

Enb_ACK_Per_Pkt
(optional — required if
coalesced ACKs is supported)

Boolean
Default: FALSE

FALSE: Use coalesced ACKs.

TRUE: Use ACK per packet.

When TRUE, sources set pds.flags.ar field in every PDS
request. Support for coalesced ACKs is optional.

Refer to section 3.5.12.2.

ACK_Gen_Trigger
(optional — required if ACK
coalescing is supported)

0-32KB
Unit: bytes
Quanta: 256B
Default: 16KB

Configured value in bytes, when ACK_GEN_COUNT
reaches this threshold, an ACK is generated.
See section 3.5.12.4.1.

ACK_Gen_Min_Pkt_Add 0-2KB Minimum number of bytes added to
(optional — required if ACK Unit: bytes ACK_GEN_COUNT when a packet is received at a PDC.
coalescing is supported) Quanta: 64B See section 3.5.12.4.1.
Default: 1 KB
RTO_Init_Time 0-8sec Retransmit packet after this amount of time if no ACK

Unit: 128 nsec
Quanta: 128ns or
less

or NACK is received within this configured time (timer
at source).
Default depends on CC mode, fabric scale, etc.

Default: n/a
Max_RTO_Retx_Cnt 0-15 Max number of retransmissions for a single packet
Unit: retry count before declaring a failure event; maximum setting
Default: 5 indicates infinite retry. Retransmissions based on time
out (RTO) events are counted and retransmission
based on NACKs may be included in the count.
Refer to section 3.5.12.7.
NACK_Retx_Time 0 —8sec This set of configured times is used to determine how

Unit: 128 nsec
Quanta: 128ns or
less

long to delay the retransmission of a NACK’d packet.
At least one configurable value is required. A set of
four values should be provided, where the value is

Default: n/a selected based on the NACK code. That is, each NACK
code is mapped to one of these times or to no delay.
Refer to section 3.5.12.7.
Max_NACK_Retx_Cnt 0-31 Optional — This counter can be used to set a separate,
Unit: retry count possibly higher, threshold for retransmissions based
Default: 5 on NACK packets. Maximum setting indicates infinite
retry.
Refer to section 3.5.12.7.
New_PDC_Timeout_Thresh 0- 64K This threshold defines when an error is reported

Unit: timeout count
Default: 1024

indicating a potential DoS attack. It is used with
NEW_PDC_TIMEOUT_CNT.
Refer to section 3.5.8.2.1.

New_PDC _Time 0 —-100msec This defines the time allowed for a PDC initiator to
Unit: 100usec establish a PDC when TSS is enabled. When this
Default: n/a expires, the PDCis closed in error and
NEW_PDC_TIMEOUT_CNT is incremented.
PDS_Clear_Time 0 - 100msec Optional — This configured time is used to trigger
Unit: 128 nsec generation of a Clear Command CP when an ACK is
Default: n/a received that advances CLEAR_PSN and there is no

229

Copyright © 2025 Ultra Ethernet Consortium™. All rights reserved.




Name

Required Range

Description

PDS Request pending to carry the updated
CLEAR_PSN.
Refer to section 3.5.11.4.4.

Close_REQ_Time 0-100msec Optional — This configured time is used to constrain
Unit: 128 nsec the amount of time an initiator is allowed to take to
Default: n/a respond to a request to close with a Close Command
CP.
Refer to section 3.5.8.3.
Tail_Loss_Time 0—-100msec Optional — See section 3.5.15.
Unit: 128 nsec
Default: n/a
Max_Tail_Loss_Retx 0-15 Optional — See section 3.5.15.
Unit: retry count
Default: 5

Note:

determined values.

1. As of this specification’s publication, IANA has not assigned a UDP destination port number or a native IP
protocol number. These fields remain configurable, allowing users to set experimental or locally

2. The IETF does not allow experimental numbers to be set as default values. Implementations are required to
provide a means of configuring the IP_Proto_Nxt_Hdr parameter. Deployments may use an experimental
value (e.g. 253, 254) until the UEC obtains an IP protocol number.

Table 3-29 - PDS Status and Error Indications

Name

Field Type

Description

NEW_START_PSN_TO_ERR

Boolean
FALSE: no error

This is set when the NEW_PDC_TIMEOUT_CNT crosses
the configured threshold, New_PDC Timeout_Thresh

NEW_PDC_TIMEOUT_CNT

Bit or counter

This is used when TSS is enabled. Incremented when
New_PDC_Timer expires.

CC_TYPE_EVENT 16-bits Optional — Should be clearable.
Bit is set when an ACK_CC arrives with pds.cc_type
corresponding to the bit, e.g., if pds.cc_type = 3 then bit
3 in the field is set.

CCX_TYPE_EVENT 16-bits Optional — Should be clearable.
Bit is set when an ACK_CCX arrives with pds.ccx_type
corresponding to the bit, e.g., if pds.ccx_type = 4 then
bit 4 in the field is set.

NCCX_TYPE_EVENT 16-bits Optional —Should be clearable.
Bit is set when a NACK_CCX arrives with pds.nccx_type
corresponding to the bit, e.g., if pds.nccx_type = 0 then
bit 0 in the field is set.

UET_CRC_ERR_COUNT 32-bit Optional — Incremented when a packet with a CRC

error is received.

PDC_CLOSE_IN_ERR

Bit or counter

Optional — This is used to indicate (or count) when a
PDC is closed in error.

PDS_TYPE_INVALID

1 -bit to 16-bit
counter

This counter is incremented when a packet is received
with a pds.type field that is not recognized. 1-bit
counter is effectively an event flag.

PDS_CTL_TYPE_INVALID

16-bit counter

This counter is incremented when a CP is received with a
pds.ctl_type field that is not recognized.

230

Copyright © 2025 Ultra Ethernet Consortium™. All rights reserved.




Name Field Type Description

PDC_REQ_ERR Bit Optional — This indicates a packet with pds.flags.req = 3
was received.

OUT_OF_WINDOW_PSN Bit or counter Optional — This indicates a packet with PSN outside of
the expected window was received.

UNEXPECTED_TRIM Bitmap Optional — This counter is incremented every time a

Counter trimmed packet that should not be trimmed arrives.

Bitmap indicates which packet types [ACK, NACK_CP]

3.5.6 Reliability and Ordering
Four combinations of reliability and ordering define the packet delivery modes. Each combination is
referred to as a delivery mode:

e Reliable unordered delivery (RUD) (section 3.5.7.1)

e Reliable ordered delivery (ROD) (section 3.5.7.2)

e Reliable unordered delivery of idempotent operations (RUDI) (section 3.5.7.3)
e Unreliable unordered delivery (UUD) (section 3.5.7.4)

The reliable delivery modes RUD and ROD are defined in the context of a dynamically established PDC.
PDCs are described in section 3.5.8. The RUDI and UUD modes do not use PDCs.

When a PDC is established, the PDC delivery mode MUST remain the same for all packets on that PDC
until the PDC is closed. The delivery mode selected for a given SES request is determined by SES. How
packets are assigned to a PDC is described in section 3.5.8.1. More than one PDC between a pair of FEPs
MUST be supported. The criteria for deciding when to establish multiple PDCs between a pair of FEPs is
implementation specific. There is no ordering guarantee across packets associated with different PDCs.

Packets of a single SES message MUST be sent on the same PDC. Some SES transactions — such as
rendezvous and deferrable send — may use multiple messages that may be placed on separate PDCs.
Applications that wish to allow distribution of large data transfers across multiple PDCs must split data
transfers into multiple messages above SES, as multiple messages may be mapped across different PDCs.
When using rendezvous, the eager portion of the message may use a different PDC than the rest of the
message. When using deferrable send, the RTR will use a different PDC (initiated by the target of the
deferrable send) and data transfer may use a different PDC than the original deferrable send. Handling
of these two cases is implementation specific.

Implementation Note:

Because there may be multiple PDCs between two FEPs, PDS needs to track the PDC on which the first
packet of a message is sent. Additional packets for the same message are mapped to the same PDC.
PDS tracks the ses.som and ses.eom fields to assure packets of the same message use the same PDC
and to assure a PDC is not closed in the middle of a message.

Once a deferrable send is deferred and restarted via RTR, it is considered a new message and may use
a different PDC.
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Packets from different messages MUST NOT be interleaved on a single PDC. Specifically, all packets of a
message MUST be on the wire before a packet from another message is put on the wire. The entire
message is transmitted on a PDC and then the next message is transmitted. PDS may establish an
additional PDC between two FEPs to avoid delaying short messages.

PDS ACKs carrying SES Responses that are marked for guaranteed delivery MUST be delivered.
Specifically, when an SES Response on a RUD or ROD PDC is marked as requiring guaranteed delivery,
PDS is responsible for assuring that response is delivered and cleared. Refer to the Semantics section
3.4.3.3 for details on which responses are guaranteed. More details on guaranteed delivery and clear of
ACKs are provided in section 3.5.11.

There is no acknowledgement for the unreliable delivery mode.
3.5.7 Packet Delivery Modes Overview

3.5.7.1 Reliable Unordered Delivery (RUD)

The RUD delivery mode MUST guarantee that each packet is delivered to the target SES once and only
once. Packets are delivered to the semantic sublayer in the order they arrive from the network. This
mode uses selective retransmission capabilities and enables semantic processing and direct data
placement out of order. Direct data placement refers to writing of data arriving at the Ethernet network
port directly into system memory without CPU intervention. RUD relies on sequence numbering to
identify lost and duplicate packets.

3.5.7.2 Reliable Ordered Delivery (ROD)

The ROD delivery mode MUST guarantee that each packet is delivered to the target SES once and only
once in the order the packets are sent from SES to PDS at the initiator. A ROD PDC requires packets to be
transmitted in the same order in which SES sends the packets to PDS. The packets MUST be transmitted
in order over the network interface using a single network path (i.e., using a single entropy value) and
arrive at the target network port in the same order (excluding error scenarios).

ROD uses GoBackN loss recovery. GoBackN drops all packets that arrive out of order, requiring the
source to retransmit all packets starting from the first missing PSN. That is, the missing PSN is referred to
as ‘N’ and the source goes back to ‘N’ and retransmits.

ROD ACKs MUST be transmitted in the same order as the packets they ACK and read responses MUST be
transmitted on the wire in packet order. There are no ordering requirements between PDS ACKs on the
forward direction and read responses on the return direction. An ACK may be sent and arrive out of
order when that ACK is requested, e.g., based on receiving a duplicate packet or ACK request CP. Refer
to section 3.5.21.1.

3.5.7.3 Reliable Unordered Delivery for Idlempotent Operations (RUDI)

Idempotent means a packet can be processed by the target SES multiple times and the result is the
same.For example, multiple RMA Writes to a memory address or multiple RMA Reads from a memory
address.
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The RUDI delivery mode MUST guarantee that each packet is delivered to SES at least once. Packets are
delivered in the order they arrive from the network and every RUDI packet received from the network is
delivered to SES without attempting to remove duplicate packets. PDS assigns unique identifiers per
packet for RUDI. The RUDI packet identifiers for different packets need not be related to each other (i.e.,
the RUDI packet identifiers are not required to be based off an incrementing counter). RUDI is optimized
to enhance scalability and minimize endpoint state, relative to RUD, by exploiting the relaxed
requirements associated with being able to deliver a packet more than once. RUDI requires no PDS or
SES state at the target, uses a RUDI response per packet, and supports direct data placement out of
order; thus, RUDI is very efficient at the PDS and SES levels.

RUDI does not use ACKs. The response to each RUDI request is a RUDI response. RUDI uses NACK for
early detection of packet loss.

The intended use for RUDI is ‘do lots of RMA Writes/RMA Reads to multiple destinations and then
barrier’. For example, an application can use RUDI to exchange data among participating processes (e.g.,
send a series of write and read operations) and, after all of these are completed, perform another send
that generates a completion at the target(s) to indicate all data movement is done.

PDS has no knowledge of idempotency and relies on SES to identify when RUDI may be used. RUDI
MUST NOT be used for non-idempotent operations.

When using UET congestion control (UET-CC) on a FEP and assigning RUDI to the same traffic class as
RUD/ROD, it is the responsibility of the application to avoid creating congestion in the network. RUDI is
not controlled by UET CC. If RUDI is used for large data transfers then it SHOULD NOT use the same
traffic class as RUD/ROD traffic that is using UET-CC, as it may impact performance of the RUD/ROD
traffic.

3.5.7.4 Unreliable Unordered Delivery (UUD)

The UUD delivery mode is a basic datagram service. An unreliable datagram service enables best-effort
delivery. UUD avoids the need for applications to use a different semantic sublayer (and network API)
such as UDP to leverage unreliable datagrams.

When using UET-CC on a FEP and assigning UUD to the same traffic class as RUD/ROD, it is the
responsibility of the application to avoid creating congestion in the network. UUD is not controlled by
UET-CC. If UUD is used for large data transfers then it SHOULD NOT use the same traffic class as
RUD/ROD traffic that is using UET-CC, as it may impact performance of the RUD/ROD traffic.

Informative Text:
Unreliable ordered delivery is not specified. The four modes provided map to all common fielded use
cases.
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3.5.7.5 Ordered Packets vs. Ordered Messages

PDS offers ordered and unordered packet delivery modes. PDS manages packet sequence number (PSN)
spaces for each PDC to provide ordered delivery. PDS has no knowledge of message ordering. SES is
responsible for message ordering.

3.5.8 Packet Delivery Contexts (PDC)

A packet delivery context (PDC) is a dynamically established FEP-to-FEP connection that provides the
context needed to implement reliability, ordering, duplicate packet elimination, and congestion
management.

A PDC is used to send requests from an initiator to a target with PSNs that are returned in ACK
responses by the target. Packets are transmitted in both directions. A PDC uses TX state on the initiator
(next sequence number, ACK bitmap, etc.) and RX state (received sequence number state, ACK state
including guaranteed delivery indication, etc.) at the target to provide the PDS service in the forward
direction. Each PDC requires a second set of TX and RX state for the return direction. The aggregate of all
this state is referred to as a PDC.

A single PDC MUST be limited to a single mode — RUD or ROD — and a single traffic class for PDS
Requests.

The PDC MUST manage two independent PSN spaces that are allocated when the PDC is established.
One PSN space is for the forward direction with requests transmitted by the initiator. The second PSN
space is used to carry return data messages from the target to the initiator. Return direction PDS
Requests are acknowledged in the same manner as forward direction PDS Requests.

The following sub-sections apply only to RUD and ROD. RUDI and UUD do not use a PDC.

3.5.8.1 PDC Selection and Sharing

This section defines how packets are mapped to RUD and ROD PDCs, and how a PDC can be shared
among packet flows between a pair of FEPs, where a packet flow is defined to be a group of related
packets between two processes (PIDonFEP). Once a PDC is established (i.e., the pds.flags.syn field is
cleared), the locally assigned PDCID can be used directly to identify the specific PDC. The same
pds.dpdcid is used for all packets arriving to this PDC over the network.

At the initiator, a packet flow is mapped to a PDC based on the mapping tuple described below. The
mapping tuple is built from network header fields and control information provided by SES. The initiator
mapping tuple need not be consistent across FEPs.

The mapping tuple determines which sets of packets can be assigned to a common PDC. All packets
sharing a PDC have the same value for all fields in the tuple. If a packet matches the mapping tuple, it
may use the designated PDC or may be mapped to another PDC between the same pair of FEPs.
However, all packets of a single message MUST use the same PDC.

ROD traffic has a restriction that packets from the same {JobID, source FA, destination FA, source
PIDonFEP, destination PIDonFEP, Resource Index, TC} MUST use the same PDC.
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RUD and ROD traffic MUST NOT be mapped to the same PDC. The destination FA and TC MUST be
included in all tuples.

Two initiator tuples are defined as required — one each for when TSS is disabled or enabled. Optionally,
multiple tuples may be supported for RUD and/or ROD PDCs. It is beyond the scope of this specification
to define how the tuple is selected for each packet when multiple tuples are supported.

Initiator RUD/ROD PDC mapping tuples:

e {source FA, destination FA, TC, RUD/ROD} tuple MUST be supported.

{SDI, source FA, destination FA, TC, RUD/ROD} tuple MUST be supported.
o tss_context is an example name used in the logical SES-PDS interface for a field passed

to PDS by SES which can be used to identify the security domain (SDI).

e The ability to include any combination of JobID, destination PIDonFEP, source PIDonFEP, and Rl
in the tuples MUST be supported.

e Separate default tuples for ROD and RUD traffic MUST be supported.

e SDI MUST be included in the tuples when TSS is enabled.

e |t may be beneficial to use multiple ROD PDCs between a pair of FEPs if there is substantial ROD
bandwidth, as ROD PDCs use a single network path.

Target mapping tuples:

o {ip.src_addr, ip.dest_addr, pds.spdcid} tuple MUST be used to identify the PDC.

o The pds.spdcid field is sufficient, as a FEP MUST use unique PDCIDs across traffic classes
and PDC modes; traffic class or PDC mode are not necessary.

o When pds.spdcid is used to associate received packets with a PDC, the ip.src_addr field
is verified to match the expected value.

o Note that the destination FA (ip.dest_addr) is a constant within a single FEP and may be
omitted in implementations instantiating a single FEP, i.e., {ip.src_addr, pds.spdcid} is
sufficient for a single FEP.

CCC_ID mapping tuples:

e {ip.dest_addr, ip.dscp} tuple MUST be supported
e ROD PDCs MUST be assigned unique CCC_IDs (cannot be mixed with RUD)

A target generating a return data packet in response to a read request MUST use the same PDC the
associated read request arrived on. That is, read response data must use the return direction of the
same PDC that carried the read request.

The initiator PDS MUST assign an initiator PDC Identifier (/PDCID) that is carried on the wire. When the
target accepts the PDC, it MUST assign a target PDC Identifier (TPDCID) that is also carried on the wire.
PDC Identifiers are described in section 3.5.11.5.
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Establishment of multiple PDCs between two FEPs using the same tuple and traffic class MUST be
supported to enable both RUD and ROD. Establishing multiple RUD PDCs between two FEPs using the
same tuple and traffic class SHOULD be supported to reduce head-of-line blocking that may occur when
one or more large messages are posted to a PDC. A target MUST support as many PDCs as the initiator
attempts to create, up to an implementation-specific limit.

When UET-CC is used, all RUD PDCs between a pair of FEPs sharing a TC MUST be mapped to the same
CCC with the exception of RUD PDCs from the reserved pool, which may use independent CCCs.

When multiple PDCs are established between two FEPs, all packets from a single message MUST use the
same PDC. RUD mode allows different messages to be distributed across multiple PDCs. In ROD mode,
all messages between {JoblID, source PIDonFEP, destination PIDonFEP, RI, TC} MUST use a single PDC.

3.5.8.2 PDC Establishment

A PDC is created dynamically on demand. The protocol is defined to allow PDC creation to occur without
incurring a round-trip delay (i.e., with zero startup time). The initiator assigns an IPDCID used as part of
PDC creation. When the target establishes the PDC, it assigns a TPDCID that is returned to the initiator.

PDCID =0 is reserved and MUST not be used by a PDC. PDCID = 0 is used in NACK messages when a valid
PDCID is not available.

PDC creation refers to allocating PDC resources and transmitting packets. PDC establishment refers to
both initiator and target allocating and using PDCIDs. The target moves directly from created to
established, while the initiator waits until a response packet is received with the target’s PDCID.
Trimmed packets MUST NOT be used to establish a new PDC. A NOOP CP or Negotiation CP may
establish a new PDC.

PDCIDs are intended to be locally unique at the FEP level to enable efficient implementation. An
implementation MUST allocate PDCIDs such that {ip.src_addr, PDCID} is globally unique. For example,
the PDC mode (RUD, ROD) MUST NOT be used to uniquely identify a PDC. This MUST be done at the
initiator and target FEPs. When using UET-CC, a CCC_ID MUST be assigned when the PDC is created. A
RUD PDC SHOULD use an existing CCC_ID if one already exists to the same destination FA and same
traffic class.

An initiator requests PDC establishment by setting pds.flags.syn in a PDS Request packet. This PDS
Request packet may also contain an SES Request. The pds.flags.syn MUST be set in all packets sent on
the PDC until a packet is received for the PDC from the target. Before the first PDS packet is received,
the TPDCID is not known by the initiator, as it is assigned by the target. The PDS Request packet sent by
the initiator overloads the pds.dpdcid field to allow the target to determine the mode of the PDC and
the starting initiator PSN number:

e DPDCID = {pds.pdc_info, pds.psn_offset} when the initiator generates packet with pds.flags.syn
settol
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The pds.pdc_info field is defined in section 3.5.11.6. The pds.psn_offset field is the offset of the PSN
from the starting PSN for the PDC, as illustrated in Table 3-30. The initiator starting PSN MUST be a
random or pseudo-random number at least 2'¢ distance from the last PSN used on that PDC. This is done
to reduce the likelihood of accepting delayed and stale packets in the network. When UET encryption is
enabled, follow the requirements in section 3.5.8.2.1.

Informative Text:

PDC connections are ephemeral with all state cleared on close except the last PSN used, which is
saved for use in selecting a new starting PSN for unencrypted PDCs. That is, the random new
Start_PSN is independent from the destination — one ‘last used PSN’ is stored for each PDC.

Table 3-30 - PSN Offset Field

Packet # on PDC PSN PSN_OFFSET
First Starting PSN + 0 0
Second Starting PSN + 1 1
Third Starting PSN + 2 2
etc. Starting PSN + N N

Arriving PDS Request packets are processed as follows:

1. If a PDS Request is received and there is not sufficient packet buffer to accept the packet, the packet
is dropped and a NACK packet SHOULD be transmitted.
a. Set pds.nack_code = NO_PKT_BUF.
i. If PDC has not yet be established, pds.spdcid in the NACK is set to 0x0 indicating a
PDC was not allocated at the target.
b. Drop the packet and exit processing of the PDS Request packet.
2. Check if the packet is trimmed — if yes:
a. PDS MUST send NACK with pds.nack_code = UET_TRIMMED or UET_TRIMMED_ LASTHOP
i. Seesection 3.5.15.1.
b. If the PDC has not yet be established, the pds.spdcid in the NACK is set to Ox0 if the NACK is
generated.
c. Drop the received trimmed packet and exit processing of the PDS Request packet.
3. If pds.flags.syn = 1:
a. pds.flags.syn is set until the ACK reaches the initiator; thus, many packets may arrive with
the pds.flags.syn bit set.
b. Determine if the PDC already exists using the {ip.src_addr, pds.spdcid} mapping tuple — if
yes:
i. Skip to the processing below for pds.flags.syn = 0.
c. Check if there are PDC resources available — if no:
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4.

d.

e.

f.

i. Send NACK with pds.nack_code = UET_NO_PDC_AVAIL, UET_NO_CCC_AVAIL,
UET_NO_BITMAP, UET_NO_PKT_BUFFER, UET_NO_GTD_DEL_AVAIL,
UET_NO_SES_MSG_AVAIL, or UET_NO_RESOURCE

ii. Set pds.spdcid in the NACK to 0xO.

iii. Drop the received packet and exit processing of the PDS Request packet.

Verify the PDC meets establishment criteria — invalid starting PSN check:

i. When operating without encryption, there are no checks on the starting PSN.

ii. When operating with encryption, refer to section 3.5.8.2.1 — if this check fails,
allocate the resources, send a NACK packet as described in the next step, drop the
received packet and go to the PENDING state and exit processing of the PDS
Request packet.

e NACK packet uses pds.nack_code = UET_NEW_START_PSN,
pds.payload_start_psn = Start_PSN and pds.spdcid set to allocated SPDCID.

iii. Continue to establish the PDC.

Check if the PDC is ROD and if the received packet has the Start PSN — if no:

i. Allocate the resources, send NACK, drop the received packet and exit processing of

the PDS Request packet.
e NACK uses pds.nack_code = UET_ROD_0OQO and pds.spdcid set to allocated
PDCID.
If the establishment criteria is met based on the above checks:
i. Allocate the PDC resources and TPDCID.
ii. Set Start PSN for return direction to same Start_PSN as the forward direction;
The PSNs in each direction are independent but start at the same value.

iii. Return TPDCID to initiator in ACK/NACK and exit processing of the PDS Request

packet. The TPDCID is returned as the pds.spdcid.

If pds.flags.syn = 0, perform the following checks

a.

If pds.dpdcid does not match an active PDCID, send a NACK with pds.nack_code =
UET_INV_DPDCID.

Confirm the network header matches the expected source FA (ip.source address); if
ip.src_addr doesn’t match then send a NACK with pds.nack_code =
UET_PDC_HDR_MISMATCH

Confirm the delivery mode (RUD/ROD) matches; if not, drop the packet, record error event
and send a NACK with pds.nack_code = UET_PDC_MODE_MISMATCH.

Check the PSN (pds.psn) — if outside expected window (section 3.5.12.2), generate a NACK
with pds.nack_code = UET_PSN_OOR_WINDOW.

i. Ifthe PDC type is ROD, check if the pds.psn matches the Expected PSN — if the PSN
does not match, transmit a NACK with pds.nack_code = UET_ROD_0OO (See
section 3.5.21.1).

If the PSN was already received and the pds.flags.retx flag is not set, drop the packet

i. A NACK is not generated; this event is counted and reported if a configured

threshold is exceeded.
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A NACK cannot be used to create a PDC except in the event when the target sends a NACK with
pds.nack_code = UET_NEW_ START_PSN or UET_ROD_0OOO. A PDC MUST be created when a packet
arrives with pds.flags.syn set, the PDC has not yet been created, and either of these NACK codes are
generated.

The target either verifies the tuple on every received packet or relies on the pds.dpdcid once received
packets no longer have the pds.flags.syn set. The source FA (ip.src_addr) and pds.spdcid MUST be
verified on every packet. If the tuple {ip.src_addr, pds.spdcid} is checked and does not match the
expected fields, the packet MUST be dropped and an error recorded, UET_PDC_HDR_MISMATCH.

Figure 3-42 illustrates the startup sequence. The pds.spdcid is the source PDCID, unique at the FEP that
sent the packet. The pds.dpdcid is the destination PDCID. The initiator/target labels consistently refer to
specific FEPs based on how the PDC is created. The source/destination labels vary depending on the
specific task/packet being discussed. For example, in Figure 3-42 both FEP-A and FEP-B may be a source
or destination.

Once a PDC is established, packets with pds.flags.syn set are accepted for PSNs up to the Start PSN plus
MP_RANGE (as defined in section 3.5.11.13). If a packet is received with a PSN higher than Start PSN +
MP_RANGE and pds.flags.syn is set, the packet is NACK’'d with pds.nack_code = UET_INVALID_SYN.

The source receives an ACK or NACK indicating whether the target established the PDC. If the pds.spdcid
field in the ACK/NACK is zero, then the PDC was not created. In this case, all traffic on the PDC is paused
until a NACK retransmit timer (section 3.5.12.7) expires or an ACK/NACK arrives with a non-zero
pds.spdcid.

If the pds.spdcid in the ACK/NACK is non-zero, then the PDC is established. The source uses that
pds.spdcid from the ACK/NACK as the pds.dpdcid for all subsequent PDS Requests and CPs sent on the
PDC, including any retransmissions that originally had pds.flags.syn = 1.
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The simplified PDC Establishment State Machine is shown in Figure 3-43. Refer to section 3.5.9 for a

more detailed example of the processing sequence.
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expires TX packet ~ Send NACK
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Figure 3-43 - PDC Establishment State Machine
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3.5.8.2.1 PDC Establishment with Encryption

When TSS is enabled, a policy is needed to remove the possibility of a replay attack on PDC
establishment packets. When using TSS, the Start PSN MUST be validated before fully establishing an
encrypted PDC.

Two methods are defined to establish a secure Start_PSN.

1. RANDOM_I1RTT_START — In this method a secure PSN takes an RTT to establish a PDC. The first
packet(s) sent from the initiator may be a NOOP CP used to query the Start_PSN, or normal
traffic may be transmitted using pds.psn = 0. The target creates the PDC in PENDING state and
returns a NACK with Start_PSN in the pds.payload.start_psn field, which is randomly generated.
This introduces an RTT of delay in establishing the PDC. When using this method, the closing
ACK does not carry the Expected PSN.

2. EXPECTED_ORTT_START - In this method a secure PSN uses two fields that are stored with the
SDKDB® entry, Start_PSN and Expected_PSN. These are initialized to zero when the key is
installed. The Start_PSN is used for new outgoing PDCs. The Expected PSN is used to define the
minimum accepted Start_PSN for a new PDC. Keeping these separate allows flexibility in
defining when and how each is incremented.

When the PDC opens, the initiator uses the Start_PSN. At the target, if the Start_PSN is greater than or
equal to the local Expected PSN for the associated SDI, the PDC is accepted. Otherwise, the target opens
a PDCin the PENDING state and transmits a NACK with pds.nack_code = UET_NEW_START_PSN code.
The transmitted NACK carries the Start_PSN in the pds.payload.start_psn field to be used for the PDC.
The transmitted NACK MUST NOT carry a valid pds.spdcid, as the PDC at the initiator MUST NOT move
to the ESTABLISHED state until the correct Start_PSN is used. All packets received on the PDC with the
incorrect Start_PSN are dropped. The PDC remains in the PENDING state at the target until packets with
the correct Start_PSN are received.

When a PDC closes, if the Start_PSN of the PDC is equal to or higher than the current Expected PSN, the
target sets the associated SDI’s Expected PSN to the Start_PSN of the closing PDC plus one. An
Expected_PSN is sent back to the initiator as part of the closing ACK. The value returned to the initiator
is not required to be the same as the local Expected PSN. When using this mode, it SHOULD be chosen
from the new Expected_PSN value at the target or the highest Start PSN across all open destination
PDCs. The target may incorporate additional heuristics to return any Expected_PSN value greater than or
equal to the new setting of the Expected_PSN at the target.

At the initiator, if the Expected PSN received in the closing ACK is greater than the current Start_PSN,
the Start_PSN is set to the received Expected_PSN. The initiator may incorporate additional heuristics
for setting Start_PSN at the initiator to a value greater than or equal to the Expected_PSN returned in
the close acknowledgement.

8 SDKDB refers to a set of security properties and fields (e.g., keys) that are associated with an SDI. Refer to TSS
section 3.7.6.
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The RANDOM_1RTT_START method and EXPECTED_ORTT_START method can interop with both falling
back to allowing the target to determine the Start PSN, with the associated addition of an RTT delay
establishing the PDC. By using a Start_PSN=0, the EXPECTED_ORTT_START request looks to a
RANDOM_1RTT_START target like a node that is communicating for the first time. The
EXPECTED_ORTT_START request will (almost always) fail the RANDOM_1RTT_START check, and then
the RANDOM_1RTT_START target will send back its Expected_PSN. The EXPECTED_ORTT_START
initiator does not know (or need to know) how the Expected PSN is generated. In turn, a
RANDOM_1RTT_START initiator will use its Start_PSN when initiating a PDC to an
EXPECTED_ORTT_START target. The EXPECTED_ORTT_START target rejects all initial PSNs and returns a
random starting value that MUST be used when the initiator tries again. The RANDOM_1RTT_START
initiators sees their attempt to start a PDC fail. This interoperability is likely to waste a BDP of traffic on
the network when a RANDOM_1RTT_START initiator starts a PDC to an EXPECTED_ORTT_START,; thus,
implementations SHOULD either use a common method across all FEPs or provide a configuration
option to allow a slow start from RANDOM_1RTT_START initiators.

When using a secure Start_PSN, PDC resources may be reserved while the target waits for a valid
Start_PSN to arrive. A potential DoS attack is to replay packets such that PDC resources are exhausted,
all waiting for a Start_PSN. A timer MUST be used to limit how long the PDC waits for a valid Start_PSN.
This timer is set to New_PDC_Time when the first packet is sent. If the timer expires, the event MUST be
counted (NEW_PDC_TIMEOUT_CNT). If this counter crosses the configured threshold,

New_PDC Timeout_Thresh, the error MUST be reported to the provider. The event is called
NEW_PDC_TIMEOUT_ERR.

Informative Text:
UET errors are reported to the libfabric provider or management interface. Details on these will be
provided in a future version.

3.5.8.2.2 PDS Lifecycle with Encryption

In order to avoid potential replay attacks, when the PSN of a PDC reaches Start_PSN + 23!, the PDC
MUST close. This allows a single PDC to carry over 2 billion packets before closing. A new PDC may then
be established using one of the methods in section 3.5.8.2.1.

If Limit_PSN_Range is configured FALSE, the PDC is allowed to continue beyond Start_PSN + 23,
The close follows the same process of completing any in-process messages.

3.5.8.3 PDCClose

A PDC is closed for multiple reasons that include a resource shortage or remaining idle for a configured
amount of time. Closing a PDC is controlled by the initiator PDS but may be triggered by either the
initiator or the target. When the target PDS determines the PDC should be closed, the target sends
either a PDS ACK with the pds.flags.req field set or sends a Close Request CP. CPs are described in
section 3.5.16.
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The following covers the normal scenario. If either an initiator or target FEP fails to respond or if a NACK
with a fatal error is received, the peer FEP may close the PDC in error. At the initiator, failure to respond
is determined when the maximum number of retry attempts is reached for any packet. At the target, the
max retry attempts reached on the return direction or a local timer on the close processing may lead to
PDC close in error.

Once a PDC begins the closing process, it MUST not accept new SES messages for that PDC. If additional
messages need to be sent between the same pair of FEPs, a new PDC is established. This enables
fairness when PDC resources are stressed. If the PDC being closed is a RUD PDC, the additional SES
requests can be sent on another PDC immediately (either existing or newly opened). If the PDC being
closed is a ROD PDC, the additional SES requests MUST be deferred until the original ROD PDC is fully
closed. This maintains the ordering of messages.

The PDC close procedure is described below. This is triggered by either the initiator deciding to close
(local FEP decision) and sending a Close Command CP or the target FEP sending a Close Request CP to
the initiator.

e [f the initiator decides to close the PDC, the PDC close procedure at the initiator is:
o Stop accepting new message requests for this PDC.
= Aclean closing point on an SES message boundary is identified — the initiator
MUST NOT send a Close Command CP in the middle of a message.
o Complete all SES messages that are in progress.
=  An SES message remains in progress until all SES packets associated with the
message have been received, transmitted, and responded to, including all
necessary PDS acknowledgements, clears and recovery from any NACKs that
arrive.
= This includes receiving return data (or error) for all outstanding read requests.
o When all PDS ACKs for in-progress SES messages have arrived, the initiator transmits a
PDS Close Command CP.
o Wait for PDS ACK of the Close Command CP packet to arrive.
= (Close the PDC and free resources when this ACK is received.
= [f this does not arrive after Max_RTO_Retx_Cnt retransmit, close the PDC in
error.
e The PDC close procedure at the target is:
o Receive a Close Command CP.
=  The Close Command CP implicitly clears all PSNs.
= There should be no active PSNs when this is received — no packets outstanding
on the return direction; if the PDC is not idle then a PDC_CLOSE_IN_ERR
SHOULD be recorded for diagnostic purposes.
o If a Close Command CP was already received and a packet with a higher PSN is received,
transmit a NACK with pds.nack_code = UET_CLOSING.
o Transmit a PDS ACK for the Close Command CP packet.
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= [f using UET encryption and the EXPECTED_ORTT_START method for Start_PSN,
return the Expected_PSN with the closing ACK (See section 3.5.8.2.1).
= (Close the PDC and free resources.

The Close Command CP is allocated a unique PSN — the next PSN in the sequence — and the initiator
MUST retransmit the packet if an ACK is not received. If the target receives a Close Command CP for a
PDC that is already closed, the target MUST transmit a PDC NACK to the initiator.

If a target decides to close the PDC, it sends a Close Request CP. A timer — Close_REQ_Timer — may be
used to constrain the time the initiator takes to send a Close Command CP. If the initiator does not issue
a Close Command CP in response to the Close Request CP within the configured time (Close_REQ_Time),
the target may issue a NACK with pds.nack_code = UET_CLOSING_IN_ERR. The PSN is set to be one
larger than the highest PSN that was received, acknowledged, and cleared. The PDC is then closed.

The simplified state machine for closing a PDC is shown in Figure 3-44. At the initiator, once a PDC
moves to QUIESCE state, new messages are not started. If a new message is received it is either pushed
to another PDC or, if resources are stressed, it may be pushed to a pending queue (either in HW or SW)
that holds packets waiting for PDC resources. Handling this is implementation specific.

In the example above, ‘close events’ are determined locally within a FEP and include:

1. Receiving a Close Request CP from the target.
2. Identifying limited PDC resources at the initiator and deciding to free a PDC by closing it.
3. Expiring a PDC lifetime timer.

The initiator does not need to wait for a clear from the target for any read response unless the read
response is stateful. If a stateful response to a read response is sent, then the initiator MUST wait for
that PSN to be cleared before issuing a close.

The Close Command CP is an implicit clear of all PSNs on forward direction and ACK for all PSNs on the
return direction. If a Close Command CP arrives at a target and that target has any outstanding
operations, these are all terminated and the PDC is closed. If the target detects an error — such as an
incomplete message —then the PDC is closed in error and the event reported.

Refer to section 3.5.9 for a more detailed example state machine.
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Figure 3-44 - Single PDC Close State Machine

3.5.8.4 PDC Lifetime

The lifetime of a PDC depends on the use case of the network. An implementation may choose to
provide configuration parameters to control PDC lifetime, but these are not specified here. A PDC may
exist for a very brief time — as short as the time to send a single packet and receive the associated
acknowledgement plus one RTT. This could occur when there is pressure on the number of PDCs
supported by an implementation. Alternatively, a PDC may exist for an extended period, as long as the
life of an application (or more).
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An example sequence for PDC setup/teardown is shown in Figure 3-45. Note the Close Command CP is
sent directly after the ACK = 132, so these packets may arrive at the target in either order.

FEP-A FEP-B
Initiator Target
PDS PDS

IPDCID = 4277 TPDCID = 114

.3
* SYN
A o SYN
w
o esTABUsHED T
. N
Decision to Close A ~

* QUIESCE ® ESTABLISHED

o ACKWAIT

i Last Request

i with data
packet on
return path

o CLOSEACK
WAIT

7 <

v
e CLOSED

= 42‘-""—----"'-.--

D= 114, DPP-C;I.P"

e CLOSED

Figure 3-45 - Sequence for PDC Setup and Teardown

3.5.9 PDS Event State Machine
This section describes the function of PDS as a set of state machines. The RUD protocol is the focus of
these state machines. The implementation described is not required.

A state is represented as a block with associated processing within the block and arrows showing the
possible next steps. Arrows from IDLE or ESTABLISHED are labeled with the event that triggers the move
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to the next functional block. Arrows from a functional blocks are labeled with the condition that
determines which path to take. Some arrows use an unconditional transition designated as UCT.

Following a state machine figure are descriptions of the notable processing within each block. The
abbreviations req and rsp are used for request and response, respectively. PDS behavior is described by
the following four state machines:

e Top Level - Shows how the state machines are connected

e Manager State Machine - Controls PDC allocation and closing, resource management, and
any errors that are not associated with an active PDC

e Initiator State Machine - PDC state machine when acting as an initiator

e Target State Machine - PDC state machine when acting as a target

The initiator and target state machines are illustrated primarily as processing sequences from the
ESTABLISHED state — the largest rectangle in the center of the diagram. From there, events occur that
lead to a series of processing steps and back to the ESTABLISHED state. Each line is labeled with the
event that triggers the processing.

The PDC establishment state machines in section 3.5.8 show the states through which a PDC moves. The
PDC event state machines in this section shows how events are handled. Most of these events occur in
all of the PDC establishment states shown in the PDC establishment state machines. Therefore, the PDC
state is reflected as a variable (State) in these event state machines.

3.5.9.1 PDS Top Level

Figure 3-46 illustrates the relationship between the PDS manager state machine and individual PDC
state machines, including the interface events to PDS from SES and TSS. The per-PDC state machines
shown in Figure 3-46 include the initiator and target state machines described in sections 3.5.9.3 and
3.5.9.4.
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Figure 3-46 - PDS Top Level State Machines

3.5.9.2 PDS Manager

Within PDS, some functions are general and others are specific to individual PDCs. Examples of general
functions include the allocation of PDCs, the handling of error events that are not associated with a
specific PDC, the assignment of SES packets to PDCs, etc. These services are provided by the PDS
manager state machine. Figure 3-47 illustrates the services within the PDS manager.
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Figure 3-47 - PDS Manager State Machine
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The PDS manager pre-processes packets from SES and the network and assigns each to a PDC state
machine, or it handles the packet locally if the packet is not associated with a specific PDC. Its functions
include:

e assign_pdc()
o Checks the fields used to assign packets to PDCs (e.g., {JobID, destination FA, traffic
class, delivery mode}).
If a PDC already exists, then forward the packet to that PDC.
If a PDC does not exist, then if this is a tx_req then allocate a PDC or if this is a tx_rsp
then report the error to SES.
e alloc_pdc()

o Checks if a PDC is available, allocates a new PDC, and forwards the packet to that PDC
state machine for further processing.

o If no PDCis available because PDS is out of resources (OOR), pass SES-generated
packets to a pending queue or transmit a NACK for packets received over the network.

e free_pdc()
o When a PDCis closed, reset all state except PSN as follows:
= If not using UET security, save last PSN for use in calculating Start_PSN the next
time a PDC is allocated (i.e., to assure the next randomly assigned PSN is at least
21 distance from the last PSN as described in section 3.5.8.2).
= |f using UET security and using EXPECTED_ORTT_START for new Start PSNs,
then follow the procedure described in section 3.5.8.2.1.
=  |f using UET security and using RANDOM_1RTT_START for new Start_PSNs, no
need to save state, as a random new Start_PSN will be generated during the
next PDC creation.
e msgmap()

o Associates each message ID with a PDC on start of message (som).

o All packets in a message go to the same PDC; remove mapping on end of message (eom)
or, if locked (e.g., while waiting for read return data), when the unlock event is received.

e pend_pkt()

o Implements a pending queue that holds up to N packets waiting for PDC resources.

o When a packet is pushed to the pending queue, start closing a PDC to allow the PDC to
be reallocated; there are many ways this can be implemented.

o select_pdc_2close()

o Selects a PDC to be closed when there are packets in the pending queue, thus freeing
resources to transmit the pending packets.

o Ideally anidle PDC is closed, otherwise choose randomly or use an implementation
specific policy.

o When the number of unallocated PDCs reaches a configured threshold, this function is
called to begin closing PDCs. The recently closed PDCs create a pool of available PDCs for
packets arriving from SES to new destinations.

o chk_pdc()
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o Verifies that packets received from the network are valid, checks for unexpected events
that are not associated with a specific PDC (e.g., NACK_NO_CONN or
NACK_INV_DPDCID).

o Ifinvalid, then do not forward the packet to a PDC state machine.

e chk_unexp_event()
o Checks the type of unexpected event and determine whether to transmit a NACK.

3.5.9.3 PDC Initiator State Machine

Figure 3-48 provides an illustrative example skeleton of a PDS state machine that manages the initiator
side of a PDC. The states shown in the simplified PDC establishment and close state machines of Figure
3-43 and Figure 3-44 are represented by the State variable shown in Figure 3-48.

A PDC initiator state machine handles packets from SES to the target and packets arriving from the
target. Its functions include:

e chk_tx_bitmap()
o Checks the distance between the lowest unacknowledged PSN and the highest
acknowledged PSN.
o If the distance reaches the maximum PSN range (MP_RANGE), then pause the PDC until
the lower PSN(s) are acknowledged.
e update_ccc()
o Pass the received bytes, round-trip time, etc. to the CCC.
o The send_req() process is constrained by CC scheduling.
e update_tx_psn_tracker()
o Update the PSN bitmap to reflect which packets have been acknowledged.
o Determine if a Clear Request or ACK Request CP should be transmitted; or if a request
packet should be retransmitted (note that this is not called out in the state machine).
e process_rx_req()
o Process a read response at the initiator.
e update_rx_psn_tracker()
o Update the PSN bitmap to reflect which packets have been received.
o Determine if an ACK should be transmitted.
e gen_ack()
o Check the criteria for generating an ACK; if TRUE, then transmit an ACK packet.
e send close()
o Send a Close Request CP to the target. This is done by sending a Close Command CP.
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3.5.9.4 PDC Target State Machine
Figure 3-49 illustrates example processing at the target on a per-PDC basis. Most state machine
processes are to the same as the initiator state machine processes with the following exception:

e chk_secure_psn()
o If secure PSN is enabled, this process checks if the Start PSN from the initiator is
acceptable; if invalid, a NACK with the alternate Start_PSN is transmitted.

CLOSED

P

dlosing = FALSE

req-closing = FALSE

l REQ

OPEN

if (trim) {
send_nack() trim = TRUE
trim = TRUE

} else trim = FALSE

Isecure_psn & trim = FALSE | | secure_psn & trim = FALSE

OPEN SECURE PSN 1
If Isecure_psn: {
dPDCID=pkt.spdcid dPDCID=pkt.spdcid
process_rx_req() process_rx_req()
KEY bad_psn = FALSE chk_secure_psn()
PDC State Machine Interface State = ESTABLISHED ifinvalid_psn: {
SES Interface } else { State = PENDING } send_nack(New PSN)
Network Interface chk_rx_error() bad_psn = TRUE
UCT: Unconditional Transition If (error_chk = OPEN) { State = PENDING
MPR: Max PSN Range update_psn_tracker() } else bad_psn = FALSE
send_ack()
}else { send_nack()
}
error_chk = |OPEN
bad psn == FALSE bad_psn == TRUE
error_chk = OPEN

l l

RXREQ TX ACK TXREQ RX ACK NACK & RTO
SECURE PSN 2 process_nx_red() update_psn_tracker(){ If (pkt.retry_cnt < MAX_RETX_CNT) {
if (trim | | rx_error) update_psn_tracker() pkt.rto = BASE_RTO update unack_cnt ++pkt.retry_cnt

chk_secure_psn() send_nack() pkt.retry_cnt =0 update pause_PDC pkt.rto = BASE_RTO * 27retry_cnt
ifinvalid_psn: { else { gen_ack() { ++unack_cnt } send_req(pkt)

send_nack(new PSN) update_psn_tracker () if TX_ACK = TRUE { pkt.psn = setPSN() update_ccc()
}else { fwd_req_2ses() send_ack() chk_bitmap() { Else close_error = true

bad_psn = FALSE } If(MPR) pause_PDC } fwd_rsp_2ses()
} chk_clear(): gen_cm ) If som: open_msg++

If eom: open_msg-1 If close {
close_cmd = TRUE
uer ucr send_req(pkt) State = QUIESCE ucr
}

bad_psn == TRUE

31 uct uct I
RX-CONTROL TX-CONTROL

process_rx_ctrl() uer uer || process_tx_ctrl)
ESTABLISHED

TXCtriVisg && bad_psn == FALSE

gen_cm == TRUE

PDS_dlose | | rxNACK == Close | |

rxREQ && bad_psn == TRUE close_error == TRUE

%REQ && bad_psn == FALSE

REQ CLOSE
Ses_tx_rsp && bad_psn == FALSE
send_close_req()
ses_tx_req && bad_psn == FALSE pdc_close_timer = CLOSE_TIME

"XACK && bad_psn == FALSE

rXREQ == Close || rxCtrlVisg == Close

BEGIN-CLOSE
dlosing = TRUE
pdc_close_timer = CLOSE_TIME
State = ACK_WAIT

XNACK== (RETX | | Pkt.RTO) && bad_psn == FALSE

closing == TRUE && unack_cnt == 0 && allACK == TRUE

CLOSE
send_close_ack()
sav SN()

free_pdc()
State = CLOSED
closed » PDS Manager

Figure 3-49 - PDS Target State Machine
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3.5.10 Header Formats
This section specifies the PDS header formats.

Formats are defined for the following headers:

e Entropy

e RUD/ROD Request

e RUD/ROD Acknowledgement

e RUD/ROD ACK with CC

e RUD/ROD ACK with extended CC
e RUD/ROD CP

e RUDI Request/Response

e Negative Acknowledgement

e UUD Request

In all PDS headers, reserved fields MUST be set to zero on transmission and ignored on reception.

section 3.5.10 presents the header fields in a compact tabular format with a brief description of each
field. section 3.5.11 provides more detailed descriptions of each field.

3.5.10.1 UET Entropy Header

The UET entropy header is used when running UET directly over IPv4 or IPv6, without UDP. It appears
directly after the IP header. The format of the UET entropy header is shown in Figure 3-50. The header
fields are described in Table 3-31.

Header Start 0 Entropy Header 31
Byte ‘ byte 0 byte 1 ‘ byte 2 byte 3 ‘

‘ 0 ‘ ‘ entropy ‘ rsvd ‘

Figure 3-50 - UET Entropy Header Format

Table 3-31 - Fields of UET Entropy Header

Size
Field Name (in bits) Field Description
Entropy value used — typically by fabric switches — for path selection
entropy 16 e Positioning at this location places the entropy value in the same
packet location as the UDP source port when UDP is not present
rsvd 16 Reserved

Native IPv4, native IPv6, and UDP encapsulations are specified. The PDS header formats are the same for
all encapsulations. UET FEPs MUST support generating and accepting UET packets using IPv4, IPv6, and
UDP encapsulation. Deployments may restrict which encapsulation type(s) are enabled.
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When UDP encapsulation is used, the udp.src_port field is used as the entropy. The UET entropy header
MUST NOT be present when using UDP. When UDP is used, the udp.checksum MUST be set to 0 on send
and ignored on receive. Implementations MUST allow the udp.dest_port number field to be configured.

When native IPv4 or IPv6 encapsulation is used, the UET entropy header MUST be used.
Implementations MUST allow the ip.protocol field in the IP header to be configured.

IP fragmentation is not supported when using UET. FEPs MUST NOT fragment a packet. When using
IPv4, the ipv4.flags.df bit (don’t fragment) MUST be set, and the ipv4.flags.mf bit (more fragments) and
ipvd.fragment_offset field MUST be cleared to zero on send.

3.5.10.2 PDS Prologue
The first two bytes at the beginning of all PDS Headers uses the format shown in Figure 3-51. The header
fields are described in Table 3-32. The resulting bit ordering is type[0:4] | next_hdr[0:3]|flags[0:6].

Header Start O PDS Prologue 15
Byte byte O byte 1
0 type next_hdr/ flags
ctl type

Figure 3-51 - PDS Prologue Format

Table 3-32 - Fields of PDS Prologue

Field Name Size (in bits) Field Description
type Encodings are:
e (0=>Reserved
e 1=>UET Encryption Header (TSS)
e 2=>RUD Request (RUD_REQ)
e 3 =>ROD Request (ROD_REQ)
S5 e 4 =>RUDI Request (RUDI_REQ)
e 5=>RUDI Response (RUDI_RESP)
e 6=>UUD Request (UUD_REQ)
e 7=>ACK
e 8=>ACK CC
e 9=>ACK_CCX
e 10 =>NACK
e 11 =>CP (Subtype encoded in CTL_TYPE field)
e 12 =>NACK_CCX
e 13=>RUD_CC_REQ
e 14=>ROD_CC_REQ
e 15-31 =>Reserved
Type-specific field
next_hdr or 4 o  When pds.type = CP, this field is ctl_type
ctl_type
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Field Name Size (in bits) Field Description
e When pds.type != CP, this field is next_hdr as passed in
from SES to PDS
(e.g., in the example ses_pds_tx_req() APl in section 3.5.4)
flags 7 Type-specific flags

Encodings for the pds.next_hdr field are defined in the semantic sublayer section 3.4.2.6. One
codepoint, 0x00, is reserved for PDS packets that do not carry an SES header and UET payload.
Encodings of the pds.ctl_type field are defined in section 3.5.10.7.

3.5.10.3 RUD/ROD Request
The PDS header format for a RUD or ROD Request packet is shown in Figure 3-52. The header fields are
described in Table 3-33.

Header Start O PDS Request Header (ROD, RUD) 31
Byte ‘ byte 0 ‘ byte 1 ‘ byte 2 byte 3
‘ 0 ‘ type ‘ next_hdr ‘ flags ‘ clear_psn_offset
psn
‘ 8 ‘ spdcid ‘ dpdcid or {pdc_info[0:3], psn_offset[0:11]}

Figure 3-52 - RUD/ROD Request Header Format

Table 3-33 - Header Fields for RUD/ROD Request

Size
Field Name (in bits) Field Description
type 5 Packet Type = ROD Request or RUD Request
next_hdr 4 Encoding identifying UET Semantic type (Refer to SES section
3.4.2.6)
flags (7 bits) pds.flags[6:0] = [rsvd, retx, ar, syn, rsvd]
e rsvd 2 e Reserved
o retx 1 e 1 =>This packet is a retransmit (Refer to section 3.5.11.8.4)
e ar 1 e 1=>ACKRequest, when set an ACK is requested to be sent
for this packet (Refer to section 3.5.12.2)
e syn 1 e 1=>PDC establishment request
e rsvd 2 e Reserved
clear_psn_offset 16 Encoding of CLEAR_PSN relative to PSN
This field is a sequence number used to acknowledge reception of
PDS ACKs
psn 32 Packet sequence number assigned to the PDS Request
spdcid 16 Source PDCID; PDCID assigned by FEP that is source of the packet
This field is overloaded as specified in section 3.5.8.2
o  When pds.flags.syn = 0:
o Destination PDCID assigned by FEP that is the
{dpdcid} 16 destination of the packet
e  When pds.flags.syn = 1: {pds.pdc_info, pds.psn_offset}
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Size

Field Name (in bits) Field Description
or
Encoding for pds.pdc_info bits 3:0
{pdc_info, 4 e  Bit 0 => pds.pdc_info.use_rsv_pdc
psn_offset} 12 1 = use PDC from reserved pool

0 = use PDC from global shared pool
e  Bit 3:1 =>Reserved

pds.psn_offset is the numerical difference between the PSN in
this packet and the Start_PSN on the PDC; refer to section 3.5.8.2

3.5.10.4 RUD/ROD Request with CC State

The PDS header format for a RUD or ROD Request packet with congestion control state is shown in
Figure 3-53. The header fields are described in Table 3-34.

Header Start O PDS Request Header (ROD, RUD) 31
Byte ‘ byte 0 | byte 1 ‘ byte 2 byte 3
‘ 0 ‘ type | next_hdr ‘ flags ‘ clear_psn_offset
psn
‘ 8 ‘ spdcid ‘ dpdcid or {pdc_info[0:3], psn_offset[0:11]}
req_cc_state

Figure 3-53 - RUD/ROD Request Header with CC State Format

Table 3-34 - Header Fields for RUD/ROD Request with CC State

Size
Field Name (in bits) Field Description
type 5 Packet Type = ROD Request or RUD Request with CC state
next_hdr 4 Same as RUD or ROD Request
flags (7 bits) 7 pds.flags[6:0] = [rsvd, retx, ar, syn, rsvd]
e Same as RUD or ROD Request

clear_psn_offset 16 Same as RUD or ROD Request
psn 32 Same as RUD or ROD Request
spdcid 16 Same as RUD or ROD Request
{dpdcid} Same as RUD or ROD Request
or 16
{pdc_info,psn_offset}
req_cc_state 32 The contents of this field are defined in the section 3.6.9.1.
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3.5.10.5 RUD/ROD Acknowledgement
The PDS header format for a RUD/ROD ACK packet is shown in Figure 3-54. The header fields are

described in Table 3-35.

Header Start 0 PDS ACK 31
Byte ‘ byte 0 byte 1 ‘ byte 2 byte 3
‘ 0 ‘ type | next_hdr ‘ flags ‘ ack_psn_offset / probe_opaque[0:15]
cack_psn
| 8| spdcid | dpdcid

Figure 3-54 - RUD/ROD ACK Header Format

Table 3-35 - Header Fields for RUD/ROD ACK

Size
Field Name (in bits) Field Description
type 5 Packet Type = PDS ACK
next_hdr 4 Encoding identifying UET Semantic type (Refer to SES section 3.4.2.6)
flags (7 bits) pds.flags[6:0] = [rsvd, m, retx, p, req, rsvd]
e rsvd 1 e Reserved
e m 1 e 1 =>Associated request packet was ECN marked
e retx 1 e 1=>Thisis an ACK for a packet with pds.flags.retx = 1
e 1 e 1=>This ACK is for a Probe CP; pds.ack_psn_offset and
pds.cack_psn are ignored
® req 2 e Requests a clear or close; see section 3.5.11.8.6
e rsvd 1 e Reserved
Signed representation of the offset from CACK_PSN to ACK_PSN.
ack_psn_offset 16 This field encodes the PSN of the packet that triggered the generation of
- - the ACK packet. Done to reduce the size of the field from 32 bits to 16
bits.
probe_opaque 16 Used when an ACK is generated for a Probe CP, copied from the Probe
- CP into the ACK; see section 3.5.16.4.2.
Cumulative acknowledgement packet sequence number —all PDS
cack_psn 37 Requests with PSN prior and including this PSN are acknowledged. On
- the forward direction, this includes all PSNs prior, and including this
PSN, that require a clear have been cleared.
spdcid 16 Source PDCID assigned by FEP that is the source of the packet
dpdcid 16 Destination PDCID assigned by FEP that is the destination of the packet

3.5.10.6 RUD/ROD ACK_CC
The ACK with congestion control format is used to carry information for the congestion management
sublayer. When NSCC is used, the ACK_CC and/or ACK_CCX MUST be used.
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The ACK_CC format is shown in Figure 3-55. The ACK_CCX fields are described in Table 3-36.

Header Start 0 PDS ACK_CC
Byte ‘ byte 0 | byte 1 ‘ byte 2 byte 3
‘ 0 ‘ type ‘ next_hdr ‘ flags ‘ ack_psn_offset / probe_opaque[0:15]
cack_psn
| 8| spdcid dpdcid
cc_type ‘ cc_flags | mpr sack_psn_offset
‘ 16 ‘ sack_bitmap[32:63]

sack_bitmap[0:31]

| 24]

ack_cc_state

Figure 3-55 - ACK_CC Format

Table 3-36 - Header Fields for ACK_CC

Field Size
Field Name (in bits) Field Description
First 12 bytes 96 Identical to PDS ACK header but with pds.type set to ACK_CC
cc_type 4 This field defines the contents of pds.ack_cc_state field that is
used to support CC algorithms; defined in CMS section 3.6.9
cc_flags pds.cc_flags[3:0] = [rsvd]
e rsvd 4 e Reserved
Maximum PSN range — used to set a maximum window on source
mpr 8 PDC; defines the maximum number of outstanding (not yet
cleared) packets tracked at destination
Signed representation of the offset from CACK_PSN to SACK_PSN.
sack_psn_offset 16 Done to reduce the size of the field from 32 bits to 16 bits.
Base SACK_PSN defines the lowest PSN in the SACK bitmap.
sack_bitmap 64 Selective ACK Bitmap, 1 => ACK, each bit in the map represents
- one PSN in the range: [SACK_PSN ... SACK_PSN+63].
ack_cc_state (64b) 64 Congestion control state ggnerated at the destiﬁation and carried
to the source; content defined by pds.cc_type field.

3.5.10.7 RUD/ROD ACK_CCX

The extended congestion control ACK format is one of the tools used to enable flexibility in the
congestion management schemes as those schemes evolve in the future. When NSCC is used, at least
one of ACK_CC or ACK_CCX MUST be used.
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The ACK_CCX (congestion control eXtended) format is shown in Figure 3-56. The header fields are
described in Table 3-37.

Header Start 0 PDS ACK_CCX 31
Byte ‘ byte 0 ‘ byte 1 ‘ byte 2 byte 3
‘ 0 ‘ type ‘ next_hdr ‘ flags ‘ ack_psn_offset / probe_opaque[0:15]
cack_psn
| 8| spdcid dpdcid
ccx_type ‘ cc_flags ‘ mpr sack_psn_offset
‘ 16 ‘ sack_bitmap[32:63]

sack_bitmap[0:31]

2]

ack_ccx_state

Figure 3-56 - ACK_CCX Format

Table 3-37 - Header Fields for ACK_CCX

Field Size
Field Name (in bits) Field Description
First 12 bytes 96 Identical to PDS ACK header but with pds.type set to ACK_CCX
cex_type 4 This field defines the contents of pds.ack_ccx_state field used to
support multiple CC algorithms; defined in CMS section 3.6.9.
cc_flags pds.cc_flags[3:0] = [rsvd]
e rsvd 4 e Reserved
mpr 8 Same as ACK_CC
sack_psn_offset 16 Same as ACK_CC
sack_bitmap 64 Same as ACK_CC
Congestion control state generated at the destination and carried
ack_ccx_state ( 128b) 128 to the source; content defined by the pds.ccx_type field.
The pds.ack_ccx_state field is defined for future extensibility.

3.5.10.8 RUD/ROD CP
The PDS header format for a RUD/ROD CP is shown in Figure 3-57. The header fields are described in

Table 3-38.
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Header Start 0

PDS Control Packet Header 31

Byte | byte 0 ‘ byte 1 | byte 2 byte 3
| 0 ‘ type ‘ ctl_type ‘ flags | rsvd / probe_opaque[0:15]
psn
| 8 ‘ spdcid | dpdcid or {pdc_info[0:3], psn_offset[0:11]}
payload (specific to ctl_type)

Figure 3-57 - RUD/ROD Control Packet Header Format

Table 3-38 - Header Fields for RUD/ROD CP

Size
Field Name (in bits) Field Description
type 5 Packet Type = CP
Identifies type of CP: (See section 3.5.16)
e 0=>NOOP
e 1=>ACKRequest
o Source requesting an ACK for a specific PSN
e 2 =>Clear Command
o From initiator to target to clear guaranteed delivery PDS ACK
state at target
e 3 =>C(Clear Request
o Target requests source to send clear
e 4 =>Close Command
ctl_type 4 o Initiator indicating the PDC is being closed
e 5=>Close Request
o Target request to initiator to close the PDC
e 6=>Probe
o Source to destination to request PDS ACK
e 7 =>Credit
o Destination to source carrying congestion control credit
e 8=>Credit Request
o Source to destination requesting credit
e 9=>Negotiation
e 10-15 =>Reserved
flags (7 bits) pds.flags[6:0] = [rsvd, rsvd/isrod, retx, ar, syn, rsvd]
e rsvd 1 e Reserved
e rsvd/isrod 1 e 1=>PDCisROD
0 =>PDCis RUD in NOOP and Negotiation only
rsvd for other delivery modes
e retx 1 e 1=>This CPis a retransmit
o ar 1 e 1=>ACKRequest
e syn 1 e 1=>PDC establishment request
e rsvd 2 e Reserved
probe_opaque 16 Same as ACK
osn 37 Packet sequence number assigned to the PDS CP.
Some CPs consume a new PSN; refer to section 3.5.16 for specifics
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Size
Field Name (in bits) Field Description
spdcid 16 Same as ACK
{dpdcid} 16
or
{pdc_info, 4 Same as ACK
psn_offset} 12
payload 32 Refer to section 3.5.16.8

3.5.10.9 RUDI Request/Response

The PDS header format for a RUDI Request/Response packet is shown in Figure 3-58. The header fields
are described in Table 3-39.

Header Start 0 RUDI Request / Response Header 31
Byte ‘ byte 0 | byte 1 ‘ byte 2 byte 3
‘ 0 ‘ type ‘ next_hdr ‘ flags ‘ rsvd
pkt_id

Figure 3-58 - RUDI Request Header Format

Table 3-39 - Header Fields for RUDI Request /Response

Size
Field Name (in bits) Field Description
type 5 Packet Type = RUDI Request/Response
next_hdr 4 Encoding identifying UET Semantic type
flags (7 bits) pds.flags[6:0] = [rsvd, rsvd/m, retx, rsvd]
e rsvd 1 e Reserved
e rsvd/m 1 e 1 =>Associated request packet was ECN marked
(Reserved for RUDI Requests, pds.flags.m for RUDI Responses)
o retx 1 e 1=>Thisis a request/response for a retransmitted packet
e rsvd 4 e Reserved
pkt_id 32 RUDI Packet Identifier — locally unique on source
e This is not a sequence number, see section 3.5.22
3.5.10.10NACK

The header format for a NACK packet is shown in Figure 3-59. The header fields are described in Table

3-40.
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Header Start 0 PDS NACK 31
Byte ‘ byte 0 ‘ byte 1 ‘ byte 2 ‘ byte 3
‘ 0 ‘ type ‘ next_hdr ‘ flags ‘ nack_code ‘ vendor_code
nack_psn / nack_pkt_id
| 8| spdcid | dpdcid
payload (specific to nack_code)

Figure 3-59 - NACK Header Format

Table 3-40 - Header Fields for NACK

Size
Field Name (in bits) Field Description
type 5 Packet Type = PDS NACK
next_hdr 4 Encoding identifying UET Semantic type (Refer to SES section 3.4.2.6)
e Always set to UET_HDR_NONE for NACKs
flags(7 bits) pds.flags[6:0] = [rsvd, m, retx, nt, rsvd]
e rsvd 1 e Reserved
e m 1 e 1=>Associated request packet was ECN marked
o retx 1 e 1=>The NACK'd packet was a retransmit
(Refer to section 3.5.11.8.4)
e nt 1 e 0=>RUD/ROD, 1 =RUDI [NACK TYPE]
e rsvd 3 e Reserved
nack_code 8 Field indicating why the NACK was transmitted
Enumerated in section 3.5.12.7
vendor_code 8 Vendor-specific field, no processing requirements and no interop required
—intended to allow vendors to collect statistics on event types, etc. This
field may be ignored.
Interpretation of this field is outside the scope of this document.
nack_psn 32 Packet sequence number associated with the received packet that
triggered the generation of the NACK packet.
or
If pds.flags.nt is set, this field is pds.nack_pkt_id — the NACK’d packet was
nack_pkt_id a RUDI packet. The pds.spdcid and pds.dpdcid fields are not valid.
spdcid 16 Source PDCID assigned by FEP that is the source of the packet
e If pds.nack_code indicates PDC establishment failure (e.g., out of PDC
resources), this field is cleared to 0 and is not valid.
Cleared to 0xO0 if pds.flags.nt is set.
Destination PDCID assigned by the FEP that is the destination of the
dpdcid 16 packet. Cleared to 0x0 if pds.flags.nt is set.
payload 32 Specific to pds.nack_code
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3.5.10.11NACK_CCX

The header format for a NACK_CCX packet is shown in Figure 3-60. The header fields are described in
Table 3-41. Similar to ACK_CCX described in section 3.5.10.6, NACK_CCX provides flexibility to enable
evolution of congestion management schemes in the future.

Header Start 0 PDS NACK_CCX
Byte ‘ byte 0 ‘ byte 1 | byte 2 ‘ byte 3
| 0 ‘ type ‘ next_hdr ‘ flags | nack_code ‘ vendor_code

nack_psn / nack_pkt_id

| 8 ‘ spdcid | dpdcid

payload (specific to nack_code)

| 16 ‘ ncex_type

nack_ccx_state

Figure 3-60 - NACK_CCX Header Format

Table 3-41 - Header Fields for NACK_CCX

Size
Field Name (in bits) Field Description

First 12 bytes 96 Identical to PDS NACK header but with pds.type set to NACK_CCX

ncex_type 4 Encoding identifying contents of pds.nack_ccx_state
e Refer to section 3.5.11.12.

nack_ccx_state 124 Congestion control state generated at the destination and carried to the
source; content defined by pds.type and pds.nccx_type fields. The
pds.nack_ccx_state field is defined for future extensibility.

3.5.10.12 UUD Request
The PDS UUD Request Header, shown in Figure 3-61, uses a compact 4-byte format. The header fields
are described in Table 3-42.

Header Start 0 UUD Header
Byte ‘ byte 0 ‘ byte 1 ‘ byte 2 byte 3
‘ 0 ‘ ‘ type ‘ next_hdr ‘ flags ‘ rsvd

Figure 3-61 - UUD Header Format
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Table 3-42 - Header fields for UUD Request

Size
Field Name (in bits) Field Description
type 5 Packet Type = UUD Request
next_hdr 4 Encoding identifying UET Semantic type
flags 7 No flags are defined for UUD packets. Set to 0x0 on transmission and
ignored on reception.
rsvd 16 Reserved

3.5.10.13RUD/ROD Default Response SES Header
The format of the default SES response is shown in Figure 3-62. This section describes how PDS formats
an SES default response. SES default response generation in general is discussed in section 3.4.3.3.
When a packet is received with a PSN that has already been received, and when an ACK Request CP is
received for a PSN that has already been received, an ACK is generated. If that PSN has a guaranteed

delivery SES response, that response is sent. If that PSN has a default SES response, the ACK is generated

with this SES header. The header fields are described in Table 3-43 with additional details in section

3.5.17.

Default SES headers alleviate the need to store the SES response for every packet until the associated

clear arrives.

Header Start 0

RUD/ROD Default SES Response

Byte ‘ byte 0 ‘ byte 1 ‘ byte 2 byte 3
| 0 ‘ list ‘ opcode ver ‘ return_code ‘ message_id or 0x00
ri_generation JobID

=]

modified_length

Figure 3-62 - RUD/ROD Default SES Header Format

Table 3-43 - Header Fields for RUD/ROD Default SES Header

Field Size
Field Name (in bits) Field Description
list 2 Set to O (State not known)
opcode 6 Set to: UET_DEFAULT_RESPONSE or UET_NO_RESPONSE
ver 2 Setto 0
return_code 6 Set to: RC_NULL or RC_OKAY
message_id 16 Taken from duplicate PDS Request packet (SES header) or from the
payload of ACK Request CP; set to Ox0 if message ID is not available
ri_generation 8 Set to 0 (generation mismatch is never a default SES response)
JobID 24 Copy from duplicate PDS Request packet (SES header) or set to 0xO0.
modified_length Set to 0 (unknown)
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3.5.11 Header Fields
This section provides additional description of the header fields specified in section 3.5.10.

3.5.11.1 pds.type

The UET pds.type field indicates whether the following header is a TSS or a PDS header. If the header is
for PDS, the pds.type fields defines the reliability mode (RUD, ROD, RUDI, UUD) and PDS packet type
(Request, Response, ACK, NACK, CP) as defined in section 3.5.10.

If a packet arrives that uses a pds.type field that is not recognized, an error counter, PDS_TYPE_INVALID,
MUST be incremented. The packet MUST be dropped without generating a response packet.

3.5.11.2 pds.next_hdr

The pds.next_hdr field is reserved for use by SES. This field is passed to PDS by SES. When a PDC creates
a packet autonomously (i.e., not at the behest of SES, such as an ACK or CP), this field is set to
UET_HDR_NONE. There is no interaction with SES in this case.

3.5.11.3 pds.ctl_type
PDS CPs carry a control type, pds.ctl_type, indicating the type of CP. CPs are defined in section 3.5.16.

If a CP arrives that uses a pds.ctl_type field that is not recognized, an error counter,
PDS_CTL_TYPE_INVALID, MUST be incremented. The packet MUST be dropped without generating a
response packet. The PDC state is not affected.

Unknown types are dropped rather than NACK’d, because some CPs use PSN = 0 and NACK relies on a
valid PSN.

3.5.11.4 Packet Sequence Numbers

RUD and ROD reliable delivery modes use PSNs — packet sequence numbers — to uniquely identify
packets, assure delivery, eliminate duplicate packets, and establish packet ordering. PDS uses multiple
PSNs to track packets, including a unique PSN per PDS Request, an acknowledgement PSN (ACK_PSN), a
cumulative acknowledgement PSN (CACK_PSN), and a clear PSN (CLEAR_PSN).

Informative Text:

The PSNs and associated offsets denoted in italic font (e.g., ACK_PSN, CACK_PSN, CLEAR_PSN) are
referencing the local working variable versions of the PSNs used by each PDC. When the PSN fields of
the packet are referenced, they are denoted in bold font (e.g., pds.psn, pds.clear_psn_offset)

The full 32-bit range of packet sequence numbers MUST be used. At 800 Gbps, a 4194 B Ethernet packet
with takes roughly 42 nsec to transmit. A 32-bit PSN will wrap around in 180 seconds. Minimum size
frames could lead to wrap in under 4 seconds. The 32-bit size enables future increases in link speed
beyond 800 Gbps without wrapping within a 100 millisecond RTT.
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In the above example, the packet size is determined as follows: Ethernet (14 B) + IPv4 (20 B) + UDP (8 B)
+ PDS (12 B) + SES (44 B) + UET payload (4096 B) = 4194 B.

3.5.11.4.1 pds.psn

The pds.psn field refers to the packet sequence number assigned to RUD/ROD PDS Request packets and
certain CPs. The pds.psn field MUST monotonically increase by one for each packet on each PDC
direction with the exception of specific CPs (as described in section 3.5.16). The PSN increases
independently on the forward and reverse directions.

3.5.11.4.2 pds.psn_offset

The pds.psn_offset field is present during PDC creation, when the pds.flags.syn bit is set. This field
allows the destination to determine the Start PSN of the PDC as described in section 3.5.8.2.

3.5.11.4.3 pds.pdc_info

The pds.pdc_info field is present during PDC creation, when the pds.flags.syn bit is set. The
pds.pdc_info.use_rsv_pdc bit indicates to the destination that this PDC uses reserved resources. The
remaining 3 bits are reserved for future use.

3.5.11.4.4 CLEAR_PSN

The clear sequence number, CLEAR_PSN, MUST be supported when using RUD/ROD. CLEAR_PSN
indicates that all PSNs up to and including this PSN have been cleared. Clearing a PSN involves
confirming the receipt of the PDS ACK for a packet. A CLEAR_PSN of X indicates that acknowledgements
for the packet with PSN = X and all packets with earlier PSNs have been received.

The purpose of CLEAR_PSN is to enable guaranteed delivery of certain SES Responses. When SES
indicates that an SES Response requires reliable delivery, PDS MUST store the response until a clear is
received. This is done to support retransmitting the associated ACK if necessary. When PDS receives a
clear, any SES Response state associated with a PSN equal to or lower than CLEAR_PSN is deleted.

CLEAR_PSN is indirectly carried in the RUD/ROD Request header using the pds.clear_psn_offset field.
The pds.clear_psn_offset field is a 16-bit signed integer in twos-complement format that is added to
pds.psn to determine CLEAR_PSN. The msb of pds.clear_psn_offset is extended to create the 32-bit
signed value added to pds.psn. See the examples below in the description for ACK_PSN. This offset is
used to reduce the size of the field from 32 bits to 16 bits.

CLEAR_PSN is directly carried in PDS CPs as part of the pds.payload field. Refer to section 3.5.16.3

CLEAR_PSN MUST be initialized to the Start_PSN minus 1 on the forward and return directions.

Informative Text:

The pds.clear_psn_offset field will never be a positive number, as CLEAR_PS