
 1

Copyright © 2025 Ultra Ethernet ConsortiumTM. All rights reserved.

Ultra EthernetTM

Specification v1.0

June 11, 2025

 2

Copyright © 2025 Ultra Ethernet ConsortiumTM. All rights reserved.

Copyright © 2025 Ultra Ethernet Consortium.

The Ultra Ethernet Consortium™ (UEC) is a consensus-based standards organization operating under the

Linux Foundation. Its members collaborate openly to define and promote high-performance Ethernet

technologies for modern computing environments. This specification (“Specification”) contains

Approved Deliverables of UEC as such term is defined in the UEC Charter.

This document is made available under the terms of the Creative Commons Attribution-NoDerivatives

4.0 International License (CC BY-ND 4.0). As stated in the license, you may copy and redistribute the

document, provided that attribution is given to the Ultra Ethernet Consortium. However, if you create a

derivative work from the material, you may not distribute that work. A copy of the license is available at

https://creativecommons.org/licenses/by-nd/4.0/.

This Specification is provided on an "AS IS" basis. UEC and The Linux Foundation (the "Parties") make

no warranties of any kind, either express or implied, including without limitation warranties of

merchantability, fitness for a particular purpose or noninfringement of any third party intellectual

property rights, or compliance with applicable laws. Use of the information in this Specification is at

your own risk. The entire risk as to the results and performance of this Specification is assumed by

the user. In no event will the Parties (as defined above) be liable to any other party for lost profits or

any form of indirect, special, incidental, or consequential damages of any character from any causes of

action of any kind with respect to this Specification or its governing document, whether based on

breach of contract, tort (including negligence), or otherwise, and whether or not the recipient of this

Specification has been advised of the possibility of such damage.

This Specification may include references to technologies for which patent rights might be claimed. UEC

does not make any representation regarding the existence or status of any such rights. Implementers of

this Specification are solely responsible for obtaining any necessary licenses or permissions from the

appropriate rights holders.

UEC reserves the right to adopt any changes or alterations to this Specification as it deems necessary or

appropriate.

Ultra Ethernet™ and Ultra Ethernet Consortium™ are the unregistered trademarks of Ultra Ethernet

Consortium in the United States and other countries. All rights reserved.

For more information about the Ultra Ethernet Consortium, visit: https://ultraethernet.org.

https://creativecommons.org/licenses/by-nd/4.0/
https://ultraethernet.org/

 3

Copyright © 2025 Ultra Ethernet ConsortiumTM. All rights reserved.

Contents
1 Introduction .. 21

1.1 Background ... 21

1.1.1 UEC Organization .. 21

1.1.2 UE Transport Profiles .. 22

1.2 UE Specification Conventions ... 23

1.2.1 Normative, Informative, and Implementation Statements .. 23

1.2.2 Terminology .. 23

1.2.3 Formatting ... 35

1.2.4 References .. 37

1.3 System View and Nomenclature ... 37

1.3.1 Workloads [Informative] ... 45

1.4 Software .. 47

1.4.1 AI and HPC API Interface ... 47

1.4.2 Fabric Endpoint Software Stack .. 47

1.4.3 Switch Software Stack ... 48

1.4.4 Network Operating System (NOS) Interface ... 48

1.5 Networking .. 49

1.5.1 AI and HPC Network Taxonomy .. 49

1.5.2 UE Transport (UET) Objectives .. 52

1.5.3 Network Fabric .. 53

1.6 UE Specification Overview: Layers .. 57

1.6.1 Software Layer .. 57

1.6.2 Transport Layer ... 58

1.6.3 Network Layer ... 59

1.6.4 Link Layer .. 59

1.6.5 Physical Layer .. 61

2 UE Software Layer ... 62

2.1 UE Software Overview .. 62

2.1.1 Software Specifications ... 62

 4

Copyright © 2025 Ultra Ethernet ConsortiumTM. All rights reserved.

2.1.2 Software Components and Interfaces .. 62

2.1.3 Reference Software Models and Supplementary Software ... 64

2.1.4 References .. 65

2.2 UE Libfabric Mapping .. 66

2.2.1 Application Use Cases ... 69

2.2.2 UET Profiles ... 69

2.2.3 Configuration Information .. 73

2.2.4 JobIDs .. 74

2.2.5 Libfabric APIs ... 80

2.2.6 Packet Delivery Modes .. 107

2.2.7 Traffic Classes .. 108

2.2.8 Transmit and Receive Queues... 109

2.2.9 Security Protocol ... 111

2.2.10 Wire Protocol Mapping ... 115

2.2.11 Linux Implementation of UET Control API .. 119

2.2.12 References .. 121

3 UE Transport Layer .. 122

3.1 UET Scope, Scale, and Reach .. 122

3.1.1 Virtualization ... 123

3.2 UET Layers, Components, and Capabilities ... 123

3.2.1 Semantic Sublayer (SES) .. 125

3.2.2 Packet Delivery Sublayer (PDS) ... 126

3.2.3 Congestion Management Sublayer (CMS) .. 128

3.2.4 Transport Security Sublayer (TSS) ... 129

3.2.5 Layering Summary ... 129

3.2.6 Sublayer Interfaces ... 130

3.2.7 Error Handling ... 131

3.3 Profiles and Capabilities [normative] .. 131

3.3.1 SES Transactions.. 131

3.3.2 Buffer Addressing Mechanisms .. 132

3.3.3 Authorization .. 133

3.3.4 Buffer Behavior ... 133

 5

Copyright © 2025 Ultra Ethernet ConsortiumTM. All rights reserved.

3.3.5 Packet Formats.. 133

3.3.6 PDS Ordering Modes ... 134

3.3.7 CMS Congestion Control Algorithms ... 135

3.3.8 Encapsulation .. 135

3.4 Semantics Sublayer (SES) .. 136

3.4.1 Definition of Semantic Concepts ... 136

3.4.2 Semantic Header Formats ... 157

3.4.3 Semantic Processing ... 171

3.4.4 Semantic Protocol Sequences ... 183

3.4.5 Error Handling ... 198

3.4.6 Enumerated Types Used in Headers ... 201

3.4.7 Device Expectations .. 208

3.4.8 UE Transport Semantics: Memory Model ... 209

3.4.9 Mapping of *CCL Send/Receive to Proposed Semantics [Informative] 212

3.5 Packet Delivery Sublayer (PDS) ... 217

3.5.1 PDS Terminology ... 217

3.5.2 Illustration of PDS Terms... 219

3.5.3 Packet Delivery Services .. 221

3.5.4 PDS-SES Logical Interface .. 223

3.5.5 PDS Configuration Parameters.. 228

3.5.6 Reliability and Ordering .. 231

3.5.7 Packet Delivery Modes Overview ... 232

3.5.8 Packet Delivery Contexts (PDC) .. 234

3.5.9 PDS Event State Machine .. 246

3.5.10 Header Formats .. 254

3.5.11 Header Fields .. 266

3.5.12 Requests and Acknowledgements .. 274

3.5.13 Default SES Responses .. 291

3.5.14 Transmit Scheduling .. 293

3.5.15 Loss Detection and Recovery .. 294

3.5.16 Control Packet (CP) ... 304

3.5.17 Semantic Responses .. 310

 6

Copyright © 2025 Ultra Ethernet ConsortiumTM. All rights reserved.

3.5.18 Reserved Service Support ... 311

3.5.19 Sequence Diagrams ... 312

3.5.20 Reliable Unordered Delivery ... 314

3.5.21 Reliable Ordered Delivery ... 328

3.5.22 RUDI Sequence Diagrams .. 333

3.5.23 Error Model ... 336

3.5.24 Full Header Format ... 337

3.5.25 UET CRC ... 341

3.6 Congestion Management Sublayer (CMS) .. 344

3.6.1 UET CC Guidelines [Informational] ... 344

3.6.2 Congestion Control Algorithms ... 345

3.6.3 Congestion Control Algorithm Design Targets .. 345

3.6.4 Telemetry and Network Switch Services .. 345

3.6.5 UET CC Protocol Operation Overview ... 355

3.6.6 Congestion Control Context (CCC) .. 360

3.6.7 CCC for ROD PDCs ... 361

3.6.8 Source Context .. 361

3.6.9 UET-CC Header Formats and Fields .. 365

3.6.10 Common Congestion Control Event Processing ... 368

3.6.11 Congestion Control Modes ... 371

3.6.12 Overall CCC Pseudocode ... 372

3.6.13 Network Signal-based Congestion Control ... 377

3.6.14 UET Receiver-Credit Congestion Control .. 391

3.6.15 Transport Flow Control (TFC) .. 400

3.6.16 Multipath Path Selection .. 404

3.6.17 Switch Configuration for UET CC ... 409

3.7 Transport Security Sublayer (TSS) ... 412

3.7.1 Introduction .. 412

3.7.2 Security Model .. 412

3.7.3 Architecture .. 419

3.7.4 Secure Domains .. 423

3.7.4.1 Joining a Secure Domain ... 424

 7

Copyright © 2025 Ultra Ethernet ConsortiumTM. All rights reserved.

3.7.5 Key Lifetime and Security Considerations ... 424

3.7.6 Secure Domain Key Database (SDKDB) ... 428

3.7.7 KDF Modes .. 430

3.7.8 KDF Construction .. 431

3.7.9 Replay Protection .. 436

3.7.10 Epoch-based packet rejection ... 437

3.7.11 TSS Packet Processing ... 437

3.7.12 Statistics, Parameters, and Events .. 446

3.8 References .. 447

4 UE Network Layer ... 451

4.1 Packet Trimming ... 451

4.1.1 Interactions with explicit congestion notification .. 455

4.1.2 Where can trimming be enabled? .. 455

4.1.3 Interactions with upper protocols .. 455

4.1.4 Mapping DSCPs to traffic classes for Ultra Ethernet transport .. 456

4.1.5 Mapping DSCPs to traffic classes for other transports ... 459

4.1.6 Security considerations ... 459

4.1.7 References .. 460

5 UE Link Layer ... 461

5.1 Link Layer Retry (LLR) .. 462

5.1.1 Frame structure .. 464

5.1.2 Interface modifications ... 465

5.1.3 LLR Operation .. 466

5.1.4 LLR configuration .. 468

5.1.5 LLR transmit path operation ... 470

5.1.6 Transmission of LLR_ACKs/LLR_NACKs ... 474

5.1.7 LLR receive path operation ... 475

5.1.8 Received ACK/NACK processing .. 476

5.1.9 Control Ordered Set transmission and reception ... 477

5.1.10 Error propagation .. 478

5.1.11 Counters .. 478

5.2 Credit-based Flow Control .. 480

 8

Copyright © 2025 Ultra Ethernet ConsortiumTM. All rights reserved.

5.2.1 Lossless Packet Delivery Use Cases ... 480

5.2.2 CBFC and PFC Relative Advantages ... 481

5.2.3 CBFC Feature List .. 481

5.2.4 CBFC Overview .. 482

5.2.5 CBFC Operation ... 483

5.2.6 CBFC Message Formats ... 492

5.2.7 MAC and MAC Control Layer Interfaces to CBFC .. 494

5.2.8 CBFC Initialization ... 494

5.2.9 Interactions Between CBFC, PFC, and LLR .. 504

5.2.10 Compliance Requirements .. 508

5.2.11 Control Ordered Sets (CtlOS) in UE Link Layer .. 510

5.2.12 CBFC Message Examples (Informative) ... 511

5.2.13 References .. 513

5.3 UE Link Negotiation... 515

5.3.1 LLDP Overview .. 515

5.3.2 UE Organizationally Specific LLDP TLVs .. 517

5.3.3 UE LLDP YANG ... 525

5.3.4 References .. 538

6 UE Physical Layer .. 540

6.1 UE PHY for 100 Gb/s per lane signaling .. 540

6.1.1 Media support ... 540

6.1.2 PHY rates and types supported ... 540

6.2 Control ordered sets ... 541

6.2.1 Sequence ordered sets and control ordered set background .. 541

6.2.2 Control ordered sets format ... 542

6.2.3 PCS required modifications ... 543

6.2.4 RS required modifications ... 544

6.3 FEC statistics for prediction of link quality .. 546

6.3.1 Relationship between performance metrics .. 547

6.3.2 Estimation of UCR from FEC statistics ... 550

6.3.3 Examples ... 556

6.4 Recommendations .. 559

 9

Copyright © 2025 Ultra Ethernet ConsortiumTM. All rights reserved.

6.4.1 Low error rate ... 559

6.4.2 Low power ... 559

6.4.3 Low latency ... 559

6.5 References .. 560

7 UE Compliance Requirements .. 561

7.1 Compliance Statement .. 561

7.1.1 UE Support Requirements .. 562

7.1.2 Declaration Format ... 562

7.1.3 Compliance verses Support Terminology ... 562

 10

Copyright © 2025 Ultra Ethernet ConsortiumTM. All rights reserved.

Tables
Table 1-1 - Distinctive characteristics by network type (circa 2024) .. 51

Table 1-2 - Characteristics of UET Deployment Model ... 52

Table 2-1 - UE Software Components and Interfaces ... 63

Table 2-2 - UE Reference Software ... 64

Table 2-3 - UET Application Categories ... 69

Table 2-4 - Per-Profile Libfabric Parameter Requirements ... 70

Table 2-5 - Application Use Case Mapping to UET Profiles ... 72

Table 2-6 - Profile Logical Priorities .. 72

Table 2-7 - Libfabric UET Provider Configuration Parameters .. 73

Table 2-8 - UET Control API JobID Mapping Parameters .. 75

Table 2-9 - Libfabric API Groups .. 80

Table 2-10 - UET Libfabric Endpoint Address .. 82

Table 2-11 - fi_getinfo() Parameters ... 85

Table 2-12 - Pre-Defined UET Service Names ... 86

Table 2-13 - Memory Region Key Format ... 89

Table 2-14 - Criteria for Optimized Non-Matching SES Header for RMA Operations 90

Table 2-15 - Criteria for Small RMA SES Header with RMA Operations ... 90

Table 2-16 - Criteria for RUDI Packet Delivery Mode with RMA Operations .. 91

Table 2-17 - RKEY Scope Requirements .. 91

Table 2-18 - UET Control API Address Assignment Request Parameters ... 95

Table 2-19 - UET Control API Address Assignment Response Parameters ... 95

Table 2-20 - Completion Counter Requirements .. 96

Table 2-21 - fi_msg() Receive API Requirements .. 98

Table 2-22 - fi_msg() Send API Requirements .. 98

Table 2-23 - fi_tagged() Receive API Requirements ... 101

Table 2-24 - fi_tagged() Send API Requirements .. 101

Table 2-25 - fi_rma() API Requirements ... 103

Table 2-26 - fi_atomic() API Requirements ... 104

Table 2-27 - Libfabric APIs for which Support is Not Required ... 106

Table 2-28 - Libfabric API Options for which Support is Not Required ... 106

Table 2-29 - Packet Delivery Mode Selection Criteria for AI Base Profile ... 107

Table 2-30 - Packet Delivery Mode Selection Criteria for AI Full Profile .. 108

Table 2-31 - Packet Delivery Mode Selection Criteria for HPC Profile .. 108

Table 2-32 - Default Traffic Classes ... 108

Table 2-33 - UET Security Binding Parameters ... 112

Table 2-34 - UET Rekey Parameters .. 112

Table 2-35 - UET Control API Rekey Request Parameters .. 114

Table 2-36 - Libfabric to IP Header Mapping .. 115

Table 2-37 - Libfabric Fields Used to Select Packet Delivery Context ... 116

 11

Copyright © 2025 Ultra Ethernet ConsortiumTM. All rights reserved.

Table 2-38 - Summary of Semantic Header Formats .. 116

Table 2-39 - Libfabric Mappings for SES Standard Request .. 117

Table 2-40 - Libfabric Mappings for Optimized Non-Matching SES Header ... 117

Table 2-41 - Criteria for Small Message Header ... 118

Table 2-42 - Libfabric Mappings for Small Message SES Header .. 118

Table 2-43 - Libfabric Mappings for Small RMA SES Header .. 118

Table 2-44 - Libfabric Mappings for Rendezvous Send Extension Header ... 119

Table 3-1 - Profile Requirements for Supporting libfabric Transactions .. 132

Table 3-2 - Addressing Requirements for Implementations of Profiles ... 133

Table 3-3 - Profile Buffer Behavior Requirements .. 133

Table 3-4 - Profile Summary – SES header formats .. 134

Table 3-5 - Profile Summary – PDS ordering modes ... 134

Table 3-6 - Profile Summary – Best Effort ... 135

Table 3-7 - Profile Summary – Lossless ... 135

Table 3-8 - Standard Header Format Fields when ses.som is 1 .. 158

Table 3-9 - Standard Header Format Fields when ses.som is 0 .. 160

Table 3-10 - Optimized Header Format Fields .. 163

Table 3-11 - Response Header Fields .. 167

Table 3-12 - Response with Data Header Fields ... 168

Table 3-13 - Optimized Response with Data Header Fields .. 169

Table 3-14 - Parsing Guide .. 169

Table 3-15 - Header Formats and Legal Opcodes ... 170

Table 3-16 - Next Header Enumeration .. 202

Table 3-17 - Supported Request Messages (Opcode) ... 202

Table 3-18 - Supported Response Messages (Opcode) .. 203

Table 3-19 - Defined Semantic Return Codes ... 203

Table 3-20 - List Where the Message was Delivered .. 205

Table 3-21 - Atomic Operation Opcodes .. 206

Table 3-22 - Supported Atomic Datatypes .. 206

Table 3-23 - AMO Semantic Control ... 207

Table 3-24 - Valid Combinations of Operations and Datatypes (Alternative) .. 208

Table 3-25 - PDS Terminology ... 217

Table 3-26 - Packet Contexts .. 224

Table 3-27 - Summary of Function-Based PDS-SES Interface Example ... 225

Table 3-28 - PDS Configuration Parameters ... 228

Table 3-29 - PDS Status and Error Indications .. 230

Table 3-30 - PSN Offset Field .. 237

Table 3-31 - Fields of UET Entropy Header ... 254

Table 3-32 - Fields of PDS Prologue .. 255

Table 3-33 - Header Fields for RUD/ROD Request .. 256

Table 3-34 - Header Fields for RUD/ROD Request with CC State ... 257

Table 3-35 - Header Fields for RUD/ROD ACK .. 258

 12

Copyright © 2025 Ultra Ethernet ConsortiumTM. All rights reserved.

Table 3-36 - Header Fields for ACK_CC ... 259

Table 3-37 - Header Fields for ACK_CCX ... 260

Table 3-38 - Header Fields for RUD/ROD CP ... 261

Table 3-39 - Header Fields for RUDI Request /Response.. 262

Table 3-40 - Header Fields for NACK ... 263

Table 3-41 - Header Fields for NACK_CCX .. 264

Table 3-42 - Header fields for UUD Request ... 265

Table 3-43 - Header Fields for RUD/ROD Default SES Header .. 265

Table 3-44 - Example PSN OFFSET Calculation ... 268

Table 3-45 - REQ Field Definition .. 271

Table 3-46 - pds.flags by pds.type .. 271

Table 3-47 - NACK Payload Contents .. 272

Table 3-48 - CC_TYPE Format .. 272

Table 3-49 - CCX_TYPE Format.. 273

Table 3-50 - NCCX_TYPE Contents .. 273

Table 3-51 - PSN Tracking Resources per PSN Range ... 273

Table 3-52 - Triggers for Setting pds.flags.ar in PDS Requests when Using Coalesced ACKs 278

Table 3-53 - Triggers for Generating an ACK... 279

Table 3-54 - ACK Configuration Parameters ... 279

Table 3-55 - Local Variables for Last Packet ACK Trigger - Coalesced ACKs .. 280

Table 3-56 - Local Variables for SACK Bitmap – Coalesced ACKs .. 281

Table 3-57 - Triggers for Generating a NACK .. 286

Table 3-58 - Configuration Parameters for Handling NACK and RTO ... 287

Table 3-59 - PDS NACK Codes ... 288

Table 3-60 - Rules for Constructing SES Default Response ... 293

Table 3-61 - Loss Detection ... 294

Table 3-62 - Rules for NACK Generation with Trimmed Packets .. 295

Table 3-63 - Early Loss Detection Fields per CCC – OOO Example .. 296

Table 3-64 - Credit CP Payload .. 309

Table 3-65 - Credit Request CP Payload .. 309

Table 3-66 - PDS CP Summary ... 310

Table 3-67 - Reserved Service Support – Example Configuration Parameters ... 311

Table 3-68 - Sequence Diagram Key ... 312

Table 3-69 - UET DSCP Mappings without Trimming .. 351

Table 3-70 - UET DSCP Mappings with Trimming ... 351

Table 3-71 - UET DSCP to TC Mappings for Best Effort Networks .. 353

Table 3-72 - UET Control Packet to TC Mappings for Lossless Networks ... 355

Table 3-73 - Header Fields for pds.req_cc_state for RCCC/TFC .. 365

Table 3-74 - pds.ack_cc_state for ACK_CC with CC_TYPE = CC_NSCC .. 366

Table 3-75 - pds.ack_cc_state for ACK_CC with CC_TYPE = CC_CREDIT ... 368

Table 3-76 - Congestion Control Configuration Parameters ... 380

Table 3-77 - NSCC Source State .. 383

 13

Copyright © 2025 Ultra Ethernet ConsortiumTM. All rights reserved.

Table 3-78 - NSCC Destination CC State .. 390

Table 3-79 - RCCC Source State ... 395

Table 3-80 - RCCC Global Destination State .. 398

Table 3-81 - RCCC Per-Source Destination State .. 398

Table 3-82 - Threat Model Definitions .. 412

Table 3-83 - Tools Available to Attacker ... 413

Table 3-84 - Threats and Mitigations .. 414

Table 3-85 - Example Functions between PDS/SDME and TSS ... 418

Table 3-86 - Example Functions between link layer and TSS .. 419

Table 3-87 - Client-Server Key Generation ... 422

Table 3-88 - SDKDB Fields ... 428

Table 3-89 - KDF Parameter Summary for AES-CMAC-256 ... 431

Table 3-90 - TSS Headers Fields .. 441

Table 3-91 - IV Construction ... 442

Table 3-92 - TSS Security Counters ... 446

Table 3-93 - TSS Security Parameters ... 446

Table 3-94 - TSS Security Events/Errors .. 447

Table 4-1 - Trim Size Requirements for Various Transport Protocols .. 456

Table 5-1 - MII Format for UE Link Frame Preamble .. 464

Table 5-2 - 64B/66B Block Format for UE Link Frame Preamble .. 465

Table 5-3 - MAC Client to LLR Transmit Path Additional Fields .. 465

Table 5-4 - LLR to MAC Control to MAC Transmit Path Additional Fields .. 465

Table 5-5 - MAC to MAC Control to LLR Receive Path Additional Fields .. 466

Table 5-6 - LLR to MAC Client Receive Path Additional Field .. 466

Table 5-7 - LLR Control Ordered Sets .. 467

Table 5-8 - UE LLR Link Control Ordered Set 64B/66B Block Format.. 467

Table 5-9 - LLR Configuration Registers .. 468

Table 5-10 - LLR TX Path Variables .. 470

Table 5-11 - LLR RX Path Variables .. 475

Table 5-12 - Control Ordered Set Transmission Priority ... 478

Table 5-13 - LLR counters .. 479

Table 5-14 - Configuration Parameters and Initialization ... 484

Table 5-15 - Sender Cyclic Counters ... 485

Table 5-16 - Receiver Cyclic Counters ... 485

Table 5-17 - Sender State Variables .. 486

Table 5-18 - Counter and Variable Widths and Initialization .. 486

Table 5-19 - CBFC Message Types ... 487

Table 5-20 - CF_Update CtlOS Message Format ... 492

Table 5-21 - CF_Update CtlOS Data Field Definitions ... 492

Table 5-22 - CC_Update Message Packet Fields ... 493

Table 5-23 - CBFC TLV Receiver Port Information Fields .. 497

Table 5-24 - CBFC TLV Receiver Per-VC Information Fields .. 497

 14

Copyright © 2025 Ultra Ethernet ConsortiumTM. All rights reserved.

Table 5-25 - CBFC TLV Sender Information Fields ... 498

Table 5-26 - LLR and CBFC Combined Handling for Data Packets ... 504

Table 5-27 - Conformance Requirements ... 509

Table 5-28 - CtlOS Format on xMII .. 510

Table 5-29 - UE CtlOS Message Type Values ... 510

Table 5-30 - Modified 64B/66B PCS Encoding for Ordered Sets .. 511

Table 5-31 - CC_Update Message - Counter values .. 512

Table 5-32 - LLDP Database Group Addresses .. 517

Table 5-33 - UE Link Negotiation Options TLV LLR-W Field Options... 519

Table 5-34 - UE Link Negotiation CBFC Error Codes ... 522

Table 5-35 - UE Link Negotiation CBFC TLV R_PktID_Sel Field Options .. 524

Table 6-1 - Ethernet standard sequence ordered sets on MII .. 542

Table 6-2 - Ethernet standard 64B/66B sequence ordered set encoding .. 542

Table 6-3 - Ordered set format on MII .. 543

Table 6-4 - Modified 64B/66B PCS encoding for ordered sets ... 543

Table 6-5 - PCS stateless decoder rules .. 544

Table 6-6 - Modified PCS stateless encoder rules ... 544

Table 6-7 - RS Layer CtlOS spacing constraints ... 545

Table 6-8 - Ethernet-specified FLR and resulting MTBPE.. 547

Table 6-9 - CIR and CG sizes .. 548

Table 6-10 - UCR to FLR conversion factors .. 549

Table 6-11 - Codeword times .. 549

Table 6-12 - MTBPE to UCR conversion .. 550

Table 6-13 - Number of codewords received in one minute, Ntotal (approximate) 551

Table 6-14 - Calculation of UCRest2 from CCR .. 553

Table 6-15 - Mapping from UCR to P6, P8, and P10 assuming uncorrelated errors................................. 555

 15

Copyright © 2025 Ultra Ethernet ConsortiumTM. All rights reserved.

Figures
Figure 1-1 - Working Group Organization ... 22

Figure 1-2 - Example Full Header Format ... 35

Figure 1-3 - Example Individual Header Format ... 36

Figure 1-4 - Example Sequence Diagram Figure ... 37

Figure 1-5 - System Overview ... 39

Figure 1-6 - Multi-plane Networks and Multi-port FEPs ... 40

Figure 1-7 - Parallel Job Model ... 41

Figure 1-8 - Client/Server Job Model .. 42

Figure 1-9 - Addressing Modes ... 43

Figure 1-10 - Transport Data Delivery and Packet Delivery Contexts ... 44

Figure 1-11 - UE Software Endpoint Stack .. 47

Figure 1-12 - Switch Module Layering .. 48

Figure 1-13 - Network Types ... 50

Figure 1-14 - Layered View of Networking Functionality ... 53

Figure 1-15 - Traffic Class Mapping ... 56

Figure 1-16 - UE Specifications by Layers ... 57

Figure 1-17 - UE Link Layer Specification Focus Areas .. 60

Figure 1-18 - UE Physical Layer Specification Focus Areas ... 61

Figure 2-1 - Components and Interfaces Defined By UEC .. 63

Figure 2-2 - Libfabric Software Architecture ... 67

Figure 2-3 - Libfabric UET Provider Software Architecture ... 68

Figure 2-4 - JobID Assignment at Job Initialization Time .. 75

Figure 2-5 - UET Control API JobID Mapping Request Structure .. 76

Figure 2-6 - UET Control API JobID Unmapping Request Structure .. 76

Figure 2-7 - Key Libfabric Objects and Associated APIs .. 82

Figure 2-8 - Libfabric UET Endpoint Address Structure .. 85

Figure 2-9 - UET Address Assignment Architecture .. 93

Figure 2-10 - UET Control API Address Assignment Request and Response Structures 96

Figure 2-11 - Transmit Queue Example .. 110

Figure 2-12 - Example Receive Queue and Registered MR Data Structures .. 111

Figure 2-13 - Rekey Parameter Acquisition Architecture ... 113

Figure 2-14 - UET Security Structures ... 115

Figure 2-15 - Libfabric Mapping to UET Wire Protocol Headers ... 115

Figure 2-16 - UET Netlink Command Encodings ... 120

Figure 2-17 - UET Netlink Attributes ... 121

Figure 3-1 - Overview of UET .. 124

Figure 3-2 - UET Packet Structure ... 125

Figure 3-3 - Component Interface Overview .. 130

Figure 3-4 - Overview of Relative Addressing ... 139

 16

Copyright © 2025 Ultra Ethernet ConsortiumTM. All rights reserved.

Figure 3-5 - Overview of Absolute Addressing.. 140

Figure 3-6 - Overview of Simplified Absolute Addressing ... 140

Figure 3-7 - Overview of Relative Addressing for RMA Operations .. 141

Figure 3-8 - Overview of Relative Addressing for RMA Operations Using Optimized Headers 142

Figure 3-9 - Standard Header Format when ses.som is 1 ... 158

Figure 3-10 - Standard Header Format when ses.som is 0 ... 160

Figure 3-11 - Standard Header Format as Used for Deferrable Sends ... 161

Figure 3-12 - Standard Header Format as Used for Ready-to-Restart Requests 162

Figure 3-13 - Optimized, Non-Matching Format ... 163

Figure 3-14 - Small Message/Small RMA Format ... 164

Figure 3-15 - Rendezvous Extension Header Format .. 165

Figure 3-16 - Atomic Operation Extension Header Format .. 165

Figure 3-17 - Compare and Swap Operation Atomic Header and Payload Format 166

Figure 3-18 - Semantic Response Header Format .. 166

Figure 3-19 - Semantic Response with Data Header Format .. 167

Figure 3-20 - Optimized Response with Data Header Format .. 168

Figure 3-21 - Single-Packet Request, Expected Message ... 184

Figure 3-22 - Multi-Packet Request, Expected Message .. 185

Figure 3-23 - Multipacket Read Request – Standard .. 186

Figure 3-24 - Multi-Packet Read Request – Large PDS_MAX_ACK_DATA .. 187

Figure 3-25 - Rendezvous Transaction, Expected Message Case ... 189

Figure 3-26 - Rendezvous Transaction, Unexpected Message Case ... 190

Figure 3-27 - Deferrable Sends, Expected Message Case ... 191

Figure 3-28 - Deferrable Sends, Unexpected Message Case .. 192

Figure 3-29 - Deferrable Sends, Unexpected Message Case, No Reserved Buffer 193

Figure 3-30 - Single Packet Messages using Backoff and Retry .. 195

Figure 3-31 - Messages using Resource Index Generation ... 196

Figure 3-32 - Multi-Packet Request, Expected Message, with Initiator Error .. 197

Figure 3-33 - Multi-Packet Request, Expected Message, with Message Error ... 198

Figure 3-34 - Use of MSN Tables ... 213

Figure 3-35 - Tag-Based Sequence for *CCL Send and Receive .. 214

Figure 3-36 - Rendezvous Queue Data Structure ... 215

Figure 3-37 - Write-Based Sequence for *CCL Send and Receive ... 215

Figure 3-38 - PDS High-Level Architecture Diagram ... 217

Figure 3-39 - Illustrated PDS Terms .. 220

Figure 3-40 - Illustration of Example PDS-SES Interface ... 225

Figure 3-41 - Illustration of Example PDS-SES Interface between Initiator and Target 227

Figure 3-42 - PDC Startup using SYN Flag ... 240

Figure 3-43 - PDC Establishment State Machine .. 240

Figure 3-44 - Single PDC Close State Machine .. 245

Figure 3-45 - Sequence for PDC Setup and Teardown .. 246

Figure 3-46 - PDS Top Level State Machines ... 248

 17

Copyright © 2025 Ultra Ethernet ConsortiumTM. All rights reserved.

Figure 3-47 - PDS Manager State Machine ... 249

Figure 3-48 - PDC Initiator State Machine .. 252

Figure 3-49 - PDS Target State Machine ... 253

Figure 3-50 - UET Entropy Header Format .. 254

Figure 3-51 - PDS Prologue Format ... 255

Figure 3-52 - RUD/ROD Request Header Format .. 256

Figure 3-53 - RUD/ROD Request Header with CC State Format ... 257

Figure 3-54 - RUD/ROD ACK Header Format .. 258

Figure 3-55 - ACK_CC Format .. 259

Figure 3-56 - ACK_CCX Format .. 260

Figure 3-57 - RUD/ROD Control Packet Header Format ... 261

Figure 3-58 - RUDI Request Header Format ... 262

Figure 3-59 - NACK Header Format ... 263

Figure 3-60 - NACK_CCX Header Format .. 264

Figure 3-61 - UUD Header Format .. 264

Figure 3-62 - RUD/ROD Default SES Header Format .. 265

Figure 3-63 - Example ACK Packet .. 276

Figure 3-64 - ACK State Sections ... 277

Figure 3-65 - Illustration of SACK Bitmap .. 282

Figure 3-66 - Illustration of PDS_MPR Concept .. 285

Figure 3-67 - Illustration of PDS NACK Format ... 285

Figure 3-68 - NACK Sections .. 286

Figure 3-69 - Example Transmit Scheduler ... 294

Figure 3-70 - Example PSN Tracking per EV .. 301

Figure 3-71 - CP Format .. 305

Figure 3-72 - Credit CP Payload... 308

Figure 3-73 - Credit Request CP Payload .. 309

Figure 3-74 - Example Sequence with Key .. 313

Figure 3-75 - Standard RUD Send Sequence for Single- Packet Message, Non-Guaranteed Delivery 315

Figure 3-76 - Standard RUD Send Sequence for Single- Packet Message, Guaranteed Delivery 317

Figure 3-77 - Standard RUD Send Sequence for Multi-Packet Message, Non-Guaranteed Delivery 318

Figure 3-78 - Standard Sequence for RUD Send of Multi-Packet Message with Guaranteed Delivery 319

Figure 3-79 - Standard RUD Sequence for Single-Packet Read – Standard SES Header 321

Figure 3-80 - Standard RUD Sequence for Single-Packet Read – Medium & Small SES header 322

Figure 3-81 - Standard RUD Sequence for Multi-Packet Read.. 324

Figure 3-82 - PDS NACK Sequence for RUD Send of Single-Packet Message .. 325

Figure 3-83 - PDS Request Dropped Sequence for RUD Send of Single-Packet Message 326

Figure 3-84 - PDS ACK Dropped Sequence for RUD Send of Single-Packet Message 327

Figure 3-85 - ROD Send Sequence for Dropped PDS Request Packet ... 331

Figure 3-86 - ROD Send Sequence for Dropped ACK Packet Using ACK Request 333

Figure 3-87 - Standard RUDI RMA Write Sequence for Multi-Packet Message.. 335

Figure 3-88 - Standard RUDI RMA Read Sequence for Multi-Packet Message... 336

 18

Copyright © 2025 Ultra Ethernet ConsortiumTM. All rights reserved.

Figure 3-89 - Full Header: UET/UDP/IP – no UET CRC, no TSS .. 338

Figure 3-90 - Full Header: UET/UDP/IP with UET CRC, no TSS .. 339

Figure 3-91 - Full Header: UET/UDP/IP with Encryption ... 339

Figure 3-92 - Full Header: UET/IP no UET CRC, no TSS ... 340

Figure 3-93 - Full Header: UET/IP with UET CRC, no TSS .. 340

Figure 3-94 - Full Header: UET/IP with Encryption ... 341

Figure 3-95 - UET CRC Coverage ... 342

Figure 3-96 - PDC mapped over Best-Effort Ethernet: Traffic Class Mapping (ROD and RUD) 354

Figure 3-97 - PDC mapped over Lossless Ethernet: Traffic Class Mapping (ROD and RUD) 355

Figure 3-98 - CCC State Machine .. 363

Figure 3-99 - pds.req_cc_state Header Format for RCCC / TFC .. 365

Figure 3-100 - pds.ack_cc_state for UET TYPE = ACK_CC and CC_TYPE = CC_NSCC................................. 366

Figure 3-101 - pds.ack_cc_state for UET TYPE = ACK_CC and CC_TYPE = CC_CREDIT.............................. 368

Figure 3-102 - Example PDS-TSS-Link Logical Interface .. 417

Figure 3-103 - TSS Architecture .. 420

Figure 3-104 - Single Job in a Secure Domain ... 421

Figure 3-105 - Multiple Jobs in a Single SD ... 421

Figure 3-106 - Secure Domain with Four FEPs .. 423

Figure 3-107 - KDF Rekeying Example ... 426

Figure 3-108 - SDKDB database and crypto interfaces ... 431

Figure 3-109 - Cluster mode KDF for IPv4 and Packets with Explicit SSI .. 433

Figure 3-110 - Cluster mode KDF for IPv6 without explicit SSI ... 434

Figure 3-111 - UET Secure Transport Packets ... 438

Figure 3-112 - TSS with Native IPv4 Transport ... 439

Figure 3-113 - TSS with Native IPv6 Transport ... 440

Figure 3-114 - TSS with UDP Encapsulation .. 441

Figure 4-1 - Drop Threshold Settings .. 459

Figure 5-1 - Architectural position of LLR. .. 462

Figure 5-2 - MAC Control interface connectivity. ... 463

Figure 5-3 - LLR transmit state machine. .. 470

Figure 5-4 - ACK/NACK transmit state machine. ... 475

Figure 5-5 - Basic Packet Data and Credit Update Sequence ... 482

Figure 5-6 - Cyclic Counter Example ... 483

Figure 5-7 - Architectural Position of CBFC in Ethernet Functional Layer Model 484

Figure 5-8 - Packet and CBFC Message Sequence with Counter Updates .. 488

Figure 5-9 - CC_Update Packet Format ... 494

Figure 5-10 - Virtual Channel State ... 496

Figure 5-11 - Lossless VC Initialization Process ... 499

Figure 5-12 - Lossless VC Removal Process ... 502

Figure 5-13 - Example of LLR and CBFC Interaction – General Case ... 506

Figure 5-14 - Example of LLR and CBFC Interaction with LLR-eligible CC_Update Packet 507

Figure 5-15 - CF_Update Message Example ... 512

 19

Copyright © 2025 Ultra Ethernet ConsortiumTM. All rights reserved.

Figure 5-16 - CC_Update Message Example ... 513

Figure 5-17 - LLDP Agent With the UE LLDP Databases .. 516

Figure 5-18 - Ethernet Frame Containing an LLDPDU ... 517

Figure 5-19 - UE Link Negotiation Options TLV (Options TLV) .. 518

Figure 5-20 - UE Link Negotiation CBFC TLV (CBFC TLV) ... 521

Figure 5-21 - YANG Root Hierarchy with UE Link LLDP Extensions ... 526

Figure 5-22 - UE Link Negotiation Options TLV Model ... 527

Figure 5-23 - UE Link Negotiation CBFC TLV Model .. 528

Figure 6-1 - UCRest2 as a function of CCR, assuming uncorrelated errors ... 553

Figure 6-2 - Expected values of P6, P8, and P10 as a function of UCR ... 556

Figure 7-1 - Example of Profile Matrix .. 561

Figure 7-2 - Example of Compliance Checklist .. 561

 20

Copyright © 2025 Ultra Ethernet ConsortiumTM. All rights reserved.

Acknowledgments
Steering Committee

Role Name Affiliation

Chair J Metz AMD

Vice Chair Barry Davis HPE

TAC Chair Hugh Holbrook Arista

TAC Vice Chair Puneet Agarwal Marvell

Previous TAC Chair Uri Elzur Intel

Working Groups

This specification is developed under the Process, Procedures, and Guidelines of the Ultra Ethernet

ConsortiumTM (UEC). The organization would like to thank all that are involved. A special

acknowledgment goes out to the following individuals for their leadership, authoring, and technical

contributions to this specification.

Working Group Role Name Affiliation

Physical Layer WG Co-Chair/Author Cathy Huang Intel

 Co-Chair/Author Adee Ran Cisco

Link Layer WG Chair/Author Bob Alverson HPE

 Author Paul Bottorff HPE

 Author Eugene Opsasnick Broadcom

Transport Layer WG Co-Chair/Author Torsten Hoefler Microsoft

 Co-Chair/Author Karen Schramm Broadcom

 Author Keith Underwood HPE

 Author Mark Handley Broadcom

 Author Eric Spada Broadcom

 Author Rong Pan AMD

 Author Abdul Kabbani Microsoft

Software Layer WG Co-Chair/Author Josh Collier Intel

 Co-Chair/Author Eric Spada Broadcom

 Author Cedell Alexander Broadcom

 Author Rip Sohan AMD

Technical Advisory Committee Editor Paul Congdon Linux Foundation

 21

Copyright © 2025 Ultra Ethernet ConsortiumTM. All rights reserved.

1 Introduction

1.1 Background

The Ultra Ethernet Consortium (UEC) is an industry effort — involving many contributors including

hyperscalers, system vendors, silicon providers, and others — with a mission to enhance Ethernet for

use in AI and HPC.

Contributors are aiming to cover all aspects of a successful specification, including software APIs,

network protocols, hardware friendliness and scalability, network operation, compliance, and

extensibility. In service of the UEC’s mission, this document provides a specification of new protocols for

use over Ethernet networks and optional enhancements to existing Ethernet protocols that improve

performance, function, and interoperability of AI and HPC applications.

The Ultra Ethernet (UE) specification covers a broad range of software and hardware relevant to AI and

HPC workloads: from the API supported by UE-compliant devices to the services offered by the

transport, link, and physical layers, as well as management, interoperability, benchmarks, and

compliance requirements.

UE does not require or mandate changes to the network layer or the Ethernet PHY and link layers. For

instance, a UE-compliant implementation might use Ethernet switches common in the market at the

time of publishing the specification. However, UE offers optional network, Ethernet PHY, and link layer

features that enable better performance for demanding applications. Over time, and as experience is

gathered, it is possible that some of these optional features might become commonplace and even

required. A UE-compliant implementation supports the mandatory requirements in this specification.

1.1.1 UEC Organization

UE architecture comprises the four lower layers of the classic ISO/OSI networking model along with

software services and the APIs that expose these services to the upper layers. Each of the four layers is

addressed by a UEC working group (depicted as rows in Figure 1-1), which defines the required

architecture with strict requirements and characterization in terms of scalability, capability,

performance, and interoperability. The UEC management working group provides Ethernet fabric and

endpoint management. The UE management architecture includes management protocols, transports,

and data models. The UEC Compliance working group, in collaboration with the Technical Advisory

Committee (TAC), defines the compliance and interoperability requirements. The UEC Management and

Debug & Performance working groups interact with all the aforementioned working groups.

Additionally, UEC is adding storage services alongside the network services for relevant application and

workloads. The working groups depicted as columns in Figure 1-1 were formed after the initial set of

working groups depicted as rows. Their contributions to the UE specification and other standalone

documents are scheduled for a future release.

 22

Copyright © 2025 Ultra Ethernet ConsortiumTM. All rights reserved.

Figure 1-1 - Working Group Organization

UEC is incorporated under the Linux Foundation Joint Development Foundation (JDF) as an International

Standards Development Organization (SDO). UE specifications are OPEN for public download. Future

versions, once created and ratified, will also be publicly available for download. It is the intention of UEC

members to propose their work products to appropriate standards organizations and/or relevant open-

source communities to encourage broad adoption and to contribute as appropriate to mainstream

industry standardization efforts for Ethernet, Internet Protocol (IP), software, and API development.

Potential relevant SDOs to consider include, but are not limited to, IEEE, IETF, OCP, OFA, SONiC/SAI, and

various storage and management SDOs.

1.1.2 UE Transport Profiles

UET specifies three profiles: AI Base, AI Full, and HPC. The AI Base profile is designed to provide the

functionality required by current and future AI applications where high performance is required at the

lowest cost. The AI Full profile adds additional features (e.g., deferrable send, exact match, and support

for atomic primitives). The HPC profile addresses the needs of High Performance Computing applications

and is largely a superset of the AI Full profile.

Each profile lists the services provided and the distinct features required at the transport layer of a

compliant product. The profiles themselves are defined in section 3.3. The details of the hardware

interface at the endpoint are out of scope for the UE specifications. Software APIs to the upper layers

are specified to provide interoperability with higher-layer software. The goal is that different vendors’

 23

Copyright © 2025 Ultra Ethernet ConsortiumTM. All rights reserved.

devices supporting a given profile exhibit interoperability and functionality as described in these

specifications.

Profiles may include optional-to-implement features. If optional features are implemented, they MUST

follow the defined specification to claim compliance.

1.2 UE Specification Conventions

The UE specification uses the following conventions for normative language, informative notes,

terminology, units, numbers, and figure formatting.

1.2.1 Normative, Informative, and Implementation Statements

Normative language is identified using terms defined by IETF BCP14. The key words “MUST”, “MUST

NOT”, “REQUIRED”, “SHALL”, “SHALL NOT”, “SHOULD”, “SHOULD NOT”, “RECOMMENDED”, “NOT

RECOMMENDED”, “MAY”, and “OPTIONAL” in this document are to be interpreted as described in IETF

BCP 14 [4], IETF RFC 2119 [1], and IETF RFC 8174 [2]when, and only when, they appear in all capitals, as

shown here.

All text not explicitly identified as informative comment is normative. An [informative] marking in the

section title applies to the entire section including any subsections. Diagrams and tables are considered

normative unless marked in the title as [informative].

Sections of text are marked as informative using the following convention:

Informative Text:

Informative text is included in this area.

Occasionally, notes to the implementer of this specification are included for informational purposes.

These notes are intended to clarify the intent of the specification and to provide guidance to the

implementer. They are indicated with the following format:

Implementation Note:

Implementation note text is included in this area.

1.2.2 Terminology

1.2.2.1 Abbreviations

Abbreviation Definition

AAD Additional authentication data

ABI Application binary interface

ACK Acknowledgement

AEAD Authenticated encryption associated data

AES Advanced encryption standard

AI Artificial intelligence

AN Association number

 24

Copyright © 2025 Ultra Ethernet ConsortiumTM. All rights reserved.

Abbreviation Definition

API Application programming interface

AV Libfabric address vector

BDP Bandwidth-delay product

BER Bit error ratio

BTS Back to sender

BW Bandwidth

C2C Chip to chip

C2M Chip to module

CBFC Credit-based flow control

CC Credits consumed (Link Layer) / congestion control (Transport Layer)

CCC Congestion control context

CCL Collective communications library

CCR Corrected codeword ratio

CF Credits freed

CG Codeword group

CID Company identifier

CIR Codeword interleaving ratio

CL Credit limit

CMS Congestion management sublayer

CP Credit packet

CQ Libfabric completion queue

CRC Cyclic redundancy check

CSIG A layer 2 congestion signaling mechanism

CtlOS Control ordered set

CU Credits in use

DPA Differential power analysis

DIC Deficit idle count

ECMP Equal cost multi-path

ECN Explicit congestion notification (RFC 3168)

EP Libfabric endpoint

EQ Libfabric event queue

EQDS Edge queued datagram service

EV Entropy value

FA Fabric address

FEC Forward error correction

FEP Fabric endpoint

FI Fabric interface

FLR Frame loss ratio

FPC Frames per codeword

GCM Galois counter mode

 25

Copyright © 2025 Ultra Ethernet ConsortiumTM. All rights reserved.

Abbreviation Definition

GMAC Galois message authentication code

gNMI GRPC network management interface

gNOI GRPC network operations interface

gRPC gRPC remote procedure calls

HPC High-performance computing

ICV Integrity check value

IP Internet protocol (RFC 791 and/or RFC 8200)

IPG Interpacket gap

IV Initialization vector

KDF Key derivation function

KMD Kernel mode driver

LACP Link Aggregation Control Protocol (IEEE Std 802.1AX)

LAG Link aggregation

LLDP Link Layer Discovery Protocol (IEEE Std 802.1AB)

LLR Link layer retry

MAC Media access control

MDIO Management data input/output

MID Message identifier

MII Media-independent interface

MMF Multi-mode fiber

MPI Message passing interface

MR Libfabric memory region

MTBPE Mean time between PHY errors

MTTFPA Mean time to false 802.3 packet acceptance

NACK Negative acknowledgement

OSI Operating system instance

PASID Process address space identifier

PCS Physical coding sublayer

PDC Packet delivery context

PDS Packet delivery sublayer

PFC Priority-based flow control

PGAS Partitioned global address space

PHY Physical layer device

PID Process identifier

PLS Physical layer signaling

PSN Packet sequence number

QoS Quality of service

RI Resource index

RoCE RDMA over converged Ethernet

ROD Reliable ordered delivery

 26

Copyright © 2025 Ultra Ethernet ConsortiumTM. All rights reserved.

Abbreviation Definition

RS Reconciliation sublayer

RS-FEC Reed-Solomon forward error correction

RTO Retransmission timeout

RTR Restart transmission request

RTT Round trip time

RUD Reliable unordered delivery

RUDI Reliable unordered deliver of idempotent operations

SACK Selective acknowledgement

SD Secure domain

SDK Secure domain key

SDKDB Secure domain key database

SDI Secure domain identifier

SDME Secure domain management entity

SER Symbol error ratio

SES Semantic sublayer

SHMEM Shared memory / Symmetric hierarchical memory

SMF Single-mode fiber

SSI Secure source identifier

TC Traffic class

TSC Timestamp counter

TSS Transport security sublayer

UCR Uncorrectable codeword ratio

UE Ultra Ethernet

UET Ultra Ethernet Transport

UEC Ultra Ethernet Consortium

UUD Unreliable unordered delivery

VAS Virtual address space

VC Virtual channel

VLAN Virtual LAN (local area network)

WDM Wavelength division multiplexing

YANG Yet another next generation

1.2.2.2 Terms

Class Term Description

Operating System
Communication

CPU Central processing unit; a generic processor for arbitrary
computation functions.

Memory An electronic holding place for the instructions and data used
by CPUs and accelerators.

 27

Copyright © 2025 Ultra Ethernet ConsortiumTM. All rights reserved.

Class Term Description

Operating system
instance (OSI)

An instance of an operating system (e.g., a virtual machine).

Process An instance of a program executing on an OSI owned by a
specific user and having a private virtual address space (VAS).
A process is identified by a process ID unique to the OSI it runs
in.

Process address space
ID (PASID)

A unique identifier for a VAS within each OSI. A target PASID
can be determined based on a combination of JobID and
PIDonFEP.

Process ID (PID) Operating system-assigned identifier for a process.

User An entity with access privileges to nodes of a cluster capable
of executing compute processes.

Virtual address space
(VAS)

Process-specific virtual address for memory allocation.

Fabric
Communication

Absolute addressing A mode of addressing a resource within the client/server job
model. Includes three complementary parts of the destination
address: (1) an FA identifying a FEP, (2) a PIDonFEP
interpreted without a JobID, and (3) a Resource Index.

Accelerator A compute module or device designed for the efficient
execution of specific functions.

Acknowledgment
packet (ACK)

A packet used by the UET to implement reliability. ACKs are
transmitted by the destination PDC to the source PDC to
indicate successful reception of packets at the PDS layer. ACKs
can carry a semantic response.

Best-effort network A network (as opposed to a lossless network) where packets
are sent on at least some links without any explicit
communication of buffer availability between a transmitter
and the link peer. Packets may be dropped due to insufficient
buffering.

Cluster A set of nodes connected by one or more fabric planes.

Congestion control
context (CCC)

Used to control the rate of data transfer between two FEPs
for RUD and ROD traffic. In some cases, a CCC is shared by one
or more PDCs.

Congestion
management sublayer
(CMS)

The part of the Ultra Ethernet Transport (UET) protocol
responsible for managing congestion.

Entropy value (EV) The value of the field within a packet header (e.g., UDP source
port) used to load balance packets across paths within the
fabric

Fabric One or more fabric planes.

Fabric address (FA) IPv4 (RFC 791) or IPv6 (RFC 8200) address.

 28

Copyright © 2025 Ultra Ethernet ConsortiumTM. All rights reserved.

Class Term Description

Fabric endpoint (FEP) A logical entity addressable by a single (assigned) FA. The UE
transport protocol, including the optional security context,
terminates at a FEP. A FEP connects to a fabric using a port
and can be used only by a single OSI. A FEP can have multiple
ports using a single FA, as long as the ports are each
connected to completely isolated fabric plane. A node can
have one or more FEPs.

Fabric path or path An ordered set of links (hops between nodes and/or switches)
through which a specific packet is transmitted from a source
FEP to a destination FEP. Packets can be routed along multiple
paths or planes between two FEPs.

Fabric plane or plane A set of FEPs connected with links and switches (optionally)
allowing any FEP to communicate with other FEPs in the same
set. Communication between FEPs on different fabric planes
is beyond the scope of this specification.

Folded Clos Type of multistage network topology composed of crossbar
switches. Also known as a fat tree.

Frame A unit of data transmission on an Ethernet network using
layer 2 encapsulation, starting with the MAC address and
ending with the CRC.

Initiator The FEP that initiates the creation of a PDC for RUD and ROD
modes.

Link A physical connection between two ports.

Lossless network A network in which all network devices (switches and
endpoints) avoid packet loss due to buffer overflow by
transmitting a packet only when it is known that the link peer
has available buffers to receive and store the packet. Packet
loss avoidance is applied to all links in the network.

Message One or more packets with the same message ID. A message is
split into a spatially (with respect to memory addressing)
ordered set of packets at the source. One or more messages
(and supporting packets) make up a transaction.

Negative
acknowledgement
packet (NACK)

A packet used by the UET to implement reliability. NACKs are
transmitted by the destination PDC to the source PDC to
provide an explicit indication of packet loss.

Node A computing device with one or more FEPs. A node may
contain one or more CPUs and/or one or more accelerators.

Packet An IPv4 or IPv6 datagram transferred across the network.
Packets are routed through the network along paths. Packets
of the same PDC traversing different paths may arrive in a
different order than how they were sent.

Packet delivery
context (PDC)

A logical unidirectional and often transient entity (established
by the transport) between two FEPs, which exists at the
initiator and at the target FEP to control the successful
transmission of packets.

 29

Copyright © 2025 Ultra Ethernet ConsortiumTM. All rights reserved.

Class Term Description

Packet delivery
sublayer (PDS)

The part of the Ultra Ethernet Transport (UET) protocol
responsible for delivering packets with desired ordering and
reliability over IP/Ethernet networks.

Packet window The maximum number of unacknowledged bytes that can be
outstanding on a congestion control context between two
FEPs.

Port A single Media Access Control (MAC) as defined by IEEE 802.3
and any UE extensions.

Relative addressing A mode of addressing a resource within the parallel job model
to ensure scalability to the largest process counts. Includes
four complementary parts of a destination address: (1) an FA
identifying a FEP, (2) a JobID identifying a job in a cluster
uniquely, (3) a local PIDonFEP ranging from 0 to P-1
identifying one of the P OSI PIDs that are associated with a
destination FEP (that are part of the job), and (4) a Resource
Index.

Semantic sublayer
(SES)

The part of the Ultra Ethernet Transport (UET) protocol that
implements the OFI libfabric API.

Switch A device with two or more ports that forwards packets
received based on the packet’s FA or other information/state.

Target The FEP that responds to the initiation of a PDC from an
initiator. The target does not initiate messages on the PDC
and only responds to messages from the initiator.

Traffic class (TC) A classification of network traffic that identifies mechanisms
and resources within endpoints and switches used for the
isolated transmission of packets (e.g., queues, buffers,
schedulers). Traffic classes are distinct from one another and
can be prioritized between one another. Attributes and fields
of received packets are used to identify a traffic class (e.g.,
Differentiated Services Code Point (DSCP) [3]).

Transaction One or more messages (and supporting packets) needed to
implement the libfabric request and deliver the payload
requested by the user.

UE Transport Protocol
(UET)

A method including protocol, packet formats, and FEP policies
by which FEPs communicate.

Parallel
Communication

Job A job consists of one or more ranks.

JobID A unique identifier for a parallel job within a cluster. JobIDs
are used for addressing and authorization purposes.

Parallel job A collection of processes running on a cluster that belongs to
the same user and can communicate.

Parallel job model A mode of cluster operation that involves MPI/*CCL or
SHMEM. The parallel job execution is characterized by a “run
to completion” model (in which checkpoint/restart is a simple
reliability technique).

 30

Copyright © 2025 Ultra Ethernet ConsortiumTM. All rights reserved.

Class Term Description

PIDonFEP An identifier of a process associated with a FEP numbered
from 0 to P-1. If each FEP has the same number of processes
associated with it, each endpoint can easily compute the
PIDonFEP of a particular RankID.

Rank A process that cooperates to compute a particular workload.
A job can spawn multiple ranks on each OSI, and an OSI can
host ranks of multiple jobs.

RankID An assigned rank number per job starting from 0.

Client-Server
Communication

Client A software entity on a node that communicates to a server
through FEPs.

Client/server job
model

A mode of cluster operation in which clients connect to
servers, e.g., storage or Function as a Service (FaaS). The
client/server execution typically runs the server for an
indefinite time, serving an indefinite number of clients (often
with complex reliability and availability guarantees).

Discovery The process of finding servers using static fabric addresses or
a discovery service such as DNS or LLDP.

Resource Index (RI) Identifies resources within a process such as a service, library,
or other entity (e.g., MPI vs. *CCL).

Server A software entity on a node that provides a service to one or
more clients.

Server PIDonFEP In combination with a Resource Index, a server PIDonFEP
identifies a service available on a specific FEP. The same FEP
may be used by multiple servers (on a single OSI), and a single
server may offer services through multiple PIDonFEPs in
combination with resource indices on multiple FEPs.

Security Threat
Model

Attacker An entity that wants to extract information from a
communication or modify communicated data.

Ciphertext The packet data containing the encrypted plaintext that is
sent on the wire between sender and receiver.

Information Data or properties of the data exchanged between two
participants that would allow the attacker to take or cause an
adverse action. Examples include cryptographic keys,
decisions of the FEP, etc.

In-scope threat Threat that is explicitly addressed by TSS and that has defined
mitigations.

Intermediary/switch An entity that routes or forwards packets to a receiver.

Out-of-scope threat A threat that is not considered or addressed in this
specification.

Plaintext The original data that needs to be encrypted by the sender
before transmission and the resulting data after it is
decrypted by the receiver.

 31

Copyright © 2025 Ultra Ethernet ConsortiumTM. All rights reserved.

Class Term Description

Protocol secrets UET secrets that are protected from users of the protocol
and/or attackers to maintain the trusted connection.

Side channel A method for an attacker to extract information without the
knowledge of the sender or receiver.

Threat Damage or danger that could expose protocol secrets, allow
the leaking of packet data, or degrade the integrity of the
network.

Threat mitigation How TSS specifically addresses the possible threat.

Trusted entity The portion of the FEP entrusted to handle key material and
perform cryptographic functions.

Privileged entity A portion of the FEP and kernel driver that is responsible for
assigning transport-critical information such as JobID and
security context.

User entity User application that uses a UET transport service.

Transport Security Additional
authentication data
(AAD)

The additional data authenticated with the ciphertext. Used in
conjunction with an AEAD cipher.

Association number
(AN)

Selects between one of the two active keys (SDK) for an SD.
The active AN is carried in the TSS header allowing the use of
both the old and new keys until the key rotation is complete.
The AN is used for key rotation.

Authenticated
Encryption with
Associated Data
(AEAD)

A symmetric cryptographic scheme that combines
confidentiality and authenticity.

Advanced Encryption
Standard (AES)

A symmetric encryption algorithm used with AES-GCM.

Cryptographic key Either a truly random binary string of a length specified by the
cryptographic algorithm or a pseudorandom binary string of
the specified length that is computationally indistinguishable
from one selected uniformly at random from the set of all
binary strings of that length. This definition is from NIST
SP800-108.

Differential power
analysis (DPA)

A side-channel attack that involves statistically analyzing
power consumption measurements from a cryptosystem.

Epoch A key epoch is a subinterval between changes in security
association. Key epochs are managed by the SDME to ensure
the IV is unique and MAY be used to automatically generate
new SDK by using a KDF.

Initial secure domain
key (SDKi)

A symmetric key from the SDKDB. This can be used directly as
the SDK or optionally used in a KDF to form the SDK.

Galois/Counter Mode
(GCM)

A mode of operation for symmetric-key cryptographic block
ciphers.

 32

Copyright © 2025 Ultra Ethernet ConsortiumTM. All rights reserved.

Class Term Description

Galois message
authentication code
(GMAC)

An authentication algorithm used with AES-GCM.

Initialization vector
(IV)

The initial block/condition of the block cipher.

Integrity check value
(ICV)

The checksum calculated by the sender over the AAD and
ciphertext and sent with the packet. The receiver uses the ICV
to validate the cryptographic integrity of the packet.

IPv4SIP IPv4 (RFC 791) source address.

IPv6SIP IPv6 (RFC 8200) source address.

IPv4DIP IPv4 (RFC 791) destination address.

IPv6DIP IPv6 (RFC 8200) destination address.

Key derivation
function (KDF)

A process to derive a new symmetric key (Ko) from an input
key (Ki) using a pseudo random function (PRF). A KDF uses a
derivation key (Ki), label and context input parameters to
generate an output key (Ko). In pseudo code form, (Ko =
KDF(Ki, label=x, context=y)).

SDK database (SDKDB) An SD database indexed by SDI and used to store/retrieve
security parameters for an SD. The SDI, AN, and possibly SSI
are used to obtain the key for the packet.

Secure domain (SD) A set of FEPs that communicate using the security services
(confidentiality and encryption) of TSS. Members of an SD
share a common set of security parameters (keys,
confidentiality offset, etc.). The SD is represented in the
packet as using an SDI.

Secure domain
management entity
(SDME)

Abstract secure domain administrator.

Secure domain
identifier (SDI)

An identifier of the SD, carried within the packet. The SDI in
conjunction with the association number (AN) identifies the
SDKDB key slot. This is used for rekeying.

Secure domain key
(SDK)

A symmetric key used for packet AEAD cipher or KDF
operation. SDK is a cryptographic key per NIST security
definition.

Secure source
identifier (SSI)

A unique identifier of the source of the packets. This identifier
can be explicitly carried within the packet (SSI) or the source
IP header address.

Timestamp counter
(TSC)

A monotonic counter (different for each packet sent).

Transport Security
Sublayer (TSS)

The UE Transport Security Sublayer defined by this
specification

 33

Copyright © 2025 Ultra Ethernet ConsortiumTM. All rights reserved.

Class Term Description

Libfabric mapping Application binary
interface (ABI)

An interface between two binary program modules (e.g., user
program and a library or operating system). The interface
defines how data structures and computational routines are
accessed in a low-level hardware-dependent format.

Application
programming
interface (API)

A type of software interface. An API offers a service to other
pieces of software and provides a way for two or more
computer programs or components to communicate.

Collective
Communications
Library (*CCL)

One of any number of Collective Communication Libraries
that implement collective operations common in parallel
computing (e.g., Broadcast, AllReduce, AllGather, etc). An
accelerator vendor commonly provides a proprietary *CCL
implementation that supports the vendor’s accelerator
capabilities.

Kernel mode driver
(KMD)

A component of the operating system that runs in the
privileged kernel mode, allowing code to access the system
memory and hardware directly.

Libfabric address
vector (AV)

A mapping of higher-level addresses, which may be more
natural for an application to use, into fabric-specific
addresses. See libfabric
<https://ofiwg.github.io/libfabric/v1.20.1/man/fi_av.3.html>.

Libfabric completion
queue (CQ)

High-performance event queues used to report the
completion of data transfer operations. See libfabric
<https://ofiwg.github.io/libfabric/v1.20.1/man/fi_cq.3.html>.

Libfabric endpoint (EP) A communication endpoint using the libfabric API that can
listen for connection requests and perform data transfers.
Endpoints are configured with specific communication
capabilities and data transfer interfaces. See libfabric
<https://ofiwg.github.io/libfabric/v1.20.1/man/fi_endpoint.3.
html>.

Libfabric event queue
(EQ)

A queue used to collect and report the completion of
asynchronous operations and events. Event queues report
events that are not directly associated with data transfer
operations. See libfabric
<https://ofiwg.github.io/libfabric/v1.20.1/man/fi_eq.3.html>.

Message passing
interface (MPI)

A standardized and portable message-passing
communications library interface designed for parallel
computing (e.g., MPI-4.1 as defined by the MPI Forum).

Partitioned global
address space (PGAS)

A parallel programming model that uses a logically partitioned
global memory address space to enhance performance and
efficiency in distributed systems.

Shared memory /
symmetric hierarchical
memory parallel
programming library
(SHMEM)

A communications library for distributed memory
environments focusing on one-sided communication allowing
applications to read and write each other's memory.

https://ofiwg.github.io/libfabric/v1.20.1/man/fi_av.3.html
https://ofiwg.github.io/libfabric/v1.20.1/man/fi_cq.3.html
https://ofiwg.github.io/libfabric/v1.20.1/man/fi_endpoint.3.html
https://ofiwg.github.io/libfabric/v1.20.1/man/fi_endpoint.3.html
https://ofiwg.github.io/libfabric/v1.20.1/man/fi_eq.3.html

 34

Copyright © 2025 Ultra Ethernet ConsortiumTM. All rights reserved.

Class Term Description

Credit-based flow
control

Best-effort VC A virtual channel configured to not use the CBFC credit
mechanisms.

CBFC message A link-level message between a CBFC sender and receiver.
Different CBFC messages are formatted as either a CtlOS or a
fully formed Ethernet packet.

Cell A unit of storage in a data buffer. Packets are usually divided
into one or more cells for storage. The number of cells in a
receiver’s data buffer is directly related to the number of
credits that a sender can use.

Control ordered set An 8-byte message format used by CBFC and LLR to pass
information between link partners.

Credit A token representing a unit of data storage at the receiver.
Credits allow a sender to transmit data packets and are
consumed at the sender as packets are transmitted. Credits
are returned to the sender by the receiver when the receiver
has released buffer resources that can be utilized for new
packet arrivals.

Lossless VC A virtual channel configured to require CBFC credits for
transmission of packets with guaranteed buffering available at
the receiver. A lossless virtual channel can be flow controlled
separately from other lossless VCs on a single physical link.

Receiver The link partner function that receives packet data and
transmits CBFC credits.

Sender The link partner function that transmits packet data and
receives CBFC credits.

Virtual channel (VC) An entity that contains a subset of a port’s traffic with similar
traffic characteristics, dedicated buffering, and flow control
management.

Link Layer Discovery Link Layer Discovery
Protocol (LLDP)

A media-independent protocol, standardized by IEEE as IEEE
Std 802.1AB, capable of running on all IEEE 802® LAN stations
allowing ports to learn the connectivity and management
information from adjacent stations.

Company ID (CID) IEEE Std 802: A unique 24-bit identifier assigned by the IEEE to
identify an organization. A CID cannot be used to generate
universally unique MAC addresses.

Management gNMI A standard gRPC-based network management interface
defined by the OpenConfig project and used to retrieve and
modify network device configuration as well as provide
control and generation of telemetry.

gNOI A standard gRPC-based network operations interface defined
by the OpenConfig project and used for executing operational
commands on network devices.

gRPC A high-performance open-source framework for universal
remote procedure call (RPC).

 35

Copyright © 2025 Ultra Ethernet ConsortiumTM. All rights reserved.

Class Term Description

Yet Another Next
Generation (YANG)

A data modeling language for the definition of data sent over
network management protocols such as the NETCONF and
RESTCONF.

1.2.3 Formatting

Figures are used to define protocol headers and protocol sequence exchanges. The conventions for

these figures are shown below. Wherever diagrams and figures inadvertently contradict the textual

description, the text always takes precedence.

1.2.3.1 Header Format Figures

Figure 1-2 is an example of a full-header stack as illustrated in other sections of the specification. These

full-header stacks do not show all the details of each header in each layer, but rather identify the

important fields needed for parsing the headers and finding the next layer of the stack. The layers of the

header stack are shown on the left and are differentiated by color.

Figure 1-3 is an example of an individual detailed header figure used in other parts of the specification.

Bytes are labeled across the top and down the left side. The least significant bit (LSB) of a byte is the first

bit on the left, and the most significant bit (MSB) of a byte is on the right. Header fields are labeled

below the byte labels at the top and to the right of the byte offset labels. Header field widths are based

on actual bit sizes. Reserved fields are to be ignored upon receipt and transmitted as zeros. Each

individual header is a stand-alone figure and shows the header starting at a byte offset of zero. The

actual offset of the header within a receive packet depends upon the specific format of the previous

headers, which are not shown in the stand-alone figure.

Figure 1-2 - Example Full Header Format

 36

Copyright © 2025 Ultra Ethernet ConsortiumTM. All rights reserved.

A description of the header fields is provided in a table following the detailed header figure.

1.2.3.2 Sequence Diagrams

Figure 1-4 shows an example of a sequence diagram used in this specification. Sequence diagrams are

used to illustrate the timeline for specific information exchanges between two entities and across

functional layers within entities. The event timeline flows from top to bottom. The sequence diagrams

do not provide a normative depiction of the complete set of information exchanged between entities,

but rather are used to describe a particular instance of a communication scenario. The example shows a

message provided to the UET semantics layer by an external entity (e.g., a libfabric provider), and how it

is broken into packets and passed to the PDS layer for transmission over the wire to a remote target.

Some of the important UET header fields are shown above the arrows indicating packets transmitted on

the wire. Actions and events that occur during the information exchange are highlighted using dashed

arrows and supporting text.

Figure 1-3 - Example Individual Header Format

 37

Copyright © 2025 Ultra Ethernet ConsortiumTM. All rights reserved.

SES PDS

[Send, MID 1, MO 0]

Initiator Target

PDS SES

[Send, MID 1, MO 0]

[MID1,MO0,RESP], def_rsp

[MID 1, MO 0, RESP]

[MID 1, MO 1, RESP]

[MID1,MO1,RESP], def_rsp

[MID1,MO2,RESP], !def_rsp

[MID 1, MO 2, RESP]

PacketsMessages Packets MessagesPackets

MSG SEND
REQUEST

MSG
COMPLETION

[Send, MID 1, MO 1]

[Send, MID 1, MO 2]

[Send, MID 1, MO 1]

[Send, MID 1, MO 2]

Mark PSN 333
as received

Mark PSN 333 as
transmitted

SES response not stored for
PSN 333 & 334,
SES response is stored for
PSN 335

Free state
for PSN 335

Free SES response
state for PSN 335

Non-default
state (e.g. NACK)

FEP-A FEP-B

If there is no Request packet to transmit, this is
Control Packet of type = Clear Only

MSG SEND
REQUEST [Send, MID 2, MO 0]

Figure 1-4 - Example Sequence Diagram Figure

1.2.4 References

The UE specification makes both normative and informative references. Normative references are

required to assure interoperability among UE components. Informative references are intended to

provide additional background and further understanding of the UE operating environment. Each

chapter of the UE specification may provide a list of normative and informative references.

The following normative references are used in this introductory material:

[1] IETF RFC 2119, "Key words for use in RFCs to Indicate Requirement Levels," 1997. [Online].

Available: https://www.rfc-editor.org/rfc/rfc2119.

[2] IETF RFC 8174, "Ambiguity of Uppercase vs Lowercase in RFC 2119 Key Words," 2017. [Online].

Available: https://www.rfc-editor.org/rfc/rfc8174.

[3] IETF RFC 2474, "Definition of the Differentiated Services Field (DS Field) in the IPv4 and IPv6

Headers," 1998. [Online]. Available: https://datatracker.ietf.org/doc/html/rfc2474.

[4] IETF BCP14, "IETF Best Pratice 14," 2023. [Online]. Available:

https://datatracker.ietf.org/doc/bcp14/.

1.3 System View and Nomenclature

The field of AI and HPC is evolving at a very fast pace. AI models are changing at an even faster pace.

This has created a need for fine-tuned systems that scale horizontally and vertically for various AI and

https://www.rfc-editor.org/rfc/rfc2119
https://www.rfc-editor.org/rfc/rfc8174
https://datatracker.ietf.org/doc/html/rfc2474
https://datatracker.ietf.org/doc/bcp14/

 38

Copyright © 2025 Ultra Ethernet ConsortiumTM. All rights reserved.

HPC workloads. Horizontal scaling involves adding more endpoints and/or fabric switches. Vertical

scaling involves endpoint expansion by adding more processing, memory, and/or storage.

Algorithm and model evolution is outpacing the hardware (mainly on memory, storage, and network

aspects). An optimal system balances a triangle of compute, network (i.e., fabric), and the associated

data (i.e., model parameters and training data). The UE specification explicitly addresses network

technology and implicitly addresses other elements.

The UE specification addresses distributed workloads, whether they are AI or HPC, and naturally inherits

some nomenclature from parallel computing. Figure 1-5 provides a system overview of the parallel

computing components, terms, and concepts addressed by the UE specification. The following text

provides a high-level overview and introduction of the UE environment and associated nomenclature.

Technical details of the procedures, protocols and operation of the components specified in this

standard are provided in subsequent normative chapters.

UE is specified to operate within a cluster, which includes an interconnection of nodes through a fabric.

A port implements a single Media Access Control (MAC) as defined by IEEE Std 802.3, optionally

including any UE specific extensions, as required by the UET profile it complies with. A link connects two

ports. A fabric interface (FI) is a physical entity that provides one or more ports and exposes one or more

fabric endpoints (FEPs) to one or more operating system instances (OSIs). A fabric address (FA) is either

an IPv4 or IPv6 address, and a FEP is a logically addressable entity assigned a single FA. The UE transport

protocol terminates at a FEP, optionally including a security context. Specifically, a FEP can only be used

by a single OSI, and a node may have one or more FEPs. Each OSI may use one or more FIs with one or

more FEPs to connect to a fabric.

A switch has two or more ports and is a packet forwarding device that is part of the fabric. Packets are

forwarded along a path based on forwarding information that includes the packet’s FA, other header

fields (e.g., the UDP source port used as an entropy value), and switch state. Any two packets with the

same path forwarding information are expected to take the same path through the fabric. A fabric plane

is a set of FEPs connected with links and optionally switches allowing any FEP to communicate with

other FEPs in the same set. Communication between FEPs across different fabric planes is beyond the

scope of this specification. A path exists within a fabric plane, but not across fabric planes. A fabric is

made up of one or more fabric planes.

 39

Copyright © 2025 Ultra Ethernet ConsortiumTM. All rights reserved.

A node is a computing device with one or more FEPs. A cluster is a set of such nodes connected by a

fabric (Note that the simplified diagram in Figure 1-5 is for illustration purposes and shows only a single

node in the cluster. A typical UE deployment can have hundreds of thousands of nodes). An accelerator

is a computing module or device designed for the efficient execution of specific functions. A CPU is a

generic processor for arbitrary computation. CPUs and accelerators have memory attached, and a FEP

has access to that memory through virtual addressing. A node may have local storage and contain one

or more CPUs and/or one or more accelerators.

A user is an entity with access privileges to nodes of a cluster. A user can execute processes. A process is

an instance of a program executing on an OSI owned by a specific user and having a private virtual

address space (VAS) in the memory. A process is identified by a process ID (PID) unique to the OSI it runs

in. A process address space ID (PASID) is a unique identifier for a VAS within each OSI.

Clusters can be used in two fundamentally different ways that can potentially co-exist:

1. Executing in a parallel job model (e.g., MPI/*CCL ,or SHMEM).

2. Executing in a client/server model in which clients can connect to servers (e.g., storage or a

Function as a Service (FaaS)).

Each packet carries an identifier indicating which model it is participating in. The parallel job execution is

characterized by a “run to completion” model, while the client/server execution typically runs the server

for an indefinite time, serving an indefinite number of clients (often with complex reliability and

availability guarantees).

Figure 1-5 - System Overview

OS

Process
PASID=X

Process
PASID=Y

Fabric Plane 1

Fabric

Fabric Plane N

Cluster

FI (Fabric Interface)

FEP
FA=x.x.x.x

FI (Fabric Interface)

User

Node
CPU Memory

FEP
FA=y.y.y.y

Accelerator

Port

FEP
FA=w.w.w.w

Port

Switch
Port

Path
Port

Switch
Port

Port

Port

pdcccc pdcccc pdcccc

pdcccc pdcccc pdcccc

Port

pdcccc pdcccc pdcccc

pdcccc pdcccc pdcccc

Storage

 40

Copyright © 2025 Ultra Ethernet ConsortiumTM. All rights reserved.

Two FEPs require IP-level connectivity to communicate. Multi-ported FEPs are supported in a UE

network provided there is one FA (i.e., IP address) associated with any FEP. The FA associated with the

FEP is used as the source for all packets sent from the FEP, or as the destination for all packets sent to

the FEP.

A FEP can have multiple ports (e.g., scenario A in Figure 1-6). UE does not mandate how those ports are

used. Many multi-ported configurations are possible, including: a link aggregation (LAG) with members

terminating on the same switch (e.g., scenario D in Figure 1-6), a multi-switch LAG with members

terminating on different switches (e.g., scenario E in Figure 1-6), or IP-level multipath connectivity to

reach the FEP’s individual address via multiple ports or in an active-standby configuration. Other

scenarios for supporting multiple ports on a common fabric interface are possible and are

implementation-dependent (e.g., Scenarios B, C, and F in Figure 1-6). Scenario F of Figure 1-6 shows an

embedded switch on a fabric interface card.

In multi-ported FEP architectures, the UET congestion management sublayer chooses the entropy value

for each packet. The UET does not mandate any specific port-selection method for multi-ported hosts; it

can vary between implementations.

Informative Text:

In multi-ported configurations, the network is expected to provide a mechanism that allows a FEP to

detect if a destination IP address (e.g., the FA of a peer FEP) is unreachable on any given plane and, if

so, avoid using that plane for that destination. Possible methods to do this include using IP routing

protocols or ICMP unreachable messages to communicate unreachability to a FEP., The UET, however,

does not mandate any specific technique. In the future, mechanisms might be defined in the UET to

allow the determination of reachability.

Figure 1-6 - Multi-plane Networks and Multi-port FEPs

Plane N

Plane 1

Red Fabric Plane
Blue Fabric Plane

FEP

OS

port

FI (Fabric Interface)

Node

CPUMemoryAccelerator

port
pdc

ccc

FEP

OS

port

FI (Fabric Interface)

Node

CPUMemoryAccelerator

port
pdc

ccc

FEP

OS

port

FI (Fabric Interface)

Node

CPUMemoryAccelerator

port
pdc

ccc

LAG

Split
Mult-Link

LAG

FEP

OS FI (Fabric Interface)

Node

CPU Memory Accelerator

portpdcccc

FEP portpdcccc

FEP

OS FI (Fabric Interface)

Node

CPU Memory Accelerator

portpdcccc

FEP portpdcccc

FEP

OS

port

FI (Fabric Interface)

Node

CPU Memory Accelerator

port
pdc

ccc

A

B

C

D

E

F

ISL

pdc

ccc

pdc

ccc

pdc

ccc

pdc

ccc

pdc

ccc

pdc

ccc

pdc

ccc

pdc

ccc

pdcccc pdcccc

pdccccpdcccc

pdccccpdcccc

pdccccpdcccc

Switch Switch

 41

Copyright © 2025 Ultra Ethernet ConsortiumTM. All rights reserved.

Two different computing models are differentiated in terms of addressing: parallel job and client/server.

A single FEP may be designed to support the traffic type of both or just one computing model. Both

modes can operate simultaneously over a single FEP. Figure 1-7 and Figure 1-8 are overviews of the two

different computing models within a cluster.

A parallel job is a collection of processes running and communicating on a cluster that belongs to the

same user. A job is often started collectively and is uniquely identified by a JobID within a cluster. JobIDs

are used for addressing and authorization purposes. Jobs consist of one or more ranks, which are

processes that cooperate to compute a particular workload. A job can spawn multiple ranks on each OSI,

and an OSI can host ranks of multiple jobs. If a job globally contains R processes/ranks, then they are

numbered with RankIDs from 0 to R-1. In the parallel job model, the local PIDonFEP addressing ranges

from 0 to P-1 where P processes are associated with a FEP for a given job. If each FEP has the same

number of processes associated with it, each endpoint can easily compute the PIDonFEP of a particular

RankID. As an example, assume a job runs on R ranks across N nodes, where each node has F FEPs. The

RankID range is 0 to R-1, the ranks per node is R/N, and the ranks per FEP is R/N/F. In this case, P is

R/N/F and the PIDonFEP range is 0 to P-1, or 0 to R/N/F-1.

A server is a software entity on a node that provides a service to one or more clients. Clients and servers

communicate through FEPs. A server PIDonFEP identifies a service available on a specific FEP, and a

Resource Index identifies a resource within that service. The same FEP may be used by multiple servers

(on a single OSI), and a single server may offer services through multiple PIDonFEPs on a FEP. A

client/server JobID is conceptually the same as an “N to 1” connection in that it is used for authorization

Figure 1-7 - Parallel Job Model

OSI

FEP
FA=x.x.x.x

Rank0
PIDonFEP=X

Cluster

Port

Fabric Interface

User 1
Node

Rank1
PIDonFEP=Y

Rank0
PIDonFEP=Z

Port Port

FEP
FA=y.y.y.y

Port

Fabric Interface

Node

Switch

JobID=K

JobID=P

User 2

OSI

Rank2
PIDonFEP=X

Rank3
PIDonFEP=Y

Rank1
PIDonFEP=Z

 42

Copyright © 2025 Ultra Ethernet ConsortiumTM. All rights reserved.

of a client toward a server, but it may be ephemeral in that it exists only while traffic is active. The

combination of server PIDonFEP and Resource Index is conceptually the same as a TCP/UDP port.

UET servers can use well-known server PIDonFEP values and a set of resource indices for specific

services, and UET clients may use either preconfigured static server FAs or various discovery

mechanisms to resolve a server’s hostname or alias to an FA, such as DNS or a ‘hosts’ file, allowing

clients to establish communications with a server. Additionally, UET clients and servers can choose to

utilize non-UET discovery methods such as first establishing a TCP/IP connection and subsequently

exchanging UET capabilities, addresses, and identifiers.

UET has both relative and absolute endpoint addressing modes (see Figure 1-9). The relative addressing

mode provides consecutive addressing within the parallel job model to ensure scalability to largest

process counts. Absolute addressing is used in the client/server model.

In the relative addressing mode, UET defines four complementary parts of a destination address:

1. An FA identifying a FEP.

2. A JobID uniquely identifying a job in a cluster.

3. A PIDonFEP ranging from 0 to P-1.

4. A Resource Index (RI) identifying a service, library, or other entity within the target process (e.g.,

MPI vs. *CCL).

When a packet arrives at a destination FEP, the target PASID can be determined based on a combination

of JobID and PIDonFEP.

Figure 1-8 - Client/Server Job Model

OSI

Cluster

User 1 Node

Port Port

OSI

Client
PIDonFEP=X

Node

Switch

User 2

FEP
FA=x.x.x.x

Port

Fabric Interface

Port

Server

PIDonFEP=X

PIDonFEP=Y

Server

PIDonFEP=X

OSI

Client
PIDonFEP=X

Client
PIDonFEP=Y

Port

JobID=K

JobID=P

FEP
FA=x.x.x.x

Port

Fabric Interface
Node

FEP
FA=y.y.y.y

Port

Fabric Interface

FEP
FA=w.w.w.w

Port

Fabric Interface

 43

Copyright © 2025 Ultra Ethernet ConsortiumTM. All rights reserved.

Informative Text:

Assume a job contains K endpoints and P processes per endpoint. This addressing scheme allows for a

table of size K-1 at the source to translate to a destination FA and then, at this destination, a table of

size P to translate to the target process at the destination. In a system that supports multiple jobs per

endpoint, the JobID disambiguates different jobs at the destination to find the right PIDonFEP table of

size P. This avoids O(K*P) table entries at the source that would be required if one flat address space

was used. This approach replaces the O(K*P) table entries with O(K+P) entries. . K is expected to be in

the tens of thousands, P in the hundreds.

In the absolute addressing mode, UE defines three complementary parts of an address:

1. An FA identifying a FEP.

2. A PIDonFEP identifying one of the OSI PIDs that are associated with a destination FEP.

3. A Resource Index (RI) identifying a service or other entity within the target process.

The RI is useful to address a specific subroutine or function in a server (e.g., running a FaaS or rPC

service). When a packet arrives at a destination FEP, the target PASID is determined based on the

PIDonFEP. The JobID is not part of addressing but is used for authorization.

Messages represent a single communication transaction in the UE network. Figure 1-10 shows the main

concepts behind message communication delivery. A transaction is created by a process calling into the

UET libfabric provider, which in turn calls into the semantics layer. The semantic sublayer creates various

messages to complete the transaction. A message and its associated buffer are split into a spatially

ordered set of packets, with respect to memory addressing, at the source FEP. The packets are sent and

routed, potentially out of order, through the network along paths. A message may initially involve a

rendezvous protocol step as discussed in the UET semantics specification.

Figure 1-9 - Addressing Modes

 44

Copyright © 2025 Ultra Ethernet ConsortiumTM. All rights reserved.

The source of such a message is called the initiator, and the destination is called the target. Each packet

has a source FEP and a destination FEP. A path is an ordered set of links (between nodes and/or

switches) through which two FEPs communicate. Without considering packet loss in the fabric, packets

of the same traffic class (TC) sent along the same path are always received at the destination FEP in the

order they were sent at the source. When packets are routed along multiple paths between two FEPs,

no ordered arrival among different paths is guaranteed. UET expects that switches will, in the absence of

routing changes, deliver two packets from the same PDC, with the same entropy value and traffic class,

along the same path. The UE transport protocol (UET) defines protocols, packet formats, and FEP

policies by which FEPs communicate. A FEP can be designed to support either parallel, client/server, or

both traffic types.

A packet delivery context (PDC) is a unidirectional logical and often transient entity (defined by the

transport) between two FEPs, that exists at the initiator FEP and at the target FEP to control the

successful transmission of packets. The packet delivery sublayer (PDS) creates and uses PDCs to provide

the requested ordering and reliability delivery mode. Reliability is implemented using acknowledgment

packets (i.e., ACKs and NACKs), which the destination transmits to the source to indicate successful end-

to-end reception. The congestion management sublayer (CMS) controls the number of bytes that a

source can transmit to a destination at any given time. A packet window is the maximum number of

unacknowledged bytes that can be outstanding on a CCC. Multiple processes of the same job can share

a single PDC, and a single process can use multiple PDCs to communicate with another process. Between

two FEPs, there can be one or more PDCs, and each packet identifies an associated PDC.

Figure 1-10 - Transport Data Delivery and Packet Delivery Contexts

Ini ator

Applica on

Memory

libfabric

Seman cs

Packet
Delivery

Security

MAC

Target
Applica on

Memory

libfabric

Seman cs

Packet
Delivery

Security

MAC
A

A

A

AA

A

A

A

A

A

A

A

A

A

 45

Copyright © 2025 Ultra Ethernet ConsortiumTM. All rights reserved.

1.3.1 Workloads [Informative]

The information in this subclause is background material and represents the state of the art for

workloads as of the publication of the UE Specification v1.0. UE targets the following four workloads:

1. AI training (AIT)

2. AI inference (AII)

3. High-performance computing (HPC)

4. Client/server (e.g., storage traffic)

1.3.1.1 AI Training Workloads

AI training workloads were originally characterized by “3D parallelism” where the communication

pattern could be expressed as a 3D torus if it were beneficial. The first dimension is data parallelism

(DP), where the examples in a single minibatch are processed through multiple model replicas, and

gradients or weights are synchronized with allreduce operations.

The second dimension is pipeline parallelism (PP), where each pipeline stage is a set of layers of the

model, and communications of the activations in the forward direction and errors in the backward

direction are performed between neighboring layers on different accelerators forming a pipeline with

point-to-point communications.

The third dimension is operator parallelism (OP), which depends on the type of layer. For large language

models (LLMs), the main layer operation is matrix multiplication. Thus, layers would implement a

parallel matrix multiplication that can also be expressed with allreduce operations. “Mixture of Experts”

models often use expert parallelism (EP) that is similar to operator parallelism in the 3D parallelism

view. EP bundles k (for typical k=16 to 256) models together and performs an alltoall(v) operation

among them. The alltoall(v) operation is not always balanced. AI inference parallelism is very similar. It

differs in that it does not consider data parallelism and usually uses very small batches. Thus, both job

sizes and transmitted messages are generally smaller.

Later, additional parallelism dimensions, such as sequence and context parallelism were added and may

lead to higher-dimensional communication structures.

As a workload example (circa 2023), the well-known GPT-3 model had 175 billion parameters in 96

transformer layers. Storing those parameters in FP16 required 350 GiB, which required multiple state-

of-the-art accelerators available in 2023 (not accounting for stashed activations or other temporary

values or copies during training). In this scenario, if there are six accelerators along the pipeline and four

in the operator parallelism dimension, then there are 16 GPT decoder layers per four accelerators. On

accelerators available in 2023, this would have taken approximately 160 msec compute time. The

communication is then 50 MiB per layer along each dimension (pipeline and operator).

Assuming a target service level objective of 200 msec, then 40 msec are for pipeline communications

and the ring allreduce (which sends data twice). Each accelerator now sends 50 MiB 16*2 times for

allreduce and once along the pipeline dimension. Thus, it needs to communicate 1.7 GiB in 40 msec,

requiring 41 GiB/s. For lower latency, one can scale the operator dimension and decrease the

 46

Copyright © 2025 Ultra Ethernet ConsortiumTM. All rights reserved.

communication time. For a 10 msec service level objective, one would need approximately 150-200

GiB/s throughput.

AI training workloads follow a 3D parallelism scheme but in addition to the weights, each accelerator

typically stores a “golden copy” of the weights as well as all activation outputs for its layers until it

applies the gradients on the backward pass. In general, AI training workloads require extremely high

(cheap) bandwidth and have low to moderate latency sensitivity. Typical message sizes are in the

megabyte or larger regime.

1.3.1.2 AI Inference Workloads

AI inference workloads follow a 3D parallelism scheme but do not offer data parallelism, as each input

sample is a user request. They may be batched, but usually this is used only to improve accelerator

efficiency. AI inference workloads sometimes have stringent service level objective requirements to

satisfy interactive usage patterns. In this case, batches are smaller, leading to smaller activations

(pipeline messages) as well as operations (allreduce). These often remain in the kilobyte-size range.

Consider generative AI inference on GPT-3 as an example. In this case only one token is input instead of

a full sequence in the GPT-3 example above. Thus, everything is approximately a sequence length

smaller (2048 for GPT-3). In practice, generative inference systems often use beam search for improved

quality. With a beam width of four, there is a total shrinking factor of 512. Unfortunately, the weight

memory remains the same, leading to the same distribution (OP=4, PP=6). The computation now can be

as small as 1 msec and would send 3.3 MB of data per accelerator. With a service level objective of 1.2

msec, a reduction would be performed in 0.2 msec, leading to a bandwidth requirement of 16 GB/s —

but now with allreduce of size around 100 KB. If those were split across multiple planes, then message

sizes would be in the single-digit kilobyte range. The bandwidth requirements grow with distributed KV

caching! Inference requires lower latency than training in general.

1.3.1.3 HPC Workloads

HPC workloads fall into two categories: (1) low depth (LD), which is highly parallel and (2) high depth

(HD), which has long dependency chains. HD workloads often have long and skinny-directed acyclic

graphs (DAGs) leading to latency-sensitive execution. Many strong scaling problems have this shape.

Consider weather forecasting as an example. In this case the computation must finish in a certain time.

The algorithms run many iterations during the simulation, where the time step inversely depends on the

resolution. More accurate higher resolution models lead to smaller timesteps. In practice, such models

have high communication overheads (25-50%) with mostly small (single-packet) messages (2.5 kiB) in

recurring patterns.

Many other workloads are LD and thus less latency-sensitive. Most weak-scaling workloads where one

can adjust the local domain size to run well on a given system fall into this category. Some of those

workloads may need high bandwidths (e.g., AI training) or high message rate (e.g., graph algorithms).

 47

Copyright © 2025 Ultra Ethernet ConsortiumTM. All rights reserved.

1.3.1.4 Client/Server (e.g., Storage Traffic)

Storage traffic serves data from storage servers to endpoints and is an example of client/server

communication. The communication stacks often split larger requests into multiple smaller messages

(e.g., some MiB or even some KiB). Those sizes can, to some extent, be tuned to the transport protocol.

The data access patterns and sizes are user-dependent and are rarely controlled by the system

administrator. Thus, random incast events (e.g., many customers accessing the same storage server)

regularly occur.

1.4 Software

1.4.1 AI and HPC API Interface

UE is designed to support libfabric v2.0 APIs and collaborates with the libfabric community to allow an

endpoint to interact with AI frameworks and HPC workloads. Some UE optional features require support

from network devices (e.g., switches) for advanced capabilities such as packet trimming. To that end,

the network operating system (NOS) requires extensions to support UE features.

UE does not currently address interactions across administrative domains.

1.4.2 Fabric Endpoint Software Stack

Figure 1-11 shows the software stack running on a FEP.

UE is designed to support existing AI training (AIT) and AI inference (AII) frameworks. These frameworks,

like TensorFlow, PyTorch, JAX, and others, are expected to work seamlessly on top of a UE software

stack. In other words, a goal of UE is to enable the migration of applications, relying on these

frameworks, to UE-powered nodes without requiring change. It is common for the frameworks to

leverage a hardware-dependent vendor-specific *CCL library. However, a UE-compliant *CCL library,

while not directly specified, does not require an application change.

Figure 1-11 - UE Software Endpoint Stack

Kernel Mode

User Mode

UE Vendor Kernel Mode Driver

libfabric OpenFabrics (OFI)
other provider UE vendor provider

*MPI *CCL SHMEM

Applications & Frameworks

optionalnetlink

Other

OFA

Ultra Ethernet

UEC NIC Vendor

Color Coding

UE
defined

APIs

Hardware UE Vendor FEP

NetDev

Kernel.org

provisioning

 48

Copyright © 2025 Ultra Ethernet ConsortiumTM. All rights reserved.

1.4.3 Switch Software Stack

Figure 1-12 shows an example of a switch software stack supporting UE features. UE operates over

existing Ethernet switches, but additional capability may be obtained by supporting optional UE features

in switches. Switches in the UE environment are expected to run a variety of network operating systems

(e.g., SONiC, FBOSS, Junos OS, IOS, etc.). Optional UE functionality within the switch silicon can be

accessed through a switch chip abstraction interface (e.g., SAI) that has been suitably enhanced for UE.

No changes are required to the forwarding paradigm of the switch and its associated network operating

system (NOS). IP-based forwarding can remain unchanged; however, optional features are defined for

UE (e.g., packet trimming).

1.4.4 Network Operating System (NOS) Interface

The NOS provides essential services on switches for configuration and control. Some NOS components

may need to be updated to support UE features. The following are examples:

• UE organizationally specific TLVs for LLDP.

• Packet trimming.

Figure 1-12 shows the layering of various switch modules. The layer above a switch abstraction interface

(SAI) is referred to as the NOS control plane, and functionality below is referred to as the NOS data

plane.

The control plane software interacts with data plane functionality through an abstract API. One example

interface is the switch abstraction interface (SAI) developed in the Open Compute Project (OCP). SAI

Figure 1-12 - Switch Module Layering

SDN Controller (NMaaS)

Application Containers

Switch State Service (SWSS)

Switch Abstraction Interface (SAI) UE

Technology Provider ASIC SDK

ASIC Drivers

Switch Silicon UE

e.g., Redis

Management Space

User Space

Kernel Space

Hardware

Control Plane

Data Plane

UE

 49

Copyright © 2025 Ultra Ethernet ConsortiumTM. All rights reserved.

provides an abstraction layer on top of a vendor-provided software development kit. This abstraction

helps the NOS interact with a single consistent set of APIs for hardware programming. See the following

references:

• <https://www.opencompute.org/wiki/Networking>

• <https://www.opencompute.org/wiki/Networking/SAI>

An SDN controller may be part of UE implementations but is not within scope of the UE specifications.

1.5 Networking

1.5.1 AI and HPC Network Taxonomy

UE differentiates three network types as illustrated in Figure 1-13:

1. Frontend network

2. Backend scale-out network

3. Scale-up network

1.5.1.1 Frontend Network

The frontend network is the operational network in datacenters that connects all compute nodes to the

outside world (e.g., other datacenters or end customers on the Internet). This makes the frontend

network one of the most important components in the datacenter. Any loss of availability in the

frontend transport leads to direct customer impact and related costs. Because the frontend network

connects customers and distant datacenters, it may support a variety of transport protocols (e.g.,

TCP/IP, UDP/IP, and QUIC) that can operate over long-distance links with millisecond-level delays.

Furthermore, multi-tenancy of the compute node is frequently used and may require network overlays

to support virtual machine migration and network virtualization.

Fundamentally, frontend networks carry two types of traffic: “north-south” (NS) traffic to and from the

outside world (i.e., other datacenters and customers) and “east-west” (EW) traffic from network

endpoints within the same datacenter. Each traffic type has fundamentally different characteristics. For

example, EW traffic is often higher bandwidth than NS traffic, and packets are less “valuable” (i.e., they

can be discarded and retransmitted at lower cost than for NS traffic). Furthermore, EW traffic usually

has more stringent latency (i.e., microseconds) and higher bandwidth requirements (e.g., tens-of-

gigabit/s) as it often connects diverse services, such as deep call chains of microservices, serverless

functions, or storage access. NS traffic is often customer-facing, and bottlenecks often occur outside the

datacenter. These characteristics may limit latencies to single-digit milliseconds and tens-of-megabit/sec

bandwidths.

https://www.opencompute.org/wiki/Networking
https://www.opencompute.org/wiki/Networking/SAI

 50

Copyright © 2025 Ultra Ethernet ConsortiumTM. All rights reserved.

Handling these two types of traffic in addition to providing high availability make frontend networks

quite complex. Switches and NICs need to support complex functionality such as filtering, policing,

encapsulation, and security.

1.5.1.2 Backend Scale-out Network

The backend network is usually a specialized high-performance network of limited scope relative to the

frontend network — often deployed across a “cluster” (e.g., a set of rows). It is sometimes also called a

“scale-out” network. The backend scale-out network often forms its own layer-3 subnet and is not

usually connected directly to the frontend network. Communication between frontend and backend

networks often occurs through compute nodes with network interfaces into both networks.

The backend scale-out network serves very special purposes. For example, an HPC backend scale-out

network enables communication via a message passing interface (MPI), while a deep learning backend

scale-out network delivers training traffic. An AI-oriented backend scale-out network might include

special-purpose optimizations such as switch support for collective operations over bulk data, while an

HPC-oriented backend scale-out network might support latency optimizations only for small collectives.

Having two networks may increase the cost of the overall system (i.e., two networks instead of one —

separate frontend and backend networks). However, two networks provide a clean separation of traffic

(i.e., no interference) and design (i.e., allowing for different architectures and technology deployments).

In some classic HPC systems, the backend scale-out network provides all the connectivity and network

services for the compute nodes. However, this is achieved by retrofitting traditional transport protocols

(e.g., TCP/IP) over the top of the HPC transport (e.g., portals, IPoIB) and accepting the trade-offs that are

implied.

Figure 1-13 - Network Types

Backend
Scale-Out
Network

NIC

NIC

XPU

CPU

NIC

NIC

NIC NIC

Scale-Up
Network

XPU

XPUXPU

CPU

Node
Node

Node

Node

…

Frontend
Network

PCIe/CXL
Scale-Up
Scale-Out
Frontend

 51

Copyright © 2025 Ultra Ethernet ConsortiumTM. All rights reserved.

1.5.1.3 Scale-up Network

Scale-up networks are typically very specialized short-range interconnects that often come with only a

single tier of switches or possibly no switch at all.

Historical scale-up networks support I/O coherency that is not always present in all types of

interconnects. Modern examples used to connect accelerators (e.g., XPUs known as GPUs, FPGAs, or

specialized SoCs) include AMD’s XGMI, NVIDIA’s NVLINK, Intel’s Xe Link, switched PCIExpress, and CXL

systems. The capabilities of these networks usually include memory semantics (which is similar to RDMA

for bulk transfers) at the lowest available latencies (targeting sub-microsecond, for a small-scale or

programmed memory access). UE primarily focuses on backend and scale-out networks, but concepts

and portions of UE technology may apply to scale-up networks.

In typical 2024 datacenter environments, the three types of networks are distinguished by different

characteristics, summarized in Table 1-1.

Table 1-1 - Distinctive characteristics by network type (circa 2024)

Characteristic (2024) Frontend
(Intra Data Center)

Backend Scale-out

Scale-up

Latency requirements1 (One-way delay) 100 µs+ < 10 µs < 1 µs

Single-link bandwidth requirements up to 100 Gbit/s up to 800 Gbit/s up to 800 Gbit/s

Number of links 1 per node 1 to 2
(per accelerator)

Many
(per accelerator)

Multi-tenancy requirements Hundreds of
tenants per
endpoint

Up to tens of
tenants per
endpoint

Usually, single
tenant

Security requirements Important today

(SSL/TLS encrypt

everything)

Important in the

future for some

(depends on

offering, encrypt

everything should

be optional)

Optional

Protocol requirements Wide variety of

transport

protocols (all IP

compatible, some

workload-

specialized

proprietary, need

to co-exist)

Proprietary
protocols ok
(desired for
workload
specialization,
probably L3
headers for
compatibility, no
need to co-exist)

Proprietary
protocols
necessary
(probably no IP for
performance
reason, L1/L2
headers only,
some provide
coherency)

Maximum link length requirement 1500 m 150 m 5-10 m

Deployment scale
(network endpoints)

256k+ 256k 100-1000

Topology 3 level Clos 2-3 level Clos or
Dragonfly

full mesh or single
stage switch

Single-job scale
(network endpoints)

100 256k 100-1000

 52

Copyright © 2025 Ultra Ethernet ConsortiumTM. All rights reserved.

Characteristic (2024) Frontend
(Intra Data Center)

Backend Scale-out

Scale-up

Note:
1. The latency requirement is a bound on the range of the congestion window for full bandwidth.

Informative Text:

This specification is focused on the backend scale-out network. UEC will consider opportunistic

support for frontend and scale-up networks. The intent is that when making trade-offs, the goal of

supporting frontend or scale-up networks will not impact the performance of backend scale-out

deployments and will not impact the schedule for this specification delivery.

1.5.2 UE Transport (UET) Objectives

UET is focused on enabling the workloads and use cases for HPC and AI (AIT and AII). UET mainly targets

RDMA service and attempts to provide the best, modernized, and highly optimized transport service for

carrying RDMA in AI and HPC workloads. The general characteristics are summarized in Table 1-2. The

three use cases (i.e., dedicated AI training cluster, cloud AI/HPC, and at-scale HPC) involve organizations

that leverage the full system scale of a single application as well as organizations who fill a significant

fraction of the machine with single-node applications – and the full spectrum in between. The objective

for UET is to serve the breadth of these use cases with a single transport protocol.

Table 1-2 - Characteristics of UET Deployment Model

Characteristic (2026+) Dedicated AI Training

Cluster

Cloud AI/HPC At Scale HPC

Network scale

(Ethernet ports)

100k – 256k 256k 80k – 256k

Target unloaded one-way

latency

2 – 10 µs 2 – 10 µs 2 – 10 µs

Ethernet port speed 800 G+ 400 G+ 800 G+

Average network utilization Up to 85% 20-40% overall BW

60-80% for AI cloud

Varies, 60-80% for

BW-intensive apps

Packet rate Low Mixed High

Message size Relatively large Mixed Tiny to Mixed

Encryption Optional Required Optional

Multi-tenancy Node-level job isolation Node-level job isolation +

network virtualization

Node-level job

isolation

An additional UET goal is to provide an accelerator-friendly interface. This involves defining a

specification that minimizes the required hardware complexity for integrated endpoints. Another aspect

involves defining a software solution that enables accelerators and other processors to do more in

hardware. For example, UET may allow an accelerator to own the ‘fast path’ and move other functions

(e.g., management and complex error handling) to a separate processor (e.g., host CPU). The details of a

 53

Copyright © 2025 Ultra Ethernet ConsortiumTM. All rights reserved.

hardware implementation and interface within an endpoint to an accelerator are out of scope for this

specification.

While UET provides excellent performance on best-effort networks leveraging multi-pathing and

improved congestion control assisted by network telemetry, it is also architected to run on lossless

networks. For best-effort networks, UET embraces two fundamental lessons learned from the success of

Ethernet, TCP/IP, and large-scale networks deployed for various applications including the cloud - that

transport protocols should provide loss recovery and that many large-scale lossless fabrics are

challenging to operate without triggering head-of-line blocking and congestion spreading. Following

these principles, the UE transport builds on the proven path of distributed routing algorithms and

endpoint-based reliability and congestion control.

1.5.3 Network Fabric

The network fabric consists of Ethernet switches and the associated elements described below.

1.5.3.1 Elements

The UE switch fabric incorporates three common functional planes: control plane, data plane, and

management plane. These are depicted in Figure 1-14 and described as follows.

1.5.3.1.1 Control Plane

The control plane is responsible for running critical functions such as routing protocols to maintain

communication between fabric switches. This layer is managed by networking operating systems (NOSs)

such as SONiC, FBOSS, and others. The control plane interacts with the switch data plane using standard

APIs such as SAI or vendor-specific APIs.

Figure 1-14 - Layered View of Networking Functionality

 54

Copyright © 2025 Ultra Ethernet ConsortiumTM. All rights reserved.

1.5.3.1.2 Data Plane

The data plane, also referred to as the forwarding plane, is responsible for forwarding packets in the

network. This layer spans the UE endpoint (i.e., FEP) and the network switches. For clarity, the data

plane does not control or manage the UET FEPs. This layer comprises a lower-level abstraction of the

switch hardware and is responsible for forwarding packets according to the forwarding information

provided by the control plane.

1.5.3.1.3 Management Plane

The management plane is responsible for ensuring that the switch fabric is operational, reliable, and

secure. Management systems and associated protocols perform software upgrades, monitoring, and

other administrative activities. The management plane interacts with the control plane using standard

interfaces such as Netconf, gNMI, SNMP, and others. The managed objects manipulated by the

management plane are defined by standardized data models such as YANG and supported by vendor-

neutral software such as OpenConfig (see: <https://openconfig.net>).

1.5.3.2 UE Switch Operation in Physical Networks

A UE-compliant switch operates in two types of physical networks:

1. UE data plane network: A network connecting FEPs to one another through UE switches. This

network carries application traffic for various workloads and is optimized for UE specifications.

2. Switch management network: Every switch provides at least one dedicated Ethernet port to

connect non-fabric endpoints such as SDN controllers, fabric managers, telemetry collectors,

SNMP servers, and other devices responsible for managing the infrastructure. This network is

not latency-sensitive and typically has low bandwidth requirements.

1.5.3.3 Topologies

Topology is a critical part of an AI and HPC fabric as it sets the performance bounds by establishing the

network diameter and bisection bandwidth. Deployments need to consider the optimal system cost in

terms of energy consumption and physical aspects such as cable costs.

Congestion management in this specification targets Clos networks, while not excluding other
topologies. However, no optimization or performance objectives are set for topologies other than a
folded Clos network (i.e., a fat tree). Congestion management in this specification has been simulated
over a fat tree network topology.

Informative Text:

Traditionally the management of endpoints has been separated from the management of the fabric.

UE follows the traditional separation that industry and organizations are accustomed to. The UEC

management working group is responsible for ensuring full functionality, performance, and

interoperability of UE-compliant devices.

https://openconfig.net/

 55

Copyright © 2025 Ultra Ethernet ConsortiumTM. All rights reserved.

1.5.3.4 Network Constraints

The UE fabric is constrained to use IPv4/IPv6-based layer 3 forwarding. A UE fabric that uses tunnels
(e.g., VXLAN) is not currently specified and is left to implementors. Multitenancy can be addressed at
the FEP level through encrypted tenant application data, specific allocation of JobIDs and may also take
advantage of existing tunneling mechanisms.

UE does not require changes to the network layer and can use existing routing protocols. UE switches

use equal cost multipath (ECMP) routing for load balancing where the entropy values are managed by

the UET congestion management sublayer (CMS). The congestion management algorithms are designed

with the expectation that fabric switches do not modify the entropy values and that any two packets

with the same entropy values take the same path through the UE fabric. CMS expects UE switches to

support explicit congestion notification (ECN) as specified in IETF RFC 3168, but with the additional

constraint of marking congested packets when dequeuing for transmission rather than enqueuing.

Packet trimming, as specified in section 4.1, is an additional mechanism for congestion notification and

makes use of multiple differentiated services code points (DSCP) to identify packets that can be trimmed

and have been trimmed as well as assure they are mapped to appropriate traffic classes for expedited

forwarding.

Traffic classes are embodied in the mechanisms and resources within endpoints and switches used for

the differentiated transmission of packets (e.g., queues, buffers, schedulers). Traffic classes are

differentiated from one another and can be prioritized between one another. Packets are mapped to

traffic classes using attributes and header fields of the received packets. UE primarily relies upon the

DSCP field in the IP header to identify the traffic class of a received packet.

Informative Text:

Traffic classes are specified at multiple levels. UE maps the traffic class specified at the libfabric layer

to traffic classes across the fabric. For example, UET recommends separate traffic classes for requests

and ACKs/NACKs. UET chooses a broad definition of traffic class to acknowledge implementations that

incorporate queuing resources and forwarding mechanisms that enable the differentiated forwarding

of packets identified by the differentiated services code point (DSCP). The DSCP can identify 64

distinct differentiated services, 16 of which are available for local definition and use. Implementations

provide a variety of ways to configure the mapping of packets identified by DSCP to traffic classes at

the endpoint link and switch level. There is no current standard identified or defined by UE to perform

this mapping. In some cases, multiple DSCP values may map to the same traffic class (see the UET

DSCP mappings table in the CMS section 3.6.4.7). UE features depend upon the consistent

configuration and use of traffic classes at the endpoint and across the fabric. UE recommends a

consistent mapping, and the network operator is responsible for assuring this consistency.

Figure 1-15 shows the mapping of application requested traffic classes to traffic classes available at the

link layer on endpoints and switches. Items depicted within the dashed boxes are configuration values

available to the UE operator at different layers of the UE solution stack. Applications can specify the

desired libfabric traffic class using the fi_domain() library API. If unspecified, the UE libfabric mapping

 56

Copyright © 2025 Ultra Ethernet ConsortiumTM. All rights reserved.

section 2.2 provides default DSCP values to use for requests. The CMS specification provides a table of

DSCP to Traffic Class mapping in section 3.6.4.7. This table describes how different classes of DSCP

values are mapped to traffic classes at the link.

The DSCP values provided for message requests from the libfabric layer are passed through and

categorized as either DSCP_TRIMMABLE or DSCP_NO_TRIM. The UET protocol includes DSCP values for

generated ACKs, NACKs, and control packets that are categorized as DSCP_CONTROL. The UET protocol

can also categorize retransmitted data packets with DSCP_TRIMMABLE_RETX. All these DSCP categories

are mapped into the link level traffic classes TC_high and TC_low that are prioritized higher and lower

with respect to one another.

Switches that trim packets (denoted by the scissor icon in Figure 1-15) change the DSCP values to

DSCP_TRIMMED or DSCP_TRIMMED_LASTHOP depending upon where they are in the fabric topology.

The DSCP values for trimmed packets can be mapped to a third traffic class (TC_med) if available,

otherwise TC_high is used. The management actions for mapping DSCP values to the traffic classes

within the switches is either vendor-specific or currently unspecified.

The congestion management sublayer of UET is designed with the expectation of using at least two

traffic classes for PDCs to achieve high performance. The network operator is responsible for allocating

and configuring the traffic classes used by UET. The mapping of UET packet types to traffic classes is

dependent on whether the network is best effort or lossless. See CMS section 3.6.4.7 for further details.

Figure 1-15 - Traffic Class Mapping

 57

Copyright © 2025 Ultra Ethernet ConsortiumTM. All rights reserved.

1.6 UE Specification Overview: Layers

The UE specification spans multiple layers from software down through the physical layer. Figure 1-16

shows the required and optional components of the UE specification by layers. An overview of each

layer is provided in the following sections:

1.6.1 Software Layer

UE Software specifications are provided in section 2. This includes a mapping to the libfabric API.

libfabric mapping: UE-compliant implementations support the Open Fabrics Interface – libfabric API

<https://ofiwg.github.io/libfabric/>. Libfabric v2.0 denotes the baseline API for UE-compliant endpoints.

Libfabric is the northbound API where the UE API is defined and compliance is checked. UE specifications

are expected to maintain alignment with the libfabric community. Libfabric is chosen because it

supports many workloads over RDMA-based fabrics and is implemented by many vendors building

hardware and software to meet the specification. Multiple vendors have successfully created products

that enable MPI-based HPC applications while also allowing PGAS, SHMEM, and other programming

Figure 1-16 - UE Specifications by Layers

So ware

Transport

Network

Link

Physical

packets

Link Layer Retry

Logical Link Control or other MAC Client

MAC Control

LLDP Nego a on

MAC

1 Gb/s/lane

FEC Stats cs UE LL Support

Exis ng/Unmodi ed

UEC Re uired

UEC Op onal

UE extensions

Packet Trimming

Credit based Flow Control

https://ofiwg.github.io/libfabric/

 58

Copyright © 2025 Ultra Ethernet ConsortiumTM. All rights reserved.

models. At the same time, vendors have created libraries that support popular AI frameworks (e.g.,

PyTorch, TensorFlow, or ONNX). All these vendor offerings have proven to be easily and efficiently

mapped over libfabric. UEC collaborates with the libfabric community to extend the libfabric API, as

appropriate and necessary to support new UE features.

1.6.2 Transport Layer

UE transport layer specifications are provided in section 3. The UE transport protocol is designed to

serve the networking demands of both HPC and AI workloads. Different profiles are defined to allow

product optimization for satisfying the unique needs of the workloads. It is anticipated that the network

requirements for AI and HPC workloads will increasingly overlap. The UE transport protocol enables a

wide range of implementations. The components of the UE transport protocol include message

semantics, packet delivery reliability modes, congestion management, and security.

Semantics (SES): The SES sublayer is designed to integrate into broadly deployed AI frameworks and

HPC libraries through a libfabric mapping. Applications using libfabric exchange messages over the fabric

and place those messages directly into one another’s buffer memory using popular zero-copy

techniques. The SES sublayer specifies a protocol that defines how application messages are identified,

how the associated buffers are addressed, and how the preferred operations on the messages are

employed. The SES sublayer is the primary interface between the UE transport and the libfabric

provider.

Packet Delivery Sublayer (PDS): Application requirements determine the selection of the appropriate

UET packet delivery services. Different applications are optimized for various reliability and packet

ordering constraints on message delivery. Through the UET layering model and associated libraries

applications can select the transport protocol functionality that best suits their needs. The PDS sublayer

defines a protocol with multiple modes of operation that offer all combinations of reliable, unreliable,

ordered, and unordered packet delivery services.

Congestion Management Sublayer (CMS): End-to-end congestion management is essential to achieve

high network efficiency, reduce packet loss, and minimize latency while maintaining fairness between

competing flows. Traffic classes are used in the network to separate traffic flows that have different

characteristics and requirements from the network. To maintain fairness and assure a low latency

control loop, UE congestion management is designed to be used on all traffic in the same traffic class.

Traffic class configuration is the responsibility of the network operator. High network efficiency and

reduced latency are achieved by allowing UET congestion management to enable multi-path packet

spraying across the fabric and avoid hot spots when congestion signals arrive. Under UET, PDCs with

unordered flows may simultaneously use all paths to the destination, achieving a more balanced use of

all network paths. Link load imbalances are avoided by the coordinated choice of the paths between the

endpoints and switches guided by real-time congestion management. This fine-grained load balancing

results in improved network utilization and reduced tail latency.

Transport Security Sublayer (TSS): AI training and inference often occur in hosted networks where job

isolation is required. Moreover, AI models are increasingly sensitive and become valuable business

 59

Copyright © 2025 Ultra Ethernet ConsortiumTM. All rights reserved.

assets. Recognizing this, the UE transport incorporates network security by design and can encrypt and

authenticate all network traffic sent between computation endpoints in an AI training or inference job.

As jobs grow in scale, it is necessary to support encryption without ballooning the session state in hosts

and network interfaces. In service of this, UET incorporates new key management mechanisms that

allow efficient sharing of keys among large numbers of compute nodes participating in a job. It is

designed to be efficiently implemented at the high speeds and scales required by AI training and

inference. HPC jobs hosted on large Ethernet networks have similar characteristics and require

comparable security mechanisms. Note that TSS is an optional feature.

1.6.3 Network Layer

Optional UE network layer feature specifications are provided in section 4. UE does not require any

changes to the network layer, but UET congestion management expects support for explicit congestion

notification (ECN) as specified in IETF RFC 3168, but with the additional constraint of marking congested

packets when dequeuing for transmission instead of enqueuing.

Packet Trimming: Congestion is inevitable within the fabric. As fabric speeds increase and more

pressure is put on limited switch chip buffering, congestion signals become more prevalent and the

information within those signals becomes more important in determining a corrective course of action.

UE defines a packet trimming feature that allows switches to truncate contested packets, modify the

DSCP field of the truncated packet, and forward the truncated packet toward the destination as the

congestion signal. Packet trimming provides considerably more congestion information than the ECN

bits alone. Packet trimming is optional for switches to implement and mandatory for FEPs to receive

trimmed packets.

1.6.4 Link Layer

Optional UE link layer specifications are provided in section 5. The UE specification adds several optional

features to the Link Layer, acknowledging that it may take longer to roll out products supporting these

features. Some workloads may benefit from these features, and experimentation at scale might be the

best way to prove it. In addition, other SDOs, such as the IEEE 802, may have interest in changing some

of these features.

Figure 1-17 shows the areas of focus for the UE link layer specifications with respect to IEEE 802

architecture at the link layer. UE’s optional recommendations for the Link Layer relate to the shaded

areas. All features are optional for UE compliance.

 60

Copyright © 2025 Ultra Ethernet ConsortiumTM. All rights reserved.

Link Layer Retry (LLR): With speeds and scale increasing, and with the extreme bandwidth densities

common in accelerator networks, the traditional approach of relying only on end-to-end retry to address

packet drops is increasingly burdensome for latency-sensitive workloads. Local error handling at the Link

Layer has proven valuable in scale-out HPC networks, such as those used in exascale systems. The UE

specification provides this capability for Ethernet.

Credit-Based Flow Control (CBFC): Traditionally Ethernet networks refrain from using credit-based links,

which are common in fabric technologies. However, some recently introduced products support it with

optional improvements for some workloads. CBFC is an optional feature of the UE link layer.

UE Link Negotiation: UE specifications support “existing Ethernet switches” but introduce multiple

optional new features that benefit from discovery and feature negotiation capabilities. While it is an

objective of UE to operate on a dedicated backend network for inter-accelerator communication, the

objective does not mitigate the need to support discovery and feature negotiation amongst all entities

(endpoints as well as switches) on the network. UE promotes the notion of “profiles” that describe

required and optional features. It is necessary to detect, discover, and reach consensus among all

network entities to interoperate with profile-supported features. UE assumes that standard negotiation

mechanisms like LLDP are prevalent in the industry and are extensible for the aforementioned purposes.

MEDIUM

PRESENTATION

APPLICATION

SESSION

TRANSPORT

NETWORK

DATA LINK

PHYSICAL

OSI
REFERENCE

MODEL
LAYERS

MDI

PHY

MAC – MEDIA ACCESS CONTROL

MAC CONTROL (OPTIONAL)

LLC (LOGICAL LINK CONTROL) OR OTHER MAC CLIENT

HIGHER LAYERS

ETHERNET
LAYERS

RECONCILIATION

GMII

LLR (LINK LEVEL RETRY)
(OPTIONAL)

UE LINK NEGOTIATION (OPTIONAL)

CBFC (CREDIT BASED
FLOW CONTROL)

(OPTIONAL)

Figure 1-17 - UE Link Layer Specification Focus Areas

 61

Copyright © 2025 Ultra Ethernet ConsortiumTM. All rights reserved.

1.6.5 Physical Layer

UE physical layer specifications are provided in section 6. UE is specified for physical layers using 100G

per lane signaling as defined by IEEE Std 802.3.

Figure 1-18 shows the areas of focus for the UE physical layer specifications with respect to IEEE 802.3

PHY architecture. UEC’s optional recommendations for the Physical Layer relate to the shaded areas.

IEEE 802.3 100G Per-Lane Signaling: The UE physical layer section lists the IEEE 802.3 specifications that

are within the scope of UE.

Channel Quality Assumption: Accelerator nodes are more complex than standard endpoints or TOR

switches. At the time of publication, it is assumed that IEEE standards are sufficient, while UE products

are encouraged to build more robust channels.

FEC Statistics for Prediction of Link Quality: UE networks are assumed to comprise multiple high-

performance links protected by forward error correction (FEC), on which data loss due to physical layer

errors is extremely infrequent. However, on a large-scale network there can be a few outlier links with

more frequent errors than the rest of the network. With massively parallel applications, such links can

require frequent retransmissions and thus become the performance bottlenecks of the whole network.

The UE PHY specification includes a method of estimating the mean time between PHY errors (MTBPE)

on each link from the statistics of the FEC decoder. This estimation enables identifying poor

performance and thus provides an opportunity to improve the network performance (e.g., by removing

the weakest links from the network or servicing their endpoints).

MEDIUM

PRESENTATION

APPLICATION

SESSION

TRANSPORT

NETWORK

DATA LINK

PHYSICAL

OSI
REFERENCE

MODEL
LAYERS

MDI

MAC – MEDIA ACCESS CONTROL

MAC CONTROL (OPTIONAL)

LLC (LOGICAL LINK CONTROL) OR OTHER MAC CLIENT

HIGHER LAYERS

ETHERNET
LAYERS

RECONCILIATION

MII

FEC

PMA

PMD

AN

PCS

Figure 1-18 - UE Physical Layer Specification Focus Areas

 62

Copyright © 2025 Ultra Ethernet ConsortiumTM. All rights reserved.

2 UE Software Layer

2.1 UE Software Overview

The UEC develops specifications and/or software APIs and/or open-source code for various AI/HPC use

cases/applications. This includes, but is not limited to, software related to the following areas:

• Support of UE transports and API within the OFI libfabric ecosystem (e.g., libfabric mapping

specification).

• Software reference models of UET transport.

• Linux kernel API changes and extensions to support UET.

• Interfaces between layers within the UET transport and other external components (e.g., Linux

kernel APIs).

• Example applications.

2.1.1 Software Specifications

2.1.1.1 Libfabric Mapping

The HPC and AI industries have established the use of abstraction layers within communication libraries

to isolate low-level details of the transport layer from the inner workings of the communication libraries.

UE adopts libfabric [1], also known as Open Fabric Interfaces (OFI), as the communication abstraction

layer. The libfabric mapping specification defines how the libfabric v2.0 APIs are implemented using

Ultra Ethernet Transport. The goal of this mapping is to extend and change libfabric as required to

provide a vendor-interoperable mapping that supports all the Ultra Ethernet profiles defined by the

transport working group. The specification also identifies the requirements imposed on UET libfabric by

this mapping.

2.1.2 Software Components and Interfaces

UE software spans components and interfaces in user space and (Linux) kernel space. The complete

scope of the work is illustrated in Figure 2-1 and summarized in Table 2-1.

 63

Copyright © 2025 Ultra Ethernet ConsortiumTM. All rights reserved.

user space

Libfabric Application

Libfabric

vendor_libfabric_provider.so

libuet

UET Kernel
impl.*

(uecon.ko)

uet_core

vendor_uet_
kernel_driver.ko

NIC

Kernel subsystems
(rdma_core, netdev etc.)

libuet application

kernel

Vendor device data and control interface

Libfabric application API

LibUET application API

UET Core user-space application API

UET Core kernel application API

UET Core kernel module API

Defined by UEC

Extended and/or modified by UEC

Vendor implemented

Kernel subsystem APIs

In-kernel UET
application

(e.g. NVMeOF-UET)

Job Control
TSS Key Management

FEP Address Assignment

UET Netlink Interface

*The UET Kernel implementation leverages UDP tunnel interfaces to
transmit and receive over standard netdev devices

Figure 2-1 - Components and Interfaces Defined By UEC

Table 2-1 - UE Software Components and Interfaces

Interface or Component Functionality Scope of Work

• libfabric

• libfabric application API

User space application API • Definition and implementation

of changes and extensions

required of libfabric and

extensions.

• Definition of interoperability

requirements between vendor

provider implementations.

• Definition and implementation

of libfabric provider for

Transport Reference Provider

Model [3] and Linux kernel

implementation [4].

 64

Copyright © 2025 Ultra Ethernet ConsortiumTM. All rights reserved.

Interface or Component Functionality Scope of Work

• libUET

• libUET application API

• Common device model across

vendors.

• Common application API,

infrastructure. and semantics

for command and control.

• Definition and implementation

of the libUET application API.

• Definition and implementation

of libUET functions.

• UET core

• UET core user space

application API

• UET core kernel application

API

• UET core kernel module API

• Common control and data

plane infrastructure used by

kernel UET applications and

UET kernel drivers.

• Command, control, and data

API for user space and kernel

applications communicating

with or using UET core.

• Definition and implementation

of the UET core user space,

kernel application and kernel

module APIs.

• Definition and implementation

of UET core functions.

UET kernel Implementation Kernel software implementation of
a subset of UET.

• Definition and implementation

of the SES, PDS, and CMS

sublayers.

• Upstream as necessary.

Kernel subsystem APIs Access to common kernel functions
and interface with specific
subsystems (e.g., rdma_core)

• Define and implement

extensions to other kernel

subsystems to support UET.

• Upstream as necessary.

2.1.2.1 Integration Model of FEP

A FEP exposes a raw L2 Ethernet device to the operating system to facilitate integration into the

Ethernet ecosystem (i.e., ARP, ICMP, etc.). A UE FEP implements a netdev [6] Ethernet device for

integration into the Linux kernel networking stack and a vendor-supplied libfabric provider driver for

integration into libfabric. In the Linux kernel, the UET transport is included via a stack driver architecture

similar to how a RoCE device is integrated into the kernel. Vendor implementations may vary from the

FEP integration model described in this specification.

2.1.3 Reference Software Models and Supplementary Software

UEC provides several software artifacts to assist implementors as follows:

Table 2-2 - UE Reference Software

Software Description

UET reference provider model [3] A user space implementation of a subset of UET (SES, PDS, CMS, and TSS
core algorithms) deployable as a standalone model or as a libfabric
provider driver.

UET Linux kernel implementation
[4]

Kernel implementation of a subset of UET (SES, PDS, TSS, and CMS
sublayers). Includes kernel subsystem interface and functional changes as
appropriate

UE RCCL plugin [5] A version of the RCCL networking plugin that provides end-to-end
connectivity for a subset (ncclSend, ncclRecv) of the RCCL networking

 65

Copyright © 2025 Ultra Ethernet ConsortiumTM. All rights reserved.

Software Description

calls over UET using the UET reference provider model. This provides an
example of how an application can use the UET libfabric implementation.

UE Wireshark plugin [2] A fork of the Wireshark open-source network protocol analyzer with a
dissector for UET

2.1.4 References

The following references are utilized by the UEC Software Working Group.

[1] GitHub, "ofiwg/libfabric OpenFabrics Release v2.0.0," 2024. [Online]. Available:

https://github.com/ofiwg/libfabric/releases/tag/v2.0.0.

[2] Github, "ultraethernet/uet-wireshark UE Wireshark Plugin," 2025. [Online]. Available:

https://github.com/ultraethernet/uet-wireshark.

[3] Github, "ultraethernet/uet-ref-prov UET Reference Provider Model," 2025. [Online]. Available:

https://github.com/ultraethernet/uet-ref-prov.

[4] Github, "ultraethernet/uet-linux-kernel UET Kernel Implementation," 2025. [Online]. Available:

https://github.com/ultraethernet/uet-linux-kernel.

[5] Github, "ultraethernet/uet-rccl-plugin UET RCCL Plugin," 2025. [Online]. Available:

https://github.com/ultraethernet/uet-rccl-plugin.

[6] Netdev, "Network Devices, the Kernel, and You!," [Online]. Available:

https://www.kernel.org/doc/html/latest/networking/netdevices.html. [Accessed 2025].

https://github.com/ofiwg/libfabric/releases/tag/v2.0.0
https://github.com/ultraethernet/uet-wireshark
https://github.com/ultraethernet/uet-ref-prov
https://github.com/ultraethernet/uet-linux-kernel
https://github.com/ultraethernet/uet-rccl-plugin
https://www.kernel.org/doc/html/latest/networking/netdevices.html

 66

Copyright © 2025 Ultra Ethernet ConsortiumTM. All rights reserved.

2.2 UE Libfabric Mapping

This document specifies the mapping between libfabric v2.0, also known as Open Fabrics Interfaces

(OFI), and the Ultra Ethernet Transport (UET v1.0), as well as the requirements imposed on UET OFI

providers. The mappings are an important part of enabling communication libraries and services over

UET, including support for MPI, *CCL, SHMEM/PGAS, and other communication uses. UET must uphold

the expectations of these communication libraries and services. Additionally, the mapping is dependent

on the UET semantics and profiles. It is expected that each UET Fabric End Point (FEP) vendor will

provide a UET libfabric provider that is optimized for their FEP; however, this specification defines

requirements that enable interoperability between UET FEPs.

Libfabric has been selected as the primary network data plane API for UET as it is a flexible open-source

framework utilized by various communication libraries for AI and HPC workloads. Libfabric is

incorporated into this specification by normative reference. This specification does not attempt to

provide a tutorial description of libfabric. Details about libfabric and the libfabric APIs are available from

libfabric.org. Where possible, references to the libfabric main pages are provided. Note that these

references are subject to change.

In summary, libfabric provides a communication API tailored for high-performance, parallel, and

distributed applications. As a low-level communication library, it abstracts various networking

technologies. However, in this context, we define its use for UET, aiming to eliminate ambiguity while

enhancing interoperability and simplifying debugging. Libfabric has been deployed at scale, and its open-

source ecosystem is suitable for future enhancements that can be delivered as UET evolves. Libfabric

supports Linux, Windows, FreeBSD, and macOS platforms and uses a dual GPLv2/BSD license or a

compatible license, such as MIT. Extensibility has been designed into the API.

Libfabric is built around the concept of plugins known as “providers.” The software components of UET

functionality are part of a vendor-supplied UET provider. The libfabric core communicates with all

providers via a common provider API. The libfabric software architecture is illustrated in Figure 2-2. The

applications shown in the diagram are illustrative and not meant to be comprehensive.

 67

Copyright © 2025 Ultra Ethernet ConsortiumTM. All rights reserved.

Figure 2-2 - Libfabric Software Architecture

The libfabric APIs are partitioned into four main categories:

• Control (discovery)

o Used to determine the types of communication services available

• Communication (connection management, address vectors)

o Used to set up communication between endpoints

• Completion (event queues, completion queues, counters)

o Used to report data transfer operation results, connection setup status, collective

joining results, and other asynchronous events

• Data Transfer (messages, tag matching, RMA, atomics, collectives)

o Used to transfer data between endpoints, supporting different communication

paradigms

o Four of the data transfer paradigms shown in Figure 2-2 (messages, tagged messages,

RMA, and atomics) target point-to-point communication. Collectives are a fifth data

transfer paradigm targeting coordinated atomic operations among a large set of peers.

Each of these API categories is covered in this specification.

 68

Copyright © 2025 Ultra Ethernet ConsortiumTM. All rights reserved.

A libfabric provider implements the libfabric API over vendor-specific lower-level software and hardware

interfaces. Libfabric does not define the software/hardware interfaces that a provider uses to access

network hardware. The libfabric UET Provider Software Architecture is illustrated in Figure 2-3.

Figure 2-3 - Libfabric UET Provider Software Architecture

A kernel driver MUST be provided to facilitate operations that require a privileged entity, such as JobID

assignment, provisioning, or security key management. The vendor low-level NIC hardware interface

SHOULD use kernel bypass techniques when accessing the hardware for performance reasons.

The interface between the kernel driver and a privileged entity is referred to as the UET Control API. The

privileged entities that interface with the kernel driver are expected to vary across deployments. Thus,

UET standardizes the UET Control APIs for Linux implementations to allow:

• Kernel drivers that implement the standard interface to interoperate across deployments, and

• Privileged entities to interoperate with kernel drivers from multiple vendors.

Netlink was selected as the foundation for the UET Control APIs in Linux environments due to its

flexibility, extensibility, and wide availability. Implementations for non-Linux operating systems are

expected to provide similar functionality. More details on the UET Control APIs are provided in

subsequent sections of this specification.

 69

Copyright © 2025 Ultra Ethernet ConsortiumTM. All rights reserved.

2.2.1 Application Use Cases

Different applications have different communication requirements. This section highlights several

application use cases that were considered by UET along with a high-level summary of their expected

usage of the libfabric APIs. Additional use cases were considered, but not documented here, such as a

variety of client/server applications for purposes such as storage or remote procedure calls (RPC). Table

2-3 summarizes the expected libfabric API usage for selected UET targeted applications.

Table 2-3 - UET Application Categories

Application Use Case Summary of Expected API Usage

*CCL

• Reliable communication

• Matching based on sender ID

• Tagged messages using exact matching
o With no guarantees about which tag matches if duplicate tags are used

• Data transfers using RMA Write

• Message and data ordering not required

• Optional use of collective offload

*MPI

• Reliable communication

• Matching based on sender ID

• Tagged messages with wildcard matching and duplicated tags

• Send/receive untagged messages

• Data transfers using RMA Read and RMA Write

• Tagged message ordering is required

• Data ordering is not required

• Optional support for atomic operations

• Optional use of collective offload

SHMEM

• Reliable communication

• Message and data ordering not required

• Data transfers using RMA Read, RMA Write, and atomics

• Optional use of collective offload

UD

• Unreliable datagram communication

• Send/receive MTU-sized messages

• Message and data ordering not required

2.2.2 UET Profiles

UET defines multiple profiles that allow for tradeoffs between implementation complexity/cost and

capabilities. Each UET profile corresponds to a set of required capabilities. The details of the capabilities

required by each profile are defined in the SES specification. The three UET profiles in order of

functionality (least to most) are:

1. AI Base

2. AI Full

3. HPC

Profiles specify the minimum required set of functionality and features for support of the profile. UET vendors providing

additional features beyond the profile specification MUST provide a means of selectively enabling and disabling those features.

 70

Copyright © 2025 Ultra Ethernet ConsortiumTM. All rights reserved.

Libfabric provides flexibility by making a broad set of parameters available to applications. These

parameters are typically carried in libfabric structures. UET places constraints on the set of parameters

that MUST be supported. Table 2-4 summarizes the parameters that MUST be supported for each

profile. Parameters not shown have vendor-specific values.

Table 2-4 - Per-Profile Libfabric Parameter Requirements

Structure Field Value(s) Required Notes

AI
BASE

AI
FULL

HPC

fi_info

 caps FI_LOCAL_COMM
FI_REMOTE_COMM

FI_MSG
FI_SEND
FI_RECV

FI_TAGGED (exact match)1
FI_TAGGED (wildcard)1

FI_DIRECTED_RECV2

FI_TAGGED_DIRECTED_RECV2
FI_SELECTIVE_COMPLETION

FI_SHARED_AV
FI_RMA

FI_WRITE
FI_REMOTE_WRITE

FI_READ
FI_REMOTE_READ

FI_RMA_EVENT
FI_ATOMIC (non-fetching)3

FI_ATOMIC (fetching)3
FI_HMEM
FI_FENCE

Y
Y
Y
Y
Y

Y
Y
Y
Y
Y

Y
Y

Y
Y

Y
Y
Y
Y
Y
Y

Y
Y
Y
Y
Y
Y
Y
Y
Y
Y
Y
Y

Y
Y
Y
Y
Y
Y
Y
Y
Y
Y
Y
Y
Y
Y
Y
Y
Y
Y
Y
Y
Y

libfabric capabilities

1See footnote 1

2See footnote 2

3See footnote 3

 addr_format FI_ADDR_UET Y Y Y New for UET

fi_fabric_attr

 name UET Y Y Y

 prov_name Vendor specific

fi_domain_attr

 name Vendor specific Usually in the form of
[vendor]_[instance]

 threading FI_THREAD_SAFE Y Y Y Support for other
values is vendor-
specific

 mr_mode Provider requires application
use of FI_MR_ENDPOINT

Y Y Y

 mr_key_size <= 6

Y Y Y See section 2.2.5.3.4.1

 cq_data_size 8 Y Y Y

 max_ep_tx_ctx >= 1 Y Y Y

 max_ep_rx_ctx4 >= 1 Y Y Y 4See footnote 4

 max_ep_stx_ctx 0 Y Y Y No shared transmit
queues

 max_ep_srx_ctx 0 Y Y Y No shared receive
queues

 mr_iov_limit >= 1 Y Y Y

 71

Copyright © 2025 Ultra Ethernet ConsortiumTM. All rights reserved.

Structure Field Value(s) Required Notes

AI
BASE

AI
FULL

HPC

 mr_cnt >= 8 Y Y Y Floor is subject to
overall availability of
MR resources if MRs
are a shared resource

 tclass FI_TC_BEST_EFFORT
FI_TC_UNSPEC

DSCP value

Y
Y
Y

Y
Y
Y

Y
Y
Y

Maps to default TC
Maps to default TC

 auth_key_size 0 or 3 or
FI_AV_AUTH_KEY

Y Y Y
Y

See section 2.2.4

 max_ep_auth_key >= 1 Y Valid only in
conjunction with
auth_key_size =
FI_AV_AUTH_KEY

fi_ep_attr

 type FI_EP_RDM
FI_EP_DGRAM

Y
Y

Y
Y

Y
Y

Reliable datagram
Unreliable datagram

 protocol FI_PROTO_UET Y Y Y New for UET

 protocol_version FI_VERSION (1, 0) Y Y Y

 max_msg_size Max
PDU5

4GB-1 4GB-1 5See footnote 5

 max_order_raw_size 0 Y Y Y No data ordering

 max_order_war_size 0 Y Y Y No data ordering

 max_order_waw_size 0 Y Y Y No data ordering

 tx_ctx_cnt >= 1 Y Y Y

 rx_ctx_cnt >= 1 Y Y Y See footnote 4

 auth_key JobID when
auth_key_size is 3

Y Y Y See section 2.2.4

fi_tx_attr

 op_flags FI_COMPLETION
FI_INJECT

FI_INJECT_COMPLETE
FI_TRANSMIT_COMPLETE
FI_DELIVERY_COMPLETE6

Y
Y
Y
Y
Y

Y
Y
Y
Y
Y

Y
Y
Y
Y
Y

Applies only to reliable
endpoints

 msg_order 0
FI_ORDER_SAS

Any combination of defined
Message ordering modes

Y
Y

Y
Y
Y

Y
Y
Y

No message ordering

 comp_order 0 Y Y Y Field being deprecated
by libfabric

 inject_size Vendor specific

 iov_limit >= 1 Y Y Y

 rma_iov_limit >= 1 Y Y Y

fi_rx_attr

 op_flags FI_COMPLETION Y Y Y

 msg_order 0 Y Y Y No message order

 comp_order 0 Y Y Y Field being deprecated
by libfabric

fid_nic All fields supported
by the platform

should be set

 Y Y Y

Note:

1. Exact match versus wildcard tags are distinguished by the ‘ignore’ parameter of the fi_tagged() APIs; see section
2.2.5.4.2.

 72

Copyright © 2025 Ultra Ethernet ConsortiumTM. All rights reserved.

Structure Field Value(s) Required Notes

AI
BASE

AI
FULL

HPC

2. The level of required support for FI_DIRECTED_RECV/FI_TAGGED_DIECTED_RECV is limited to the authorization
requirements specified in section 2.2.4.3 and the initiator ID matching requirements specified in section
2.2.5.4.2.1.

3. A libfabric provider indicates the atomic operations that it supports via fi_atomic() APIs; fetching and non-
fetching atomics are different operations; see section 2.2.5.4.4.

4. If scalable receive queues are supported, consecutive indices must be allocated for the endpoint with one index
for each receive queue. The allocation of consecutive indices can be accomplished using the service
configuration file described in Table 2-7 or by the provisioning system as described in section 2.2.5.3.5.1.

5. Max PDU is the maximum payload of a single frame (i.e., UET payload) per definition in UE SES specification.

Libfabric v2.0 has added the capability to separately set the maximum message size for RMA operations

via the fi_setopt() API. The UET requirements for all profiles are:

1 GB <= UET Maximum RMA Message Size <= (4GB – 1)

The per-profile requirements for completion counters are specified in section 2.2.5.3.7.

Table 2-5 contains a mapping of the application use cases shown in Table 2-3 to UET profiles.

Table 2-5 - Application Use Case Mapping to UET Profiles

Application Use Case UET Profile(s) with Optimal Use-Case Support

*CCL Any of AI Base, AI Full, or HPC

*MPI HPC

SHMEM Either AI Full or HPC

UD Any of AI Base, AI Full, or HPC

2.2.2.1 Profile Negotiation and Inter-Profile Interoperability

 A logical priority, shown in Table 2-6, is associated with each profile to resolve conflicts when source

and destination FEPs have overlapping profile support.

Table 2-6 - Profile Logical Priorities

Profile Logical Priority

AI Base 0

AI Full 1

HPC 2

UET libfabric endpoint addresses, which are specified in section 2.2.5.1, include a Fabric Endpoint

Capabilities field that indicates the profiles supported by the fabric endpoint. If there is an overlap

between the profiles supported by the source and destination FEPs, the common profile with the

highest logical priority MUST be used for communication between the FEPs.

 73

Copyright © 2025 Ultra Ethernet ConsortiumTM. All rights reserved.

The AI Base profile is a subset of both the AI Full and HPC profiles. So, the AI Base profile can always be

used. The HPC profile is not a superset of the AI Full profile. However, deferrable send, which is

discussed in section 2.2.5.4.1.2, is the only AI Full capability that is not supported by the HPC profile.

Thus, the AI Full profile and the HPC profile can interoperate subject to the following restrictions:

• The operations MUST be limited to those supported by the AI Full profile,

• The HPC profile MUST treat a deferrable send operation the same as a send operation, and

• The HPC profile MUST treat a deferrable tagged send operation the same as a tagged send

operation.

2.2.3 Configuration Information

The libfabric UET provider configuration parameters are shown in Table 2-7.

Table 2-7 - Libfabric UET Provider Configuration Parameters

Parameter Data Type Description

UET_PROVIDER_SERVICE_PATH

string

Environment variable specifying the path name
for an optional service configuration file
containing user-defined service name strings and
associated Indices. The service name strings can
be used as a parameter to the fi_getinfo() API to
allocate an index or a range of indices for the
service. The file format is simply one service entry
per line formatted as follows:
service_name start_index num_indices
The service_name is a string with a maximum
length of 64 characters. The start_index and
num_indices are integers, where (start_index +
num_indices] <= 4096.

UET_PROVIDER_MSG_RENDEZVOUS_SIZE

uint32_t

Messages with sizes >=
UET_PROVIDER_MSG_RENDEZVOUS_SIZE bytes
SHOULD be sent with a rendezvous protocol.

UET_PROVIDER_TAG_RENDEZVOUS_SIZE

uint32_t

Tagged messages with sizes >=
UET_PROVIDER_TAG_RENDEZVOUS_SIZE bytes
SHOULD be sent with a rendezvous protocol.

UET_PROVIDER_MAX_EAGER_SIZE uint32_t Maximum amount of eager data in bytes for the
rendezvous protocol.
The SES specification defines eager as follows:
The initial rendezvous request MAY have an
“eager” portion of data that is transferred with it.
Eager transfers are payload transfers before the
buffer for the transfer has been identified at the
target.

UET_PROVIDER_DEF_DATA_TC uint8_t Optional override of default DSCP codepoint for
data traffic class. See section 2.2.7.

UET_PROVIDER_FALLBACK_JOBID_SUPPORT boolean Configuration support for assigning endpoints to a
fallback JobID if one cannot be obtained from the
job provisioning system. See section 2.2.4.2.

 74

Copyright © 2025 Ultra Ethernet ConsortiumTM. All rights reserved.

Parameter Data Type Description

UET_PROVIDER_INITIATOR_ID uint32_t Environment variable containing the initiator ID
for endpoints configured through the fallback
JobID mechanism described in section 2.2.4.2.

2.2.4 JobIDs

The JobID is part of UET addressing, is carried in the SES header as the ses.JobID field, and is used for

authorization. The JobID MUST be assigned by a privileged entity. A privileged entity MUST provide the

assigned JobID to the provider kernel driver as described in either section 2.2.4.1 or section 2.2.5.3.5.1.

After assignment, the JobID MAY be passed to libfabric user-space software, but JobIDs presented to the

UET provider by libfabric user-space software MUST be validated within a hardware context. Multiple

methods for assigning JobIDs are specified:

1. JobID assignment at job initialization time

2. JobID assignment at libfabric endpoint creation time

3. Fallback JobID assignment

2.2.4.1 JobID Assignment at Job Initialization Time

A privileged entity, such as a job launcher, MAY assign JobIDs at job initialization time. When JobID

assignment is performed at job initialization time, the privileged entity MUST configure {OS Process ID,

Service Name} => {JobID} mappings via the UET Control API with the provider kernel driver, as illustrated

in Figure 2-4. The privileged entity MAY also configure components of the local UET address and security

bindings as part of the mapping.

 75

Copyright © 2025 Ultra Ethernet ConsortiumTM. All rights reserved.

Figure 2-4 - JobID Assignment at Job Initialization Time

The UET Control API JobID mapping parameters are specified in Table 2-8.

Table 2-8 - UET Control API JobID Mapping Parameters

Parameter Name Size (bits) Description

Flags 8 Valid Flags
Bit 0:0 – Indicates validity of UET Address Field
 0 => UET Address field is NOT valid
 1 => UET Address field is valid
Bit 1:1 – Indicates validity of security bindings field
 0 => Security bindings field is NOT valid
 1 => Security bindings field is valid
Bits 2:7 – Reserved, MUST be 0

JobID 24 JobID assigned

 76

Copyright © 2025 Ultra Ethernet ConsortiumTM. All rights reserved.

Parameter Name Size (bits) Description

OS PID 32 Operating system process ID that JobID is assigned to

Service Name 136 Null-terminated string identifying a service that JobID is assigned to. A
NULL string indicates the JobID is assigned to all services of the process.

UET Address See Table
2-10

MAY be used to assign components of the local UET address (e.g.,
PIDonFEP or Initiator ID)
The UET address format is specified in Table 2-10

Security Bindings See Table
2-33

MAY be used to assign security bindings
Security binding parameters are specified in Table 2-33

A ‘C’ structure representation of the UET Control API JobID mapping request is shown in Figure 2-5.

#define UET_CTRL_FLAG_ADDR_V (1 << 0) /* uet address field valid */

#define UET_CTRL_FLAG_SEC_V (1 << 1) /* security bindings field valid */

#define UET_MAX_SERVICE_NAME_CHARS 64 /* max len of service name str */

struct uet_ctrl_job_id_map_req {

 uint8_t flags;

 uint32_t job_id;

 uint32_t os_pid;

 char service[UET_MAX_SERVICE_NAME_CHARS+1];

 struct uet_addr uet_addr;

 struct uet_sec_bindings sec_bindings;

};

Figure 2-5 - UET Control API JobID Mapping Request Structure

Security bindings MAY be assigned for the entire JobID mapping using the sec_bindings field of the

uet_ctrl_job_id_map_req structure. Alternatively, in the Linux implementation of the UET Control API

(see section 2.2.11), security bindings MAY be assigned for each allocated resource index using a series

of UET_NL_ATTR_SEC_BINDINGS Netlink attributes.

JobID mappings MAY be removed using the UET Control API JobID unmapping request. A ‘C’ structure

representation of the UET Control API JobID unmapping request is shown in Figure 2-6.

struct uet_ctrl_job_id_unmap_req {

 uint8_t flags;
 uint32_t job_id;
 uint32_t os_pid;
 char service[UET_MAX_SERVICE_NAME_CHARS+1];

struct uet_addr uet_addr;

};

Figure 2-6 - UET Control API JobID Unmapping Request Structure

More than one JobID MAY be assigned to the same {OS PID, Service Name}. When multiple JobIDs are

assigned to the same {OS PID, Service Name}, the libfabric FI_AV_AUTH_KEY capability MUST be used to

select the JobID associated with a data transfer operation. As an example, multiple JobIDs allow a single

libfabric endpoint of a server to communicate with multiple client jobs. Another use case is when

multiple jobs need to communicate with one another.

 77

Copyright © 2025 Ultra Ethernet ConsortiumTM. All rights reserved.

When JobIDs are configured at job initialization time by a privileged entity, the provider kernel driver

MUST maintain the configured JobID mappings for subsequent use. The privileged entity MAY also pass

the JobIDs to user-space applications for use as parameters to subsequent libfabric API calls.

A UET provider MUST support at least one JobID per libfabric endpoint and MAY support multiple. When

a single JobID per libfabric endpoint is provided, the JobID MAY be carried in the libfabric auth_key

attribute (the FI_AV_AUTH_KEY capability MAY also be used to support a single JobID per endpoint).

When multiple JobIDs per libfabric endpoint are supported, the JobIDs MUST be inserted into the

address vector bound to the endpoint using the fi_av_insert_auth_key() API (i.e., the JobIDs are inserted

as authorization keys). The inserted JobIDs MAY then be used for:

• Authorization of posted receive buffers,

• Authorization of registered memory regions, and

• Selection of the JobID used for message transmission operations.

When the auth_key_size attribute is set to FI_AV_AUTH_KEY, all authorization keys are associated with

the address vector. The auth_key_size MUST be set to FI_AV_AUTH_KEY when multiple JobIDs are

supported. Otherwise, the auth_key_size MUST be set to either 0 or 3. When the auth_key_size is set to

0, the UET provider supplies the assigned JobID on behalf of the user. When the auth_key_size is set to

3, the JobID MUST be carried in the auth_key attribute. The max_ep_auth_key domain attribute

indicates the maximum number of authorization keys that are supported per libfabric endpoint.

For notation convenience, the following terms are defined:

• Indirect JobID method (auth_key_size = 0) – this is the default behavior

• Direct JobID method (auth_key_size = 3)

• AV JobID method (auth_key_size = FI_AV_AUTH_KEY)

The HPC profile MUST support the AV JobID method.

The AV JobID method MUST support the fi_av_insert_auth_key and the fi_av_lookup_auth_key libfabric

APIs.

JobID assignment MAY also occur when the libfabric endpoint is created as specified in section

2.2.5.3.5.1 and illustrated in Figure 2-9.

2.2.4.2 Fallback JobID Assignment

The provider configuration may enable fallback JobID assignment. In this mode, if an endpoint’s JobID

cannot be determined through the previous methods it is assigned a fallback JobID. The value of fallback

JobID is 16777215. When fallback JobID support is enabled, the Initiator ID of the endpoint is sourced

from the UET_PROVIDER_INITIATOR_ID environment variable. If the environment variable is unset,

endpoint creation MUST fail.

 78

Copyright © 2025 Ultra Ethernet ConsortiumTM. All rights reserved.

2.2.4.3 Authorization

The authorization procedures described in this section MUST be implemented for absolute addressing

mode. The procedures are not required for relative addressing mode because the JobID is a component

of the addressing information that is used to locate the buffer and memory region. Please refer to the

SES specification for a description of the absolute and relative addressing modes.

Authorization allows access to receive buffers and registered memory regions to be controlled. The

JobID is used for authorization of access to receive buffers and registered memory regions. The specific

requirements defined in the SES specification are:

• Implementations MUST allow an option for buffers and memory regions to be exposed for

exactly one JobID.

• Implementations MUST allow an option for buffers and memory regions to be exposed for “any”

JobID.

The JobID associated with a receive buffer is determined when the buffer is posted using one of the

fi_msg() APIs. The JobID associated with a memory region is determined when the memory region is

registered using the fi_mr APIs. The procedures for determining the JobID that is associated with a

posted receive buffer or registered memory region are specified in the following subsections.

Authorization is performed by checking that the ses.JobID field in the SES header is allowed to access

the targeted receive buffer or registered memory region.

2.2.4.3.1 Untagged Message Buffer Authorization

This section covers how the authorization requirements are managed for untagged message buffers.

The JobID for buffer authorization is obtained differently based on whether the JobID method used is

the indirect, direct, or AV JobID method.

With the indirect JobID method, the UET provider supplies the assigned JobID, and untagged message

buffer access MUST be authorized only for operations carrying that ses.JobID field in the SES header.

With the direct JobID method, the JobID for untagged message buffer authorization is taken directly

from the auth_key attribute of the libfabric endpoint, and buffer access MUST be authorized only for

operations carrying that ses.JobID field in the SES header.

With the AV JobID method, the JobID for untagged message buffer authorization is determined using

the src_addr parameter of the fi_recvmsg() API when the FI_AV_AUTH_KEY flag is set. In this case, the

src_addr is treated as a source authorization key returned by the fi_av_insert_auth_key() API when the

JobID was inserted into the address vector bound to the libfabric endpoint. Buffer access MUST be

authorized only for operations carrying this ses.JobID field in the SES header. In all other cases (e.g.,

fi_recv() API used, fi_recvv() API used, FI_AV_AUTH_KEY not set):

• The posted buffer MUST be for any JobID, and

 79

Copyright © 2025 Ultra Ethernet ConsortiumTM. All rights reserved.

• Components of the UET address referenced by the src_addr parameter MAY be used to direct

received messages to specific buffers according to the FI_DIRECTED_RECV semantics.

2.2.4.3.2 Tagged Message Buffer Authorization

The tagged message buffer authorization requirements are the same as specified for untagged message

buffers in section 2.2.4.3.1.

2.2.4.3.3 Memory Region Authorization

This section covers how the authorization requirements are managed for registered memory regions.

To associate a registered memory region with a JobID, the fi_mr_regattr() API MUST be used.

When the auth_key_size field of the attr parameter to fi_mr_regattr() is 0, the memory region MUST be

for any JobID.

When the auth_key_size field of the attr parameter to fi_mr_regattr() is 3, the memory region MUST be

associated with the JobID carried in the auth_key attribute of the libfabric endpoint.

When the auth_key_size field of the attr parameter to fi_mr_regattr() is set to FI_AV_AUTH_KEY:

• The auth_key field of the attr parameter to fi_mr_regattr() MUST point to a user-defined struct

fi_mr_auth_key that specifies:

o An address vector, and

o An address that has been inserted into the address vector.

• The memory region MUST be associated with the JobID represented by the authorization key of

the address specified in the fi_mr_auth_key struct.

In all other cases (e.g., use of fi_mr() registration APIs other than fi_mr_regattr()), the memory region

MUST be for any JobID.

When a registered memory region is associated with a JobID, access MUST be authorized only for

operations carrying that ses.JobID field in the SES header.

2.2.4.4 JobID Selection for Data Transmission Operations

Using the indirect JobID method, the provider references the assigned ses.JobID field within the SES

header to facilitate data transfer operations..

In the direct JobID method, the ses.JobID field within the SES header of data transfer operations MUST

be taken directly from the auth_key attribute of the libfabric endpoint.

With the AV JobID method, the ses.JobID field within the SES header of data transfer operations MUST

be determined from the fi_addr_t dest_addr parameter of the libfabric API (i.e., the authorization key

associated with the destination address when it was inserted into the address vector).

 80

Copyright © 2025 Ultra Ethernet ConsortiumTM. All rights reserved.

2.2.5 Libfabric APIs

This specification targets the libfabric v2.0 release.

Libfabric provides many APIs that are currently documented in the groups summarized by Table 2-9.

Table 2-9 - Libfabric API Groups

API Group Name Description

fi_atomic Remote atomic operations

fi_av Address vector operations

fi_av_set Address vector set operations

fi_cm Connection management operations

fi_cntr Completion and event counter operations

fi_collective Collective operations

fi_control Fabric resource operations

fi_cq Completion queue operations

fi_domain Fabric domain operations

fi_endpoint Fabric endpoint operations

fi_eq Event queue operations

fi_errno Fabric error operations

fi_fabric Fabric network operations

fi_getinfo Fabric discovery operations

fi_msg Message data transfer operations

fi_mr Memory region operations

fi_peer Provider to provider operations

fi_poll Polling and wait set operations (being deprecated by libfabric)

fi_provider Provider operations

fi_rma Remote memory access operations

fi_tagged Tagged data transfer operations

fi_version Library interface version operations

Each individual API is not explicitly covered in this specification. Instead:

• Detailed coverage is limited to the key APIs in each of the four main API categories identified in

section 2.2 (i.e., control, communication, completion, and data transfer).

• Requirements for other libfabric APIs are specified in section 2.2.5.5.

• Unless explicitly stated otherwise, all libfabric APIs SHOULD be supported.

 81

Copyright © 2025 Ultra Ethernet ConsortiumTM. All rights reserved.

Some of the libfabric APIs also have parameters that were not covered by the UET profile parameter

requirements specified in section 2.2.2, and a subset of those parameters require special handling by a

UET provider. An effort has been made to identify such parameters and specify the required handling.

Figure 2-7 provides a top-level depiction of relationships between key libfabric objects and the

associated APIs. The purpose of the diagram is to provide context that promotes easier understanding

of subsequent text in this specification. A typical API flow for creating the objects is summarized in the

following bullets:

• The fi_getinfo() API is used to identify locally available providers and their capabilities.

o fi_getinfo() returns a list of fi_info structures.

• The application selects the fi_info structure associated with the desired provider and uses the

fi_info structure as a parameter to the fi_fabric() API, which creates a fabric object.

o In libfabric, a fabric represents a network.

• The fi_eq_open() API is used to create an event queue that is bound to the fabric.

o Event queues are used to report the completion of asynchronous control operations and

events.

• The fi_domain() API is used to create a domain object that is bound to the fabric.

o In libfabric, a domain represents a NIC.

• The fi_endpoint() API is used to create an endpoint object that is bound to the domain.

o In libfabric, an endpoint represents a transport-level communication portal.

• The fi_cq_open() API is used to create one or more completion queues.

o Completion resources (i.e., completion queues or completion counters) are used to

report the results of submitted data transfer operations.

• The fi_cntr_open() API is optionally used to create one or more completion counters.

• The fi_ep_bind() API is used to bind the resource to the endpoint, such as event queues,

completion queues, completion counters, address vectors, or shared transmit/receive contexts.

• The fi_mr_reg() API is used to create a memory region that is bound to the domain.

• The fi_mr_bind() API is used to bind the memory region to the endpoint (instead of the domain).

o UET requires memory regions be bound to endpoints as specified in Table 2-4.

• The fi_av_open() API is used to create an address vector under the domain, to be bound to the

endpoint.

o Address vectors are used to efficiently represent destination endpoints.

• The fi_av_insert() API is used to insert one or more entries in the address vector.

• The data transfer APIs are be used for endpoint communication.

 82

Copyright © 2025 Ultra Ethernet ConsortiumTM. All rights reserved.

Figure 2-7 - Key Libfabric Objects and Associated APIs

2.2.5.1 Libfabric Addressing

Libfabric provides flexible endpoint addressing, where the available address formats are defined by an

enumeration. A new value, FI_ADDR_UET, is added to the enumeration to identify the UET address

format. Support for representation of UET libfabric endpoint addresses in the FI_ADDR_STR format is

NOT required.

The components of a UET libfabric endpoint address are shown in Table 2-10.

Table 2-10 - UET Libfabric Endpoint Address

Field Name Size (bits) Description

Version 8 Version number that identifies the format of the address

• The fields in this table are associated with version 0

Flags 16 Valid flags, see footnote 1
Bit 0:0 – Indicates validity of fabric endpoint capabilities field
 0 => Fabric endpoint capabilities field is NOT valid
 1 => Fabric endpoint capabilities field is valid
Bit 1:1 - Indicates validity of fabric address fields (fabric address
type and fabric address)

 83

Copyright © 2025 Ultra Ethernet ConsortiumTM. All rights reserved.

Field Name Size (bits) Description

 0 => Fabric address fields are NOT valid
 1 => Fabric address fields are valid
Bit 2:2 - Indicates validity of PIDonFEP field
 0 => PIDonFEP field is NOT valid
 1 => PIDonFEP field is valid
Bit 3:3 - Indicates validity of index fields (start resource index and
num resource indices)
 0 => Resource Index fields are NOT valid
 1 => Resource Index fields are valid
Bit 4:4 – Indicates validity of Initiator ID field
 0 => Initiator ID field is NOT valid
 1 => Initiator ID field is valid
Other Flags
Bit 5:5 – Indicates whether relative or absolute address mode is
used
 0 => Relative addressing
 1 => Absolute addressing
Bit 6:6 – Fabric address type, IPv4 or IPv6
 0 => IPv4
 1 => IPv6
Bit 7:7 – Indicates if maximum message size is limited to MTU
 0 => Maximum message size not limited to MTU
 1 => Maximum message size = MTU
Bits 8:15 – Reserved, MUST be 0

Fabric Endpoint Capabilities 16 Bit 0:0 – Indicates support for AI Base profile
 0 => AI Base profile NOT supported
 1 => AI Base profile supported
Bit 1:1 – Indicates support for AI Full profile
 0 => AI Full profile NOT supported
 1 => AI Full profile supported
Bit 2:2 – Indicates support for HPC profile
 0 => HPC profile NOT supported
 1 => HPC profile supported
Bits 3:6 – Reserved, MUST be 0
Bit 7: 7 – Indicates support for optimized non-matching SES
header
 0 => Optimized non-matching SES header NOT supported
 1 => Optimized non-matching SES header supported
Bits 8:15 – Reserved, MUST be 0

PIDonFEP 16 Process ID in context of fabric endpoint
Meaning depends on the address mode

Fabric Address 128 IP address

Start Resource Index 12 Service Identifier

• Index 0 is reserved for a UET provider-to-provider control
channel
o No standardized provider-to-provider control channel

operations have been defined
o The provider-to-provider control channel MAY be used

for vendor-specific operations

Num Resource Indices 12 Number of sequential indices assigned to the service

Initiator ID 32 Initiator identifier (as defined in the SES specification)

 84

Copyright © 2025 Ultra Ethernet ConsortiumTM. All rights reserved.

Field Name Size (bits) Description

Note:
1. The valid flags enable requests for specific components of a UET address on the fi_getinfo() API (see section

2.2.5.2.2) and the fi_endpoint() API (see section 2.2.5.3.5).

Informative Text:

The Resource Index field of the UET address enables a multi-threaded application supporting multiple

services to open a libfabric endpoint for each service. Each service gets a unique index that is used to

differentiate the endpoints.

Libfabric endpoint addresses are allocated when libfabric endpoints are opened, as discussed in section

2.2.5.3.

A ‘C’ structure representation of a UET Libfabric Endpoint Address is shown in Figure 2-8.

#define UET_ADDR_FLAG_FEP_CAP_V (1 << 0) /* FEP capabilities valid flag */

#define UET_ADDR_FLAG_FA_V (1 << 1) /* fabric address valid flag */

#define UET_ADDR_FLAG_PID_V (1 << 2) /* PIDonFEP valid flag */

#define UET_ADDR_FLAG_RI_V (1 << 3) /* resource index valid flag */

#define UET_ADDR_FLAG_INI_V (1 << 4) /* initiator id valid flag */

#define UET_ADDR_FLAG_ABS_MODE (1 << 5) /* absolute address mode */

#define UET_ADDR_FLAG_REL_MODE (0 << 5) /* relative address mode */

#define UET_ADDR_FLAG_IPV6 (1 << 6) /* IPv6 fabric address type */

#define UET_ADDR_FLAG_IPV4 (0 << 6) /* IPv4 fabric address type */

#define UET_ADDR_FLAG_MTU_MSG_SIZE (1 << 7) /* max message size is MTU */

#define UET_ADDR_FEP_AI_MIN (1 << 0) /* AI base profile supported */

#define UET_ADDR_FEP_AI_FULL (1 << 1) /* AI full profile supported */

#define UET_ADDR_FEP_HPC (1 << 2) /* HPC profile supported */

#define UET_ADDR_FEP_OPT_NM_SEM (1 << 7) /* non-matching hdr supported */

#define UET_ADDR_IPV6_ADDR_OCTETS 16

struct uet_fa { /* fabric address */

 union {

 uint32_t v4;

 uint8_t v6[UET_ADDR_IPV6_ADDR_OCTETS];

 }

};

struct uet_addr { /* UET address */

 uint8_t ver;

 uint8_t reserved; /* for alignment */

 uint16_t flags;

 uint16_t fep_cap;

 uint16_t pid_on_fep;

 struct uet_fa fa;

 uint16_t start_resource_index;

 85

Copyright © 2025 Ultra Ethernet ConsortiumTM. All rights reserved.

 uint16_t num_resource_indices;

 uint32_t initiator_id;

};

Figure 2-8 - Libfabric UET Endpoint Address Structure

2.2.5.2 Discovery APIs

Discovery APIs are used to discover the available libfabric communication services.

The following two discovery APIs are discussed in this section:

uint32_t fi_version(void);

<https://ofiwg.github.io/libfabric/main/man/fi_version.3.html>

int fi_getinfo(int version, const char *node, const char *service,uint64_t

 flags, const struct fi_info *hints, struct fi_info **info);

<https://ofiwg.github.io/libfabric/main/man/fi_getinfo.3.html>

2.2.5.2.1 fi_version() API

The fi_version() API is used to discover the libfabric version. The API returns an encoded version, which

can be decoded using the FI_MAJOR () and FI_MINOR () macros. The information MAY be used to ensure

the libfabric version meets the minimum that the application requires. For UET, this minimum should be

Major Version 2 and Minor Version 0.

2.2.5.2.2 fi_getinfo() API

The fi_getinfo() API is used to identify locally available providers and their capabilities. The parameters

to fi_getinfo() in Table 2-11 merit additional description:

Table 2-11 - fi_getinfo() Parameters

Parameter Description

node

The node parameter is usually set to NULL and ignored by the provider, but
MAY be used as a filter to limit the returned providers. For UET, if the node
parameter is non-NULL, it MUST point to a UET address. If the node
parameter is non-NULL and the FI_SOURCE flag is set, UET providers
SHOULD filter the returned info based on the fields of the UET address that
are valid (see Table 2-10). If the node parameter is non-NULL and the
FI_SOURCE flag is not set, UET providers SHOULD NOT return info.

service Previously, the service parameter has usually been set to NULL and ignored
by the provider. For UET, the service parameter MAY contain a service
name string. The string MAY be a pre-defined value associated with a
particular service supported by UET or a user-defined value read by the
provider from an optional service configuration file as described in section
2.2.3. The set of pre-defined service strings is shown in Table 1 10 below. If
a pre-defined service string value appears in the service configuration file,
the mapping defined in the service configuration MUST take precedence.

https://ofiwg.github.io/libfabric/main/man/fi_version.3.html
https://ofiwg.github.io/libfabric/main/man/fi_getinfo.3.html

 86

Copyright © 2025 Ultra Ethernet ConsortiumTM. All rights reserved.

Parameter Description

When the service parameter is specified, UET providers MUST filter the
returned providers based on the service parameter, and only return
providers that support the specified service.

flags UET providers MUST support the following flag values:

• FI_SOURCE

hints->addr_format Indicates the format of addresses referenced by the fabric interfaces and
data structures. If the value is not FI_ADDR_UET, UET providers MUST NOT
return info.

hints->src_addr This parameter MAY be used as a filter to limit the returned providers in a
manner like the case where the node parameter is non-NULL and the
FI_SOURCE flag is set. If hints->src_addr is non-NULL, the UET provider
SHOULD filter the returned info based on the fields of the UET address that
are valid.

hints->dst_addr This parameter is intended as a filter to limit the returned providers. If the
hints->dst_addr parameter is specified, UET providers SHOULD NOT return
info.

(*info)->src_addr Because full UET addresses are not available until the libfabric endpoint is
opened, the components of the UET address that MUST be returned are
limited to the following:

• Version

• Flags

• Fabric address type

• Fabric address

• Start resource index
o The returned start resource index is NOT required to be the

actual start resource index, but the provider MUST be able to
identify the service based on the returned start resource index
value (i.e., when this src_addr is used as a parameter to the
fi_endpoint() API).

o If the service parameter is not specified, the start resource
index is associated with the generic service.

• Fabric endpoint capabilities

(*info)->dst_addr The UET provider MUST NOT return a destination address.

Table 2-12 - Pre-Defined UET Service Names

Pre-Defined Service Name
Strings

Reserved Starting Resource
Index Value

Number of Resource Indices

“generic” None (dynamically allocated) 1

“ccl” 1 5

“mpi” 6 5

“shmem” 11 5

Multiple resource indices MAY be assigned to a service. Scalable endpoints (created with the

fi_scalable_ep() API) MUST assign a unique resource index to each rx context (see fi_rx_context() API).

The UET address of an endpoint created with the fi_endpoint() API MUST be assigned a single

 87

Copyright © 2025 Ultra Ethernet ConsortiumTM. All rights reserved.

application-visible resource index (there MAY also be an additional resource index associated with the

endpoint that is not application-visible but used as a provider-to-provider control channel).

2.2.5.3 Communication and Completion APIs

The communication and completion APIs are used to perform the setup required for data transfer and

to report data transfer operation results.

The following communication and completion APIs are discussed in this section:

int fi_fabric(struct fi_fabric_attr *attr, struct fid_fabric **fabric,

 void *context);

<https://ofiwg.github.io/libfabric/main/man/fi_fabric.3.html>

int fi_eq_open(struct fid_fabric *fabric, struct fi_eq_attr *attr,

 struct fid_eq **eq, void *context);

<https://ofiwg.github.io/libfabric/main/man/fi_eq.3.html>

int fi_domain(struct fid_fabric *fabric, struct fi_info *info,

 struct fid_domain **domain, void *context);

<https://ofiwg.github.io/libfabric/main/man/fi_domain.3.html>

int fi_mr_reg(struct fid_domain *domain, const void *buf, size_t len,

 uint64_t access, uint64_t offset, uint64_t requested_key,

 uint64_t flags, struct fid_mr **mr, void *context);

uint64_t fi_mr_key(struct fid_mr *mr);

<https://ofiwg.github.io/libfabric/main/man/fi_mr.3.html>

int fi_endpoint(struct fid_domain *domain, struct fi_info *info,

 struct fid_ep **ep, void *context);

int fi_ep_bind(struct fid_ep *ep, struct fid *fid, uint64_t flags);

<https://ofiwg.github.io/libfabric/main/man/fi_endpoint.3.html>

int fi_getname(fid_t fid, void *addr, size_t *addrlen);

<https://ofiwg.github.io/libfabric/main/man/fi_cm.3.html>

int fi_cq_open(struct fid_domain *domain, struct fi_cq_attr *attr,

 struct fid_cq **cq, void *context);

<https://ofiwg.github.io/libfabric/main/man/fi_cq.3.html>

https://ofiwg.github.io/libfabric/main/man/fi_fabric.3.html
https://ofiwg.github.io/libfabric/main/man/fi_eq.3.html
https://ofiwg.github.io/libfabric/main/man/fi_domain.3.html
https://ofiwg.github.io/libfabric/main/man/fi_mr.3.html
https://ofiwg.github.io/libfabric/main/man/fi_endpoint.3.html
https://ofiwg.github.io/libfabric/main/man/fi_cm.3.html
https://ofiwg.github.io/libfabric/main/man/fi_cq.3.html

 88

Copyright © 2025 Ultra Ethernet ConsortiumTM. All rights reserved.

int fi_cntr_open(struct fid_domain *domain, struct fi_cntr_attr *attr,

 struct fid_cntr **cntr, void *context);

<https://ofiwg.github.io/libfabric/main/man/fi_cntr.3.html>

int fi_av_open(struct fid_domain *domain, struct fi_av_attr *attr,

 struct fid_av **av, void *context);

int fi_av_insert(struct fid_av *av, void *addr, size_t count,

 fi_addr_t *fi_addr, uint64_t flags, void *context);

<https://ofiwg.github.io/libfabric/main/man/fi_av.3.html>

2.2.5.3.1 fi_fabric() API

The fi_fabric() API is called to open a fabric network provider object. A fabric represents a collection of

hardware and software resources that access a single physical or virtual network. A pointer to a fabric

attributes structure is a parameter to fi_fabric(). The fi_info structure returned by the fi_getinfo() API

contains a pointer to a fabric attributes structure.

2.2.5.3.2 fi_eq_open() API

The fi_eq_open() API is called to create a new event queue for the fabric. EQs are for control operations

and are not for completion of data transfer operations such as sends and receives. EQs are used to

collect and report the completion of asynchronous control operations and events. EQs are used for

control events that are not directly associated with data transfer operations such as:

• Asynchronous completion of libfabric control API calls

o Some libfabric control APIs support either synchronous or asynchronous operation

• Asynchronous error notification for problems with fabric resources such as completion queues

or endpoints

EQs are typically implemented completely in software.

An EQ MAY also be bound to a domain using the fi_domain_bind API.

UET providers MUST support event queues. A minimum of one event queue per libfabric endpoint MUST

be supported.

2.2.5.3.3 fi_domain() API

The fi_domain() API is called to open an access domain on the fabric. A domain is a logical connection

into a fabric, often corresponding to a physical or virtual NIC. The fi_domain() API takes a pointer to a

fi_info structure as a parameter. The fi_info structure returned by the fi_getinfo() API contains a pointer

to a domain attributes structure.

https://ofiwg.github.io/libfabric/main/man/fi_cntr.3.html
https://ofiwg.github.io/libfabric/main/man/fi_av.3.html

 89

Copyright © 2025 Ultra Ethernet ConsortiumTM. All rights reserved.

2.2.5.3.4 fi_mr_reg() and fi_mr_key() APIs

A memory buffer MUST be registered with a resource domain before it can be used as the target of a

remote RMA or atomic data transfer. Additionally, a fabric provider MAY require that data buffers be

registered before being used in local transfers (e.g., the buffer is the source for a write operation or the

destination for a read operation). The fi_mr_reg() API is used to register a memory region on the

domain. A memory region is bound to an endpoint using the fi_mr_bind() API.

The fi_mr_key() API is used to obtain the key that remote endpoints need to access a registered memory

region. Libfabric offers options that enable the key for a memory region to be assigned by the

application or the provider. A UET provider SHOULD support user-assigned keys and therefore SHOULD

NOT require the FI_MR_PROV_KEY mode flag.

2.2.5.3.4.1 Memory Key Format

For interoperability, the format of the memory region key is standardized as specified in Table 2-13.

Table 2-13 - Memory Region Key Format

Field Name Bit
Location

Size
(bits)

Description

IDEMPOTENT_SAFE 63 1 0 => Memory region MUST NOT be used as target of idempotent
transport operations.
1 => Memory region MAY be used as target of idempotent
transport operations (i.e., there are no completion counters
bound to the memory region).
Idempotent operations can improve the efficiency of the
transport protocol.

OPTIMIZED 62 1 0 => Memory region does not support optimized non-matching
headers (the optimized non-matching header format is defined in
the UET SES specification; optimized refers to a header that is
smaller than the standard SES request header).
1 => Memory region supports optimized non-matching headers.

RESERVED 56:61 6 Reserved for future UET definitions; MUST be 0.

VENDOR_SPECIFIC 48:56 8 MAY be used in vendor-specific manner for provider-assigned
memory keys; MUST be 0 for user-assigned memory keys.

OPTIMIZED = 0

RKEY 0:47 48 Memory key for MR.

OPTIMIZED = 1

RESERVED 12:47 36 Reserved for future UET definitions; MUST be 0.

RKEY / INDEX 0:11 12 Index for MR.

Informative Text:

Support for user-assigned keys can enable applications to avoid exchanging memory keys if the

application uses a convention where the appropriate key values are well-known.

 90

Copyright © 2025 Ultra Ethernet ConsortiumTM. All rights reserved.

The memory region key format shown in Table 2-13 MUST be used for both user-supplied keys and

provider-supplied keys. The full 64-bit key format MUST be passed across the fi_mr() APIs. Bit mask

definitions will be provided to assist in forming keys with the desired format. The size of the RKEY field is

fixed at 48 bits, but the range of RKEY values that are supported MUST be based on the value of the

mr_key_size attribute in the fi_domain_attr structure. If mr_key_size is < 6, the unused most-significant

bits MUST be 0.

The format of provider-supplied RKEYs is provider-specific (since the format is only locally significant at

the assigning provider). The provider implementation MUST choose how the RKEY is used in identifying

a registered memory region (e.g., the key MAY be used as a table index, part of hash lookup tuple, etc.).

A UET provider MAY choose to partition the RKEY into a portion that carries the memory key and

another portion that carries additional authentication information.

The RKEY values in the range [0..4095] merit additional discussion, since these values MAY be used in

conjunction with the optimized non-matching SES header in some cases. The optimized non-matching

SES header SHOULD be used when the criteria specified in Table 2-14 are satisfied. The RMA operations

that the criteria specified in this section are applied to are associated with the libfabric APIs defined in

the fi_rma() API Group <https://ofiwg.github.io/libfabric/v1.20.1/man/fi_rma.3.html>.

Table 2-14 - Criteria for Optimized Non-Matching SES Header for RMA Operations

Criteria for Use of Optimized Non-Matching SES Header for RMA Operations

OPTIMIZED bit is 1 in Memory region key format

RMA operation size <= MTU

FI_REMOTE_CQ_DATA is NOT set for the RMA operation

When the optimized non-matching SES header is used for RMA operations, the RKEY/INDEX value MUST

be carried in the ses.resource_index field of the SES header.

The criteria that MUST be satisfied to use the small RMA SES header for RMA operations are shown in

Table 2-15. The small RMA SES header SHOULD be used for RMA operations when the criteria specified

in Table 2-15 are satisfied.

Table 2-15 - Criteria for Small RMA SES Header with RMA Operations

Criteria for Use of Small RMA SES Header for RMA Operations

RMA operation size <= MTU

FI_REMOTE_CQ_DATA is NOT set for the RMA operation

If the criteria for use of the optimized non-matching SES header is NOT satisfied and the criteria for use

of the small RMA SES header is NOT satisfied, then the standard SES header MUST be used for RMA

operations.

https://ofiwg.github.io/libfabric/v1.20.1/man/fi_rma.3.html

 91

Copyright © 2025 Ultra Ethernet ConsortiumTM. All rights reserved.

The criteria that MUST be satisfied to use the RUDI packet delivery mode for RMA operations are shown

in Table 2-16. The RUDI packet delivery mode is optimized for idempotent operations and is described in

the PDS reliability specification. If supported, the RUDI packet delivery mode SHOULD be used when the

criteria specified in Table 2-16 are satisfied.

Table 2-16 - Criteria for RUDI Packet Delivery Mode with RMA Operations

Criteria for Use of RUDI PDC for RMA Operations

Libfabric endpoint is NOT configured for R/W message ordering

IDEMPOTENT_SAFE bit is 1 in memory region key format

Target supports use of RUDI packet delivery mode
As indicated by the fabric endpoint capabilities field of the destination UET address

Both user-supplied and provider-supplied memory keys MAY be marked as IDEMPOTENT_SAFE and/or

OPTIMIZED. A UET provider SHOULD honor the IDEMPOTENT_SAFE and OPTIMIZED bits in the

requested_key parameter of the fi_mr() APIs even when FI_MR_PROV_KEY is configured. If the user

attempts to bind a completion counter to a memory region marked as IDEMPOTENT_SAFE, a UET

provider MUST fail the bind operation. If an OPTIMIZED provider-supplied key is requested but cannot

be allocated, the provider SHOULD fall back to non-optimized operation.

Requirements for the scope of the RKEYs are specified in Table 2-17.

Table 2-17 - RKEY Scope Requirements

Sematic Header Format Scope in Relative Addressing Mode Scope in Absolute Addressing Mode

Optimized, Non-Matching {FA, JobID, PIDonFEP} {FA, PIDonFEP}

All Others {FA, JobID, PIDonFEP, Index} {FA, PIDonFEP, Index}

2.2.5.3.5 fi_endpoint() and fi_ep_bind() APIs

The fi_endpoint() API is used to open an active endpoint on the domain. Endpoints are transport-level

communication portals. The data transfer interfaces are associated with active endpoints, which

typically have transmit and receive queues. The fi_endpoint() API takes a fi_info structure as a

parameter. The fi_info parameter is typically the fi_info structure returned by the fi_getinfo() API. The

fi_info structure includes a source address field that is used as part of opening an active endpoint. The

source address field MAY be used to request assignment of a specific UET address. Selected components

of a UET address MAY be requested using the valid bits in the flags field of the UET address.

Libfabric endpoint address assignment MAY be a multi-stage process, where a portion of the endpoint

address MAY be assigned at job initialization time or by the fi_getinfo() API; the remainder is assigned

when the endpoint is opened. An application can learn its full UET address only by calling the

fi_getname() API, which is described in section 2.2.5.3.6.

The JobID MAY be assigned at job initialization time or when the endpoint is opened. The JobID MUST

be programmed into the hardware by a privileged entity.

 92

Copyright © 2025 Ultra Ethernet ConsortiumTM. All rights reserved.

UET providers MUST support the following libfabric endpoint types:

• FI_EP_DGRAM

• FI_EP_RDM

Each libfabric endpoint is of a single type, either FI_EP_DGRAM or type FI_EP_RDM.

The fi_ep_bind() API is used to associate resources with an endpoint, such as event queues, completion

queues, completion counters, address vectors, or shared transmit/receive contexts.

2.2.5.3.5.1 UET Address Assignment Architecture

The following bullets summarize the procedure for assigning UET address fields:

• The UET provider makes a request to a kernel mode driver that is relayed to a privileged user-

mode process, which is part of the provisioning system responsible for UET address assignment.

• The request contains information about the endpoint being opened.

• The privileged entity returns the needed address information.

• Additional information MAY also be returned such as JobID and security domain bindings.

An architecture diagram depicting the UET address assignment procedure is shown in Figure 2-9.

 93

Copyright © 2025 Ultra Ethernet ConsortiumTM. All rights reserved.

Figure 2-9 - UET Address Assignment Architecture

The steps shown in Figure 2-9 are:

1. UET provider makes an address assignment request to the kernel driver.

2. The kernel driver relays the request to the privileged user process via the UET Control API.

3. The privileged user process communicates with a provisioning system and returns the requested

address information.

4. The kernel driver programs the JobID validation information and security bindings into the NIC

hardware.

5. The kernel driver relays the response, without the security bindings, to the UET provider.

Requirements associated with this architecture are:

• A UET provider MUST send address assignment requests to the kernel driver.

• The address assignment request MUST contain the following information:

 94

Copyright © 2025 Ultra Ethernet ConsortiumTM. All rights reserved.

o FEP IP address

▪ The FEP IP address is a parameter of the address assignment request from the

UET provider.

▪ The FEP IP address parameter is used as part of the UET address.

▪ The UET address assignment request does not configure IP addresses of NIC

interfaces.

o OS process ID

o Service name

• In Linux implementations, the UET provider SHOULD use a Netlink interface for address

assignment communication with the kernel driver.

• The kernel driver MUST relay the address assignment request to a privileged user process using

the UET Control API.

• The privileged user process MUST return the address assignment response to the kernel driver

using the UET Control API.

o In Linux implementations, the kernel driver MUST accept responses only from a

privileged process running as root.

• If not provided at job initialization time (see section 2.2.4), the address assignment response

MUST include the following information:

o JobID

▪ If the requesting process was configured with a single JobID at job initialization

time, a JobID provided in the response SHOULD take precedence.

▪ If the requesting process was configured with multiple JobIDs at job initialization

time and the FI_AV_AUTH_KEY capability is enabled, a JobID provided in the

response SHOULD be ignored.

o Address mode

o PIDonFEP

o Initiator ID

• The address assignment response MAY optionally include the following information:

o Security bindings for crypto operations (see section 2.2.9)

▪ Security bindings are assigned as specified in section 2.2.4.1

o Start resource index

o Num resource indices

▪ Resource index bindings provided in the response SHOULD take precedence

over other methods of Index configuration.

• The kernel driver MUST program the JobID validation information and security bindings into the

NIC hardware.

• The kernel driver MUST relay the address assignment response, without the security bindings, to

the UET provider and SHOULD use a Netlink interface when relaying the response in Linux

implementations.

The parameters comprising the UET Control API address assignment request are specified in Table 2-18.

 95

Copyright © 2025 Ultra Ethernet ConsortiumTM. All rights reserved.

Table 2-18 - UET Control API Address Assignment Request Parameters

Parameter Name Size (bits) Description

Flags 8 Bit 0:0 - Indicates FEP IP address type
 0 => IPv4
 1 => IPv6
Bits 1:7 - Reserved, MUST be 0

FEP IP Address 128

OS Process ID 32

Service Name 136 NULL-terminated character string identifying service

The parameters comprising the UET Control API address assignment response are specified in Table

2-19.

Table 2-19 - UET Control API Address Assignment Response Parameters

Parameter Name Size (bits) Description

Flags 8 Bit 0:0 – Indicates validity of JobID field
 0 => JobID field is NOT valid
 1 => JobID field is valid
Bit 1: 1 - Indicates validity of Security Bindings Field
 0 => Security bindings field is NOT valid
 1 => Security bindings field is valid
Bits 2:7 – Reserved, MUST be 0

JobID 24

UET Address See Table
2-10

The UET Address format is specified in Table 2-10

Security Bindings See Table
2-33

Security binding parameters are specified in Table 2-33

‘C’ structure representations of the UET Control API address assignment request and response are

shown in Figure 2-10.

#define UET_CTRL_ADDR_REQ_FLAG_IPV4 (0 << 0) /* IPv4 fabric address type */
#define UET_CTRL_ADDR_REQ_FLAG_IPV6 (1 << 0) /* IPv6 fabric address type */

#define UET_CTRL_ADDR_RESP_FLAG_JOB_V (1 << 0) /* JobID valid */
#define UET_CTRL_ADDR_RESP_FLAG_SEC_V (1 << 1) /* security bindings valid */

struct uet_ctrl_addr_req {
 uint8_t flags;
 uint8_t reserved[3];
 struct uet_fa fa;
 uint32_t os_pid;
 char service[UET_MAX_SERVICE_NAME_CHARS+1];
};

struct uet_ctrl_addr_resp {
 uint8_t flags;
 uint8_t reserved[3];
 uint32_t job_id;
 struct uet_addr addr;

 96

Copyright © 2025 Ultra Ethernet ConsortiumTM. All rights reserved.

 struct uet_sec_bindings sec;
};

Figure 2-10 - UET Control API Address Assignment Request and Response Structures

2.2.5.3.6 fi_getname() API

The fi_getname() API is called to retrieve the local UET address of a libfabric endpoint. The call returns

an address object that is typically shared with other endpoints of the job.

2.2.5.3.7 fi_cq_open() and fi_cntr_open() APIs

Completion resources are used to report the results of submitted data transfer operations. The

completion resource MAY be a completion queue, which is often implemented in hardware, or a

completion counter, which can be implemented in hardware or software. The fi_ep_bind() API is called

to bind a completion resource to an endpoint.

Completion counters simply return the number of operations that have been completed. Counters are

intended as lightweight completion objects that increment whenever an identified type of data transfer

has occurred, which avoids the overhead of conveying completion queue entries to the application.

Completion counters are used by applications such as MPI. The fi_cntr_open() API is called to open a

completion counter.

The fi_cq_open() API is called to open a CQ. Multiple pre-defined CQ entry formats are supported.

Provider-specific CQ entry formats are also supported.

The UET provider MUST support completion queues.

The per-profile requirements for completion counters are specified in Table 2-20.

Table 2-20 - Completion Counter Requirements

Profile Completion Counter Requirements

AI Base None

AI Full FI_SEND, FI_RECV, FI_READ, FI_WRITE

HPC FI_SEND, FI_RECV, FI_READ, FI_WRITE,
FI_REMOTE_READ, FI_REMOTE_WRITE

The profiles that are required to support completion counters MUST support both the

FI_CNTR_EVENTS_COMP and FI_CNTR_EVENT_BYTES event types.

2.2.5.3.8 fi_av_open() and fi_av_insert() APIs

Address vectors are used to map higher-level addresses into fabric-specific addresses. The purpose of

the AV is to associate a higher-level address with a simpler, more efficient value that is used by the

libfabric API in a fabric-agnostic way.

 97

Copyright © 2025 Ultra Ethernet ConsortiumTM. All rights reserved.

The fi_av_open() API is called to create an address vector, the fi_ep_bind() API is called to bind an

address vector to an endpoint, and the fi_av_insert() API is called to insert the addresses of destination

endpoints into the address vector. The fi_av_insert() API returns a mapped address of type fi_addr_t,

which is passed to data transfer APIs to identify the destination endpoint, thereby avoiding the need to

pass the full address of a target endpoint with every data transfer. There are two types of address

vectors:

• FI_AV_MAP

o Addresses inserted into an AV are mapped to a native fabric address for application use.

The use of FI_AV_MAP requires that an application store the returned fi_addr_t value

that is associated with each inserted address. FI_AV_MAP is being deprecated in

libfabric v2.0. The enum will stay, but the behavior will be like FI_AV_TABLE.

• FI_AV_TABLE

o Addresses that are inserted into an AV of type FI_AV_TABLE are accessible using a

simple index. When FI_AV_TABLE is used, the returned fi_addr_t is an index, with the

index for an inserted address being the same as its insertion order into the table. The

index of the first address inserted into an FI_AV_TABLE will be 0, and successive

insertions will be given sequential indices. Sequential indices will be assigned across

insertion calls on the same AV.

The AV attributes structure, fi_av_attr, contains a name field and a map_addr field that are useful for

sharing an AV between processes.

The UET provider MUST support the FI_AV_TABLE type. The unspecified type, FI_AV_UNSPEC, MUST be

treated as the FI_AV_TABLE type.

2.2.5.4 OFI Data Transfer APIs

This section covers the following groups of data transfer APIs:

• fi_msg() <https://ofiwg.github.io/libfabric/v1.20.1/man/fi_msg.3.html>

• fi_tagged() <https://ofiwg.github.io/libfabric/v1.20.1/man/fi_tagged.3.html>

• fi_rma() <https://ofiwg.github.io/libfabric/v1.20.1/man/fi_rma.3.html>

• fi_atomic() <https://ofiwg.github.io/libfabric/v1.20.1/man/fi_atomic.3.html>

• fi_collective() <https://ofiwg.github.io/libfabric/v1.20.1/man/fi_collective.3.html>

2.2.5.4.1 fi_msg() APIs

The fi_msg() APIs are used to perform message data transfer operations. There are APIs to post receive

buffers for incoming messages and APIs for initiating transmission of outgoing messages. The fi_msg()

Informative Text:

One approach for using an FI_AV_TABLE is to insert addresses for each rank sequentially such that the

AV table indices are the same as the rank number.

https://ofiwg.github.io/libfabric/v1.20.1/man/fi_msg.3.html
https://ofiwg.github.io/libfabric/v1.20.1/man/fi_tagged.3.html
https://ofiwg.github.io/libfabric/v1.20.1/man/fi_rma.3.html
https://ofiwg.github.io/libfabric/v1.20.1/man/fi_atomic.3.html
https://ofiwg.github.io/libfabric/v1.20.1/man/fi_collective.3.html

 98

Copyright © 2025 Ultra Ethernet ConsortiumTM. All rights reserved.

APIs MUST be supported for both FI_EP_DGRAM and FI_EP_RDM endpoints. The fi_msg() receive API

requirements are summarized in Table 2-21.

Table 2-21 - fi_msg() Receive API Requirements

fi_msg() API Description Requirements

fi_recv Posts a data buffer to the receive queue of the
corresponding endpoint. Posted receive buffers are
searched in the order they were posted to match sends.
Message boundaries are maintained. The src_addr
parameter MAY be used to indicate that a buffer should be
posted to receive incoming data from a specific remote
endpoint.

API MUST be supported

The requirements for supporting
the src_addr parameter are
specified in section 2.2.4.3.1

fi_recvv The fi_recvv() API adds support for a scatter-gather list to
the fi_recv() API

API MUST be supported

Maximum size of scatter-gather
list is vendor specific

fi_recvmsg The fi_recvmsg() API supports more granular control of the
receive operation per call using flag parameters

The following flags MUST be supported:
• FI_COMPLETION

API MUST be supported

FI_MULTI_RECV /
FI_TAGGED_MULTI_RECV
capabilities and associated flag
parameters SHOULD be
supported

UET providers SHOULD allocate independent receive queues (i.e., lists of posted receive buffers) for

messages and tagged messages.

Table 2-22 summarizes the fi_msg() send API requirements and shows the mapping of the APIs to the

UET SES opcodes.

Table 2-22 - fi_msg() Send API Requirements

fi_msg() API Description Requirements SES Opcode

fi_send The fi_send() API transfers
data to a remote endpoint

API MUST be supported UET_DATAGRAM_SEND for
FI_EP_DGRAM endpoint type

UET_SEND for FI_EP_RDM
endpoint type

fi_sendv The fi_sendv() API adds
support for a scatter-
gather list to the fi_send()
API

API MUST be supported

Maximum size of scatter-
gather list is vendor specific

UET_DATAGRAM_SEND for
FI_EP_DGRAM endpoint type

AI Full profile:
UET_SEND or
UET_DEFERRABLE_SEND for
FI_EP_RDM endpoint type

Use of UET_SEND vs.
UET_DEFERRABLE_SEND is

 99

Copyright © 2025 Ultra Ethernet ConsortiumTM. All rights reserved.

fi_msg() API Description Requirements SES Opcode

based on message size as
specified in section 2.2.5.4.1.2

HPC profile:
UET_SEND or
UET_RENDEZVOUS_SEND for
FI_EP_RDM endpoint type

Use of UET_SEND vs.
UET_RENDEZVOUS_SEND is
based on message size as in
section 2.2.5.4.1.2

fi_sendmsg The fi_sendmsg() API
supports more granular
control of the send
operation per call using
flag parameters

API MUST be supported

The following flags MUST be
supported:

• FI_REMOTE_CQ_DATA

• FI_COMPLETION

• FI_INJECT

• FI_INJECT_COMPLETE

• FI_TRANSMIT_COMPLETE

• FI_DELIVERY_COMPLETE

• FI_FENCE

Same as fi_sendv

fi_inject The fi_inject() API is an
optimized version of
fi_send() with the following
characteristics:

• The data buffer is
available for reuse
immediately on return
from the call

• No CQ entry will be
written if the transfer
completes successfully

• An error CQ entry
MUST be written
when used with a
libfabric endpoint of
type FI_EP_RDM and
when the message
cannot be delivered
(this requirement
applies to all inject
operations)

API MUST be supported

The message size used with
fi_inject() is limited by the
inject_size attribute of the
transmit context, which is
vendor specific

Same as fi_sendv

fi_senddata The fi_senddata() API is
like fi_send(), but allows
for the sending of remote
CQ data as part of the
transfer (the remote CQ
data is written into the
target endpoint CQ)

API MUST be supported

The remote CQ data is carried
in the ses.header_data field of
the SES header

Same as fi_sendv

 100

Copyright © 2025 Ultra Ethernet ConsortiumTM. All rights reserved.

fi_msg() API Description Requirements SES Opcode

fi_injectdata The fi_injectdata() API is
like fi_inject(), but allows
for the sending of remote
CQ data as part of the
transfer

API MUST be supported

The remote CQ data is carried
in the ses.header_data field of
the SES header

Same as fi_inject

2.2.5.4.1.1 Unexpected Messages

Unexpected messages MUST be supported using one of the approaches defined in the SES specification,

where the choice of which approach to use at the target is vendor specific. The initiator MUST respond

appropriately to all target behaviors.

2.2.5.4.1.2 Message Rendezvous

The SES specification currently defines two types of rendezvous protocols that are referred to as:

• Rendezvous, and

• Deferrable send.

The AI Full profile MUST support the deferrable send option, while the HPC profile MUST support the

rendezvous option.

Additionally, the SES specification describes two rendezvous approaches for mapping *CCL send and

receive APIs to the libfabric and UET semantics APIs. Both approaches utilize protocols implemented by

*CCL plugins that are layered on top of the libfabric APIs. One approach utilizes the fi_tagged() APIs, and

the other approach is based on the fi_rma() APIs.

For the AI Full profile, messages with sizes >= UET_PROVIDER_MSG_RENDEZVOUS_SIZE bytes SHOULD

be sent with the UET_DEFERRABLE_SEND semantic opcode.

For the HPC profile, messages SHOULD be sent with the UET_RENDEZVOUS_SEND semantic opcode

when the following criteria are met:

• Message size >= UET_PROVIDER_MSG_RENDEZVOUS_SIZE bytes, and

• The source buffer is associated with a local memory region registered for remote read access

The amount of eager data sent as part of a UET_RENDEZVOUS_SEND operation MUST be <=

UET_PROVIDER_MAX_EAGER_SIZE bytes.

2.2.5.4.2 fi_tagged() APIs

The fi_tagged() APIs are used to perform tagged data transfer operations. There are APIs to post receive

buffers for incoming messages and APIs for initiating transmission of outgoing messages.

The fi_tagged() APIs are NOT supported for FI_EP_DGRAM endpoints.

The fi_tagged() APIs MUST be supported by the AI Full and HPC profiles.

 101

Copyright © 2025 Ultra Ethernet ConsortiumTM. All rights reserved.

The fi_tagged() Receive API requirements are summarized in Table 2-23.

Table 2-23 - fi_tagged() Receive API Requirements

fi_tagged() API Description Requirements

fi_trecv Like fi_recv() but with a tag. Posted
receive buffers are searched in the order
they were posted to match sends.
The ignore parameter contains a bitmask
that is applied to the tag to support
wildcard tag matches.

API MUST be supported by AI Full and HPC
profiles

The AI Full profile is required to support only
exact match tags. If wildcard tags are not
supported, the UET provider MUST fail the API
request if any of the ignore bits are set
The HPC profile MUST support wildcard tag
matching

fi_trecvv Like fi_recvv() but with a tag API MUST be supported by AI Full and HPC
profiles

fi_trecvmsg Like fi_recvmsg() but with a tag API MUST be supported by AI Full and HPC
profiles

Table 2-24 summarizes the fi_tagged() send API requirements and shows the mapping of the APIs to the

UET SES opcodes.

Table 2-24 - fi_tagged() Send API Requirements

fi_tagged() API Description Requirements SES Opcode

fi_tsend Like fi_send() but with tag API MUST be
supported by
AI Full and HPC
profiles

AI Full profile:

• UET_TAGGED_SEND or

• UET_DEFERRABLE_TSEND
Use of UET_TAGGED_SEND vs.
UET_DEFERRABLE_TSEND is based on
message size as described in section
2.2.5.3.4.1
HPC profile:

• UET_TAGGED_SEND or

• UET_RENDEZVOUS_TSEND
Use of UET_TAGGED_SEND vs.
UET_RENDEZVOUS_TSEND is based
on message size as described in
section 2.2.5.3.4.1

fi_tsendv Like fi_sendv() but with tag Same as fi_tsend() Same as fi_tsend()

fi_tsendmsg Like fi_sendmsg() but with
tag

Same as fi_tsend() Same as fi_tsend()

fi_tinject Like fi_inject() but with tag Same as fi_tsend() Same as fi_tsend()

fi_tsenddata Like fi_senddata() but with
tag

Same as fi_tsend() Same as fi_tsend()

2.2.5.4.2.1 Tagged Message Initiator ID Matching

 102

Copyright © 2025 Ultra Ethernet ConsortiumTM. All rights reserved.

The SES header for received tagged messages includes a ses.initiator field used as part of the matching

criteria. The Initiator ID associated with a posted tagged buffer is determined based on the src_addr

parameter of the fi_tagged() APIs. If the src_addr parameter is not set to FI_ADDR_UNSPEC, the posted

tagged buffer MUST be matched only when the tag matches the ses.match_bits field in the SES header,

and the ses.initiator field in the SES header matches the Initiator ID component of the UET address

referenced by the src_addr parameter. Other components of the UET address referenced by the

src_addr parameter MAY be used to direct received messages to specific buffers according to the

FI_TAGGED_DIRECTED_RECV semantics. If the src_addr parameter is set to FI_ADDR_UNSPEC, the

ses.initiator field MUST NOT be used as part of the matching criteria.

Implementations of the AI Full and HPC profiles MUST support the use of FI_ADDR_UNSPEC with the

fi_tagged() APIs. Implementations of the AI Full profile SHOULD support setting the src_addr parameter

of the fi_tagged() APIs to reference a specific source UET address. Providers can indicate that

FI_ADDR_UNSPEC is not supported and that setting the src_addr parameter to reference a specific

source UET address is supported via the FI_EXACT_DIRECTED_RECV capability. Implementations of the

HPC profile MUST support setting the src_addr parameter of the fi_tagged() APIs to reference a specific

source UET address.

2.2.5.4.2.2 Tagged Message Rendezvous

The tagged message rendezvous requirements are similar to the message rendezvous requirements

specified in section 2.2.5.4.1.2.

For the AI Full profile, tagged messages with sizes >= UET_PROVIDER_TAG_RENDEZVOUS_SIZE bytes

SHOULD be sent with the UET_DEFERRABLE_TSEND semantic opcode.

For the HPC profile, tagged messages with sizes >= UET_PROVIDER_TAG_RENDEZVOUS_SIZE bytes

SHOULD be sent with the UET_RENDEZVOUS_TSEND semantic opcode.

The amount of eager data sent as part of a UET_RENDEZVOUS_TSEND operation MUST be <=

UET_PROVIDER_MAX_EAGER_SIZE bytes.

2.2.5.4.3 fi_rma() APIs

The fi_rma() APIs are used to perform remote memory access operations. There are APIs for read and

write operations.

The fi_rma() APIs are NOT supported for FI_EP_DGRAM endpoints.

Informative Text:

When used with FI_AV_TABLE, the value of ses.initiator on the wire should be the index to the table.

The Initiator ID component of the src_addr should just be the CCL/MPI rank here, and the two should

match.

 103

Copyright © 2025 Ultra Ethernet ConsortiumTM. All rights reserved.

Table 2-25 summarizes the fi_rma() API requirements and shows the mapping of the APIs to the UET SES

opcodes.

Table 2-25 - fi_rma() API Requirements

fi_rma() API Description Requirements SES Opcode

fi_read The fi_read() API requests that the
remote endpoint transfer data from
the remote memory region into the
local data buffer

API MUST be supported by
AI Full and HPC profiles

UET_READ

fi_readv The fi_readv() API adds support for a
scatter-gather list to fi_read()

Same as fi_read()

Maximum size of scatter-gather
list is vendor specific

UET_READ

fi_readmsg The fi_readmsg() API supports more
granular control of the read operation
per call using flag parameters

Same as fi_read()

The following flags MUST be
supported:
• FI_COMPLETION

UET_READ

fi_write The fi_write() API transfers the data
contained in the user-specified data
buffer to a remote memory region

API MUST be supported by AI
Base, AI Full, and HPC profiles

UET_WRITE

fi_writev The fi_writev() API adds support for a
scatter-gather list to fi_write()

Same as fi_write()

Maximum size of scatter-gather
list is vendor specific

UET_WRITE

fi_writemsg The fi_writemsg() API supports more
granular control of the write
operation per call using flag
parameters

Same as fi_write()
The following flags MUST be
supported:

• FI_REMOTE_CQ_DATA

• FI_COMPLETION

• FI_INJECT

• FI_INJECT_COMPLETE

• FI_TRANSMIT_COMPLETE

• FI_DELIVERY_COMPLETE

• FI_FENCE

UET_WRITE

fi_inject_write The fi_inject_write() API is an
optimized version of fi_write() that
provides similar completion semantics
as fi_inject()

Same as fi_write()

The message size used with
fi_inject_write() is limited by the
inject_size attribute of the
transmit context, which is vendor
specific

UET_WRITE

fi_writedata The fi_writedata() API is like fi_write(),
but allows for the sending of remote
CQ data as part of the transfer (the
remote CQ data is written into the
target endpoint CQ)

Same as fi_write()

The remote CQ data is carried in
the ses.header_data field of the
SES header

• The ses.hd bit is set in the SES
header to indicate that the
ses.header_data field is valid

UET_WRITE

 104

Copyright © 2025 Ultra Ethernet ConsortiumTM. All rights reserved.

2.2.5.4.4 fi_atomic() APIs

The fi_atomic() APIs enable remote atomic operations. There are APIs for:

• Initiating an atomic operation to remote memory (sometimes referred to as non-fetching

atomics).

• Initiating an atomic operation to remote memory and retrieving the initial value (referred to as

fetching atomics).

• Initiating an atomic compare operation to remote memory and retrieving the initial value (which

is a type of fetching atomic).

• Querying provider support for specific atomic operations.

The fi_atomic() APIs are NOT supported for FI_EP_DGRAM endpoints.

UET providers MUST support bulk non-fetching atomics operations; however, fetching atomics MUST be

limited to a single unit of the indicated data type.

Table 2-26 summarizes the fi_atomic() API requirements and shows the mapping of the APIs to the UET

SES opcodes.

Table 2-26 - fi_atomic() API Requirements

fi_atomic() API Description Requirements SES Opcode

diatomic The fi_atomic() API transfers
the data contained in the
user-specified data buffer to
a remote node

API MUST be supported
by all profiles

UET_ATOMIC

fi_atomicv The fi_atomicv() API adds
support for a scatter-gather
list to fi_atomic()

API MUST be supported
by all profiles

Maximum size of scatter-
gather list is vendor
specific

UET_ATOMIC

fi_atomicmsg The fi_atomicmsg() API
supports more granular
control of the atomic
operation per call using flag
parameters

API MUST be supported
by all profiles

The following flags MUST
be supported:

• FI_COMPLETION

• FI_INJECT

• FI_FENCE

• FI_TAGGED

UET_ATOMIC or
UET_TSEND_ATOMIC

UET_TSEND_ATOMIC is

used when the
FI_TAGGED flag is set

 105

Copyright © 2025 Ultra Ethernet ConsortiumTM. All rights reserved.

fi_atomic() API Description Requirements SES Opcode

fi_inject_atomic The fi_inject_atomic() API is
an optimized version of
fi_atomic() that provides
similar completion
semantics as fi_inject().

API MUST be supported
by all profiles

The message size used
with fi_inject_atomic() is
limited by the inject_size
attribute of the transmit
context, which is vendor
specific

UET_ATOMIC

fi_fetch_atomic Fetching version of
fi_atomic()

API MUST be supported
by AI Full and HPC profiles

UET_FETCHING_ATOMIC

fi_fetch_atomicv Fetching version of
fi_atomicv()

API MUST be supported
by AI Full and HPC profiles

UET_FETCHING_ATOMIC

fi_fetch_atomicmsg Fetching version of
fi_atomicmsg()

API MUST be supported
by AI Full and HPC profiles

Flag requirements are the
same as fi_atomicmsg()

UET_FETCHING_ATOMIC

fi_compare_atomic The compare atomic APIs
are used for operations that
require comparing the
target data against a value
before performing a swap
operation

API MUST be supported
by HPC profile

UET_FETCHING_ATOMIC

fi_compare_atomicv Adds support for a scatter-
gather list to
fi_compare_atomic()

API MUST be supported
by HPC profile

UET_FETCHING_ATOMIC

fi_compare_atomicmsg Supports more granular
control of the compare
atomic operation per call
using flag parameters

API MUST be supported
by HPC profile

Flag requirements are the
same as fi_atomicmsg()

UET_FETCHING_ATOMIC

fi_atomicvalid Checks whether a provider
supports a specific non-
fetching atomic operation
for a given datatype and
operation,

API MUST be supported
by all profiles

The set of supported
operations and data types
are vendor specific

Not applicable

fi_fetch_atomicvalid Like fi_atomicvalid() but for
fetching atomics

 Same as fi_atomicvalid()

Not applicable

fi_compare_atomicvalid Like fi_atomicvalid() but for
compare atomic operations

Same as fi_atomicvalid() Not applicable

fi_query_atomic Advanced atomic valid
operation whose behavior is
based on a flags parameter;
MAY be used to query
whether tagged operations
are supported

Same as fi_atomicvalid() Not applicable

 106

Copyright © 2025 Ultra Ethernet ConsortiumTM. All rights reserved.

2.2.5.4.5 Collective APIs

A collective operation is a group communication exchange that involves multiple peers exchanging data

with other peers participating in the collective call. Collective operations can be thought of as

coordinated atomic operations between a set of peer endpoints.

2.2.5.5 Other APIs

This section summarizes requirements for the set of other libfabric APIs that have not been described

elsewhere in this specification.

Table 2-27 shows libfabric APIs for which support is NOT required.

Table 2-27 - Libfabric APIs for which Support is Not Required

API Group Support is Not Required Description

fi_av fi_av_insertsvc, fi_av_insertsym

fi_cm All APIs in fi_cm API Group except
fi_getname

Connection-oriented APIs are not
needed by UET

fi_domain fi_domain2, fi_open_ops, fi_set_ops fi_domain2 for opening peer domain

fi_endpoint fi_endpoint2
fi_passive_ep, fi_pep_bind

fi_scalable_ep, fi_scalable_ep_bind

fi_srx_context, fi_stx_context
fi_rx_size_left, fi_tx_size_left

fi_endpoint2 for peer transfers
Connection-oriented APIs are not
needed by UET
Scalable endpoint support is not
required
Shared context support is not required
Deprecated by libfabric

fi_mr fi_mr_raw_attr, fi_mr_map_raw,
fi_mr_unmap_key,

fi_hmem_ze_device

Raw memory region key support is not
required

fi_peer All APIs in fi_peer() API Group Peer APIs are experimental, and support
is not required

fi_trigger fi_trigger

Table 2-28 shows libfabric API options (e.g., flags, operations, parameters, etc.) for which support is NOT

required.

Table 2-28 - Libfabric API Options for which Support is Not Required

API Group Support is Not Required

fi_av FI_SYMMETRIC flag

fi_cq FI_COMMIT_COMPLETE flag

fi_domain FI_SET_OPS_HMEM_OVERRIDE operation

fi_endpoint FI_OPT_BUFFERED_LIMIT, FI_OPT_BUFFERED_MIN, FI_OPT_CM_DATA_SIZE,
FI_OPT_FI_HMEM_P2P, FI_OPT_XPU_TRIGGER, and

FI_OPT_CUDA_API_PERMITTED options

fi_msg FI_CLAIM and FI_DISCARD flags

fi_mr FI_RMA_PMEM, FI_HMEM_DEVICE_ONLY, FI_HMEM_HOST_ALLOC, and
FI_MR_DMABUF flags

 107

Copyright © 2025 Ultra Ethernet ConsortiumTM. All rights reserved.

2.2.5.6 Libfabric API Error Codes

The SES specification describes an extensive set of error codes. A subset of the semantic errors MAY
result in a completion error for the associated libfabric API function via the fi_cq_err_entry data
structure. For semantic errors that result in a completion error, the err field of the fi_cq_err_entry
structure MUST be populated with an appropriate error code. If a libfabric error code corresponding to a
semantic error is not found, the FI_EIO error code MUST be returned. In addition, when a semantic
completion error occurs, the provider MUST populate the semantic error code into the prov_errno field
of the fi_cq_err_entry structure.

2.2.6 Packet Delivery Modes

This section specifies how the UET packet delivery mode is selected.

Libfabric endpoints of type FI_EP_DGRAM MUST use the UET UUD packet delivery mode.

Libfabric endpoints of type FI_EP_RDM MUST use one of the following UET packet delivery modes:

• RUD (supported by all profiles)

• ROD (supported by all profiles)

• RUDI (supported by HPC profile)

The AI Base and AI Full profiles MUST select either ROD or RUD. The selection is based on the operation

type and the message ordering modes that are configured.

To clarify the selection criteria, the following message ordering modes are defined:

• Send message ordering is in effect when any of the following message ordering modes are

configured (send message ordering refers to any ordering mode that specifies the ordering of

send operations relative to other operations):

o FI_ORDER_RAS, FI_ORDER_SAR, FI_ORDER_SAS, FI_ORDER_SAW, FI_ORDER_WAS

• R/W message ordering is in effect when any of the following message ordering modes are

configured (R/W message ordering refers to any ordering mode that specifies the ordering of

read or write operations relative to other operations):

o FI_ORDER_ATOMIC_RAR, FI_ORDER_ATOMIC_RAW, FI_ORDER_ATOMIC_WAR,

FI_ORDER_ATOMIC_WAW, FI_ORDER_RAR, FI_ORDER_RAS, FI_ORDER_RAW,

FI_ORDER_RMA_RAR, FI_ORDER_RMA_RAW, FI_ORDER_RMA_WAR,

FI_ORDER_RMA_WAW, FI_ORDER_SAR, FI_ORDER_SAW, FI_ORDER_WAR,

FI_ORDER_WAS

The AI Base profile MUST select the packet delivery mode according to Table 2-29.

Table 2-29 - Packet Delivery Mode Selection Criteria for AI Base Profile

SEND Ordering R/W Ordering SEND Operation RMA or ATOMIC Operation

N N RUD RUD

N Y RUD ROD

Y N ROD RUD

Y Y ROD ROD

 108

Copyright © 2025 Ultra Ethernet ConsortiumTM. All rights reserved.

The AI Full profile MUST select the packet delivery mode according to Table 2-30.

Table 2-30 - Packet Delivery Mode Selection Criteria for AI Full Profile

SEND Ordering R/W
Ordering

SEND or TAGGED
SEND Operation

DEFERRABLE TAGGED
SEND Operation

RMA or ATOMIC
Operation

N N RUD RUD RUD

N Y RUD RUD ROD

Y N ROD Initial/eager data: ROD
Remaining data: RUD

RUD

Y Y ROD Initial/eager data: ROD
Remaining data: RUD

ROD

The HPC profile MUST select either ROD, RUD, or RUDI. The selection is based on the operation type, the

message ordering modes that are configured, and vendor-specific policy. The HPC profile MUST select

the packet delivery mode according to Table 2-31. In the cases that show RUD/RUDI, the selection of

whether to use RUD or RUDI SHOULD be made based on vendor-specific policy.

Table 2-31 - Packet Delivery Mode Selection Criteria for HPC Profile

Send
Ordering

R/W
Ordering

SEND or TAGGED SEND
Operation

RENDEZVOUS Operation RMA
Operation

ATOMIC
Operation

N N RUD RUD RUD/RUDI RUD

N Y RUD RUD ROD ROD

Y N ROD Initial/eager data: ROD
Remaining data: RUD

RUD/RUDI RUD

Y Y ROD Initial/eager data: ROD
Remaining data: RUD

ROD ROD

2.2.7 Traffic Classes

The SES sublayer is aware of only data traffic classes. The libfabric application is not aware of traffic

classes used by PDS. The default value is shown in Table 2-32.

Table 2-32 - Default Traffic Classes

Traffic Class Default

Data Traffic Class Default Forwarding (DF) PHB
DSCP Codepoint = ‘ ’

See RFC 2474 [1]

Implementation Note:

Other sublayers of UET use additional traffic classes with associated DSCP values for services that are

not visible to the libfabric provider. These traffic classes are configured via OS-specific means (e.g.,

Linux TC) and SHOULD be consistent throughout the network.

 109

Copyright © 2025 Ultra Ethernet ConsortiumTM. All rights reserved.

The default traffic classes can be overridden by setting the UET_PROVIDER_DEF_DATA_TC configuration

parameters defined in Table 2-7.

The libfabric application controls the data traffic class using the tclass field of struct fi_domain_attr. The

value of the tclass field indicates whether the default traffic class or a specific DSCP should be used for

the data traffic class as specified in Table 2-4.

2.2.8 Transmit and Receive Queues

The libfabric data transfer operations are typically implemented with a set of transmit and receive

queues that are accessed by the NIC hardware. This section provides requirements and guidance

regarding the operational characteristics of the transmit and receive queues with the goal of promoting

common NIC behavior and an associated collective understanding of that behavior, which should

simplify performance tuning.

The details of transmit and receive queue operation are vendor specific.

2.2.8.1 Transmit Queues

Transmit queues are used for libfabric APIs that initiate transmissions on the network (e.g., fi_send(),

fi_tsend(), fi_write(), fi_read(), etc.). Transmit queues contain work elements, where the work elements

describe the operation that is to be performed and identify the associated data buffer. The provider

inserts work elements into a transmit queue, and NIC hardware removes work elements from a transmit

queue. When the NIC hardware removes a work element, it performs the associated network

transmission.

In the simplest case, a single transmit queue could be used to initiate all network transmissions.

However, use of a single transmit queue might not achieve optimal performance due to head-of-line

blocking issues and lack of support for multiple traffic classes with different transport characteristics.

Figure 2-11 shows an example transmit queue configuration.

 110

Copyright © 2025 Ultra Ethernet ConsortiumTM. All rights reserved.

Figure 2-11 - Transmit Queue Example

A UET provider SHOULD support multiple transmit queues.

A UET provider SHOULD support mapping a traffic class to one or more transmit queues, such that

different traffic classes MAY be mapped to different sets of transmit queues.

A UET provider SHOULD distribute unordered message operations associated with a particular traffic

class (e.g., TCa) across the set of transmit queues that are configured to service that traffic class (e.g.,

TCa).

When a libfabric endpoint is configured for message ordering, a UET provider MUST constrain the

operations for that endpoint to a single transmit queue. The libfabric message ordering modes were

discussed in section 2.2.6.

2.2.8.2 Receive Queues and Registered Memory Regions

Receive queues are used for libfabric APIs that post buffers to be used for receiving messages from the

network (e.g., fi_recv(), fi_trecv(), etc.). Receive queues contain elements that identify the associated

data buffer and its attributes (such as a tag). The provider inserts elements into a receive queue, and

NIC hardware removes elements from a receive queue. When the NIC hardware removes an element, it

stores message data received from the network in the associated data buffer.

 111

Copyright © 2025 Ultra Ethernet ConsortiumTM. All rights reserved.

Memory regions that are registered with the libfabric provider are like receive queues in that they

identify buffers used as the target network operations. Registered memory regions MAY be targeted by

remote RMA operations.

Figure 2-12 shows an example set of data structures for the receive queues and registered memory

regions associated with a libfabric endpoint. In the example:

• Separate receive queues are allocated for untagged messages and tagged messages.

• A table is used to manage the registered memory regions. The table contains descriptors that

identify the associated data buffer and attributes (such as access permissions).

Figure 2-12 - Example Receive Queue and Registered MR Data Structures

A UET provider that supports tagged messages SHOULD allocate independent receive queues for

untagged messages and tagged messages on a libfabric endpoint basis.

2.2.9 Security Protocol

This section is devoted to provider support for the optional UET security protocol. The security protocol

support is implemented by the kernel driver associated with the provider under the covers in a manner

that is transparent to the libfabric APIs. When a libfabric endpoint is opened, the security binding

parameters are received by the provider kernel driver as part of the UET address assignment procedure

 112

Copyright © 2025 Ultra Ethernet ConsortiumTM. All rights reserved.

that is described in section 2.2.5.3.5.1. The security Binding Parameters are specified in Table 2-33. A

UET provider that implements the UET security protocol MUST support the security binding parameters

specified in Table 2-33.

Table 2-33 - UET Security Binding Parameters

Parameter Name Size (bits) Description

Alg 4 Cipher Algorithm
0x00: AES-GCM-256
0x01-0x0F: Reserved

Rekey 4 Rekey Mode
Bit 0:0 – 0 => not AN, 1 => AN
Bit 1:1 – 0 => not Automatic, 1 => Automatic
Bits 2:3 – Reserved, MUST be 0

Mode 4 Crypto Mode
0x00: Direct
0x01: Cluster
0x02: Client-server
0x03-0x0F: Reserved

Rekey Shift 6 Shift for automatic rekeying operation

Rekey Mask 64 Mask for automatic rekeying operation

Encap-type 2 0b00 – Native IPv4
0b01 – Native IPv6
0b10 – UDP over IPv4
0b11 – UDP over IPv6

Coff 12 Crypto Offset (in units of 4B)

Aoff 12 Authentication offset

AN 1 Association Number (i.e., Key Generation ID)

SDI 31 Secure Domain Identifier

SSI 32 Secure Source Identifier

A kernel driver that implements the UET security protocol MUST also support rekeying using the rekey

parameters specified in Table 2-34.

Table 2-34 - UET Rekey Parameters

Parameter Name Size (bits) Description

AN 1 Association Number (i.e., Key Generation ID)

SDI 31 Secure Domain Identifier

SSI 32 Secure Source Identifier

current_epoch 16 Current key epoch

IVMASK 96 IVMASK

Key Type 8 Type of Key: Raw or Wrapped

Key Length 16 Length of Key (in bytes)

Key 512 Key / Wrapped Key

 113

Copyright © 2025 Ultra Ethernet ConsortiumTM. All rights reserved.

The rekey parameters MAY be requested by the kernel driver or pushed by a key management system.

The architecture for obtaining the rekey parameters is shown in Figure 2-13.

The steps shown in Figure 2-13 are:

1. UET provider kernel driver makes a rekey request to privileged user process via the UET Control

API.

2. The privileged user process communicates with a key management system and returns the

requested rekey information.

3. The provider kernel driver programs the key parameters into the NIC hardware.

Requirements associated with this architecture are:

• A UET provider kernel driver MUST support sending rekey requests to a privileged user process

using the UET Control API.

• The privileged user process MUST respond to rekey requests from the provider kernel driver

with rekey parameters.

• The provider kernel driver MUST accept both solicited and unsolicited rekey parameters

received from the privileged user process, and it MUST program the key parameters into the NIC

hardware.

The provider kernel driver MUST include the parameters specified by Table 2-35 in rekey requests.

Figure 2-13 - Rekey Parameter Acquisition Architecture

 114

Copyright © 2025 Ultra Ethernet ConsortiumTM. All rights reserved.

Table 2-35 - UET Control API Rekey Request Parameters

Parameter Name Size (bits) Description

AN 1 Association Number (i.e., Key Generation ID)

SDI 31 Secure Domain Identifier

SSI 32 Secure Source Identifier

‘C’ structure representations of the UET security binding parameters, rekey parameters, and rekey

request parameters are shown in Figure 2-14.

#define UET_SEC_MAX_KEY_OCTETS 64
#define UET_SEC_ALG_AES_GCM_256 0 /* AES-GCM-256 algorithm */
#define UET_SEC_REKEY_MODE_AN (1 << 0) /* association num rekey mode */
#define UET_SEC_REKEY_MODE_AUTO (1 << 1) /* automatic rekey mode */
#define UET_SEC_CRYPTO_MODE_DIRECT 0 /* direct crypto mode */
#define UET_SEC_CRYPTO_MODE_CLUSTER 1 /* cluster crypto mode */
#define UET_SEC_CRYPTO_MODE_CSERVER 2 /* Client-server crypto mode */
#define UET_SEC_AN_BIT (1 << 31) /* msb of sdi */

#define UET_SEC_RAW_KEY_TYPE 1 /* key is not wrapped */

#define UET_SEC_WRAPPED_KEY_TYPE 2 /* key is wrapped */

#define UET_SEC_IVMASK_OCTETS 96 /* IVMASK size in octets */

struct uet_sec_bindings {
 uint8_t alg;
 uint8_t rekey;
 uint8_t crypto_mode;
 uint8_t rekey_shift;
 uint64_t rekey_mask;

 uint16_t reserved;
 uint16_t coff;

 uint16_t aoff;

 uint32_t an_sdi;
 uint32_t ssi;

 uint8_t encap_type;
};

struct uet_ctrl_rekey_parms {
 uint32_t an_sdi;
 uint32_t ssi;

 uint16_t current_epoch;

 uint8_t ivmask[UET_SEC_IVMASK_OCTETS];

 uint8_t key_type;

 uint8_t reserved_1;

 uint16_t key_len;

 uint32_t reserved_2;
 uint8_t key[UET_SEC_MAX_KEY_OCTETS];

};

struct uet_ctrl_rekey_req {
 uint32_t an_sdi;
 uint32_t ssi;

};

 115

Copyright © 2025 Ultra Ethernet ConsortiumTM. All rights reserved.

Figure 2-14 - UET Security Structures

2.2.10 Wire Protocol Mapping

This section specifies how the libfabric APIs and associated data structures are mapped to fields in the

following wire protocol headers:

• IP header

• UET TSS header

• UET PDS header

• UET SES headers

Figure 2-15 contains a high-level depiction of the libfabric mapping to UET wire protocol headers.

Figure 2-15 - Libfabric Mapping to UET Wire Protocol Headers

2.2.10.1 IP Header Field Mappings

The libfabric to IP header field mappings are shown in Table 2-36.

Table 2-36 - Libfabric to IP Header Mapping

IP Header Field Libfabric Source

source_ip_address IP address component of UET address assigned to source libfabric endpoint

destination_ip_address IP address component of UET address assigned to destination libfabric endpoint

dscp tclass field of struct fi_domain_attr associated with source libfabric endpoint

2.2.10.2 UET TSS Field Mappings

The TSS header field generation is based on security bindings from the provider kernel driver and per-

packet information from libfabric. The security bindings are initialized when the libfabric endpoint is

 116

Copyright © 2025 Ultra Ethernet ConsortiumTM. All rights reserved.

opened and are refreshed when rekeying occurs. The per-packet information from libfabric includes a

libfabric domain identifier and the source IP address of the FEP. The domain identifier is used to find the

security binding parameters that should be applied, while the source IP address is used by the key

derivation function.

2.2.10.3 UET PDS Header Field Mappings

The PDS headers vary based on the packet delivery mode. The UUD and RUDI packet delivery modes do

not use packet delivery contexts and have small PDS headers. For the RUD and ROD delivery modes, the

libfabric to PDS header field mapping is primarily an indirect mapping, where libfabric data is used to

select the PDC, and then the PDC state determines the PDS header field contents. The libfabric fields

used to select the PDC are shown in Table 2-37.

Table 2-37 - Libfabric Fields Used to Select Packet Delivery Context

PDC Selection Field Libfabric Source

JobID JobID associated with a libfabric API operation

Source FA IP address component of a UET address assigned to the source libfabric endpoint

Destination FA IP address component of a UET address assigned to the destination libfabric
endpoint

Traffic Class tclass field of struct fi_domain_attr associated with the source libfabric endpoint

Packet Delivery Mode As specified in section 2.2.6

2.2.10.4 UET SES Header Field Mappings

The SES specification describes multiple header formats as summarized in Table 2-38.

Table 2-38 - Summary of Semantic Header Formats

SES Header Format Description

Standard Request Format used by most requests

Non-Matching Request Optimized format for requests that do not require matching or header data

Small Message / Small RMA Specialized format for:

• Single-packet tagged messages

• Single-packet RMA operations that cannot use the non-matching request
format

Deferrable Send Request Specialized format for deferrable send requests that replaces the offset field
in the standard request with a restart token

Ready To Restart Variation of standard request used to restart paused deferrable send

Rendezvous Extension Used in conjunction with rendezvous send operations

• The extension includes an eager length that indicates how much message
payload is being pushed with the request, and the addressing information
needed to issue a read operation

Atomic Extension Used in conjunction with atomic operations

• The extension contains an atomic opcode and datatype derived from
parameters of the associated fi_atomic() API call

Compare and Swap Used in conjunction with compare and swap atomic operations

• In addition to the atomic opcode and datatype, the extension also
contains the compare value and the swap value parameters from the
associated fi_compare_atomic() API call

 117

Copyright © 2025 Ultra Ethernet ConsortiumTM. All rights reserved.

SES Header Format Description

Response Used for SES acknowledgements and responses with data

The libfabric mappings for the SES standard request header are shown in Table 2-39.

Table 2-39 - Libfabric Mappings for SES Standard Request

Request Field Libfabric Source

opcode Based on an associated libfabric API as specified in section 2.2.5.4

delivery complete (dc) Set when an operation completion mode associated with libfabric API call is
FI_DELIVERY_COMPLETE

Relative (rel) Address mode component of UET address assigned to destination libfabric endpoint

header data present (hd) Set when the associated libfabric API provided remote CQ data

resource_index Resource Index component of UET address assigned to destination libfabric
endpoint

ri_generation Managed by the provider in accordance with the SES specification

JobID JobID associated with libfabric API operation (see section 2.2.4)

PIDonFEP PIDonFEP component of the UET address assigned to the destination libfabric
endpoint

buffer_offset Offset from the buffer starting address specified in the associated libfabric API call

initiator Initiator ID component of the UET address assigned to the source libfabric endpoint

match_bits Remote memory key for RMA/atomic opcodes, tag for tagged send opcodes

header_data (som=1)
payload_length +

message_offset (som=0)

Remote CQ data from an associated libfabric API call
Managed by the provider in accordance with the SES specification

request_length Length of the payload provided on an associated libfabric API call

The criteria for using the optimized non-matching SES header for RMA operations are specified in

section 2.2.5.3.4.1. The same criteria MUST be applied for atomic operations. The optimized non-

matching SES deader SHOULD be used only for RMA or atomic operations that satisfy the specified

criteria. The libfabric mappings for the optimized non-matching SES header are shown in Table 2-40.

Table 2-40 - Libfabric Mappings for Optimized Non-Matching SES Header

Request Field Libfabric Source

opcode Same as standard format

delivery complete (dc) Same as standard format

resource_index Resource Index for MR as specified in section 2.2.5.3.4.1

JobID Same as standard format

PIDonFEP Same as standard format

request_length Length of payload provided on associated libfabric API call

buffer_offset Same as standard format

A single-format, small message/small RMA supports multiple use cases. The criteria for the small

message use case are specified in Table 2-41. The small message SES header SHOULD be used when the

criteria specified in Table 2-41 are satisfied.

 118

Copyright © 2025 Ultra Ethernet ConsortiumTM. All rights reserved.

Table 2-41 - Criteria for Small Message Header

Criteria for Use of Small Message SES Header

Message size <= MTU

Operation is tagged send

The libfabric mappings for the small message SES header are shown in Table 2-42.

Table 2-42 - Libfabric Mappings for Small Message SES Header

Request Field Libfabric Source

opcode UET_TAGGED_SEND

delivery complete (dc) Same as standard Format

relative (rel) Same as standard format

header data present (hd) Same as standard format

resource_index Same as standard format

ri_generation Same as standard format

JobID Same as standard format

PIDonFEP Same as standard format

request_length Length of payload provided on associated libfabric API call

header_data Same as standard format

initiator Same as standard format

match_bits Tag

The criteria and requirements for the small RMA use case are specified in section 2.2.5.3.4.1. The same

criteria MUST be applied for atomic operations. The small RMA SES header SHOULD be used for RMA or

atomic operations that satisfy the specified criteria. The libfabric mappings for the small RMA SES

header are shown in Table 2-43.

Table 2-43 - Libfabric Mappings for Small RMA SES Header

Request Field Libfabric Source

opcode Same as standard format

delivery complete (dc) Same as standard format

relative (rel) Same as standard format

header data present (hd) MUST be 0

resource_index Same as standard format

ri_generation Same as standard format

JobID Same as standard format

PIDonFEP Same as standard format

request_length Length of payload provided on associated libfabric API call

buffer_offset Same as standard format

initiator Same as standard format

match_bits Memory key

 119

Copyright © 2025 Ultra Ethernet ConsortiumTM. All rights reserved.

The criteria and requirements for use of the deferrable send operation are specified in section 2.2.5.4.

The deferrable send SES header format is similar to the standard header except the ses.buffer_offset

field is replace by provider-supplied ses.initiator_restart_token and ses.target_restart_token fields.

The ready-to-restart (RTR) message in the deferrable send sequence also carries the

ses.iniator_restart_token and ses.target_restart_token fields. The restart tokens are used to identify

the operation that is being restarted. The provider MUST ensure that all active restart tokens are unique

at the initiating FEP.

The criteria and requirements for use of the rendezvous send operation are specified in section 2.2.5.4.

The libfabric mappings for the rendezvous send extension header, which follows a standard header, are

shown in Table 2-44.

Table 2-44 - Libfabric Mappings for Rendezvous Send Extension Header

Request Field Libfabric Source

eager_length <= UET_PROVIDER_MAX_EAGER_SIZE

read_PIDonFEP PIDonFEP component of UET address assigned to source libfabric endpoint

read_resource_index Resource Index component of UET address assigned to source libfabric
endpoint

read_ri_eneration Managed by provider in accordance with SES specification

read_offset • Offset of source buffer parameter from the send API within a registered
local memory region (memory region is determined using desc
parameter of send API)

• The source buffer MUST be associated with a local memory region
registered for remote read access in order to perform a rendezvous send

• This offset reflects the start of the message within the memory region
and, therefore, MAY be used to read the entire message

read_memory_key RKEY of the local memory region associated with the source buffer

The atomic extension header is used in conjunction with the fi_atomic() APIs and MAY follow the

standard header or either of the optimized headers. The atomic extension header includes an

ses.atomic_opcode field and an ses.atomic_datatype field. A UET provider MUST map the atomic

operation and atomic datatype specified in the fi_atomic() API to the associated SES header atomic

mnemonics, which are defined in the UET SES specification.

The compare and swap extension header is a specialized header used with compare and swap atomic

operations. In addition to the ses.atomic_opcode and ses.atomic_datatype fields, the extension also

contains the compare value and the swap value parameters from the associated fi_compare_atomic()

API. These parameters map to the ses.compare_value and ses.swap_value fields respectively. The size

of the compare and swap parameters MUST be <= 16 bytes.

2.2.11 Linux Implementation of UET Control API

The Linux implementation of the UET Control API described in this section is a proposal to the upstream

community. It is expected that changes and feedback will be incorporated as a part of the upstream

process. The definitive location of the interfaces will be in a Linux include file.

 120

Copyright © 2025 Ultra Ethernet ConsortiumTM. All rights reserved.

Multiple UET Control API messages between the provider KMD and management entities have been

defined previously in this specification. More specifically, the following:

• UET Control API JobID mapping request message (see section 2.2.4.1)

• UET Control API address assignment request message (see section 2.2.5.3.5.1)

• UET Control API address assignment response message (see section 2.2.5.3.5.1)

• UET Control API security rekey message (see section 2.2.9)

• UET Control API security rekey request message (see section 2.2.9

In Linux implementations, the UET Control API MUST be implemented with Netlink messages. The

Netlink messages are all exchanged with the UET provider kernel driver using the new “UET” family. The

base set of encodings for the Netlink commands that represent each message are shown in Figure 2-16.

enum uet_nl_cmd {
 UET_NL_CMD_JOB_ID = 1,
 UET_NL_CMD_ADDR_REQ,
 UET_NL_CMD_ADDR_RESP,
 UET_NL_CMD_REKEY,
 UET_NL_CMD_REKEY_REQ,
 __UET_NL_CMD_MAX
};

Figure 2-16 - UET Netlink Command Encodings

For extensibility, Netlink does not represent messages as ‘C’ structures but uses a se uence of typed

attributes instead. The base set of attributes used to represent UET Netlink messages are shown in

Figure 2-17.

enum uet_nl_attr {
 UET_NL_ATTR_JOB_ID,
 UET_NL_ATTR_OS_PID,
 UET_NL_ATTR_SERVICE,
 UET_NL_ATTR_FLAGS,
 UET_NL_ATTR_FA,
 UET_NL_ATTR_UET_ADDR,
 UET_NL_ATTR_SEC_BINDINGS,
 UET_NL_ATTR_SEC_AN_SDI,
 UET_NL_ATTR_SEC_SSI,
 UET_NL_ATTR_SEC_KEY,
 __UET_NL_ATTR_MAX
};

static const struct nla_policy uet_policy[__UET_NL_ATTR_MAX] = {
 [UET_NL_ATTR_JOB_ID] = { .type = NLA_U32 },
 [UET_NL_ATTR_OS_PID] = { .type = NLA_U32 },
 [UET_NL_ATTR_SERVICE] = { .type = NLA_NUL_STRING,
 .len = UET_MAX_SERVICE_NAME_CHARS },
 [UET_NL_ATTR_FLAGS] = { .type = NLA_U8 },
 [UET_NL_ATTR_FA] = NLA_POLICY_EXACT_LEN(sizeof(struct uet_fa)),
 [UET_NL_ATTR_UET_ADDR] = NLA_POLICY_EXACT_LEN(sizeof(struct uet_addr)),
 [UET_NL_ATTR_SEC_BINDINGS] = NLA_POLICY_EXACT_LEN(

sizeof(struct uet_sec_bindings)),

 121

Copyright © 2025 Ultra Ethernet ConsortiumTM. All rights reserved.

 [UET_NL_ATTR_SEC_AN_SDI] = { .type = NLA_U32 },
 [UET_NL_ATTR_SEC_SSI] = { .type = NLA_U32 },
 [UET_NL_ATTR_SEC_KEY] = NLA_POLICY_EXACT_LEN(UET_SEC_MAX_KEY_OCTETS)
};

Figure 2-17 - UET Netlink Attributes

2.2.12 References

[1] IETF RFC 2474, "Definition of the Differentiated Services Field (DS Field) in the IPv4 and IPv6

Headers," 1998. [Online]. Available: https://datatracker.ietf.org/doc/html/rfc2474.

[2] IETF RFC 3246, "An Expedited Forwarding PHB (Per-Hop Behavior)," 2002. [Online]. Available:

https://datatracker.ietf.org/doc/html/rfc3246.

https://datatracker.ietf.org/doc/html/rfc2474
https://datatracker.ietf.org/doc/html/rfc3246

 122

Copyright © 2025 Ultra Ethernet ConsortiumTM. All rights reserved.

3 UE Transport Layer
The Ultra Ethernet Transport (UET) layer is designed to handle the most challenging application scale,

deliver packets reliably and securely, manage and avoid congestion within the network, and react to

contention at the endpoints. Its goals are minimal tail latency and highest network utilization. At the

same time, UET is designed to enable simple hardware and software implementations – such as what

might be required for accelerator-integrated endpoints. UET can be programmed through the OFI

libfabric standard interface. It sets out to address the shortcomings of RoCEv2 [1], specifically its

semantics, transport layer, wire operations, implementation complexities, and scale limits.

UET leverages semantics and reliability techniques from HPC to enable extreme scale while providing

advanced congestion management that employs the breadth of techniques and telemetry rising from

hyperscale datacenters for traditional Ethernet environments. The transport supports up to millions of

endpoints (NIC ports) with the ability to address up to billions of processes. Scalability is built into every

aspect of its design – from the state required in the semantic layer down to the way encryption keys are

managed and the way reliability and ordering are achieved.

To enable simplified implementations, subsets of the capabilities are defined in specific profiles that

support specialized use cases in AI domains. The HPC profile offers the most comprehensive

functionality. Some of it is optional to implement; the two AI profiles define subsets of HPC. The AI Full

and AI Base profiles enable full or partial offload of *CCL-like messaging functions to hardware. The AI

Full profile offers deferrable sends, which save up to 1 RTT compared to AI Base in the case when the

receive buffer is not ready. AI Full also provides exact match offload to identify a specific receive buffer.

AI Base requires a prior message exchange to communicate a desired target buffer, which enables

slimmer AI Base implementations.

This overview section has been used by the working group to define the goals and the overall

architecture of UET as well as to design the specifics of the sublayers. It contains an overview of the

architecture and each sublayer as well as some historic context to ease the understanding of readers. It

does not contain normative text outside of section 3.3.

3.1 UET Scope, Scale, and Reach

This section outlines the original design guidelines for UET to limit its scope and enable optimized design

choices. This background information helps readers understand decisions and architectural choices.

UET focuses primarily on the backend scale-out network. UET opportunistically considers support for

frontend networks while not preventing applications in the scale-up network. UET does not define

details of the hardware interface to the endpoints.

UET is designed to operate within one administrative domain. This means that, where necessary, a

single provisioning system is presumed for the assignment of identity and policy.

The workload and use cases are focused on generic AI, HPC, and storage traffic.

 123

Copyright © 2025 Ultra Ethernet ConsortiumTM. All rights reserved.

Single applications are expected to span the entire system, single-node jobs filling up the system, and

the full spectrum in between. The objective of UET is to serve the breadth of all those use cases with a

single transport.

3.1.1 Virtualization

Virtualization hides the details of the physical infrastructure from tenants and tenants from each other.

Although there are “bare metal” instances, host virtualization is common, and network virtualization is

almost universal in cloud deployments. This level of virtualization presents a stark contrast between

traditional HPC and clouds: Traditional HPC deployments typically focus on performance first with a

more trusted user base.

Most virtualization technology sits in direct tension with performance objectives. For example,

traditional network virtualization requires O(N) state per endpoint, which UET tries to avoid.

Additionally, using network tunnel techniques introduces substantial packet overheads. In many

environments, however, the added security and isolation provided by virtualization is a fundamental

requirement. UET assumes the following with respect to virtualization:

1) Network tunnel techniques that are used today work in the context of UET, because UET uses IP

packets. UET packets can be encapsulated within VXLAN and similar tunnels; similarly, UET

packets can carry packets of tunneled protocols. Detailed implementations of virtualization

techniques are currently beyond the scope of UET. If UET packets are encapsulated in other

protocols, care must be taken to support UET’s signaling.

2) Host virtualization can be accomplished using traditional techniques – such as SR-IOV, SIOV,

unique fabric addresses (IP) per tenant, or others.

3) Deployments focused on the largest scales leverage techniques that simplify the tunnel logic

(e.g., structured addressing techniques).

4) Deployments that need to focus on network packet efficiency may choose to not use

encapsulation.

Nonetheless, some basic support is needed to support tunneling in a network using UET. For example,

systems carrying UET packets inside a tunnel would provide congestion information, such as explicit

congestion notification (ECN), to the encapsulated packets. Solutions such as IETF RFC 6040 [2] are

available to provide this functionality. Furthermore, such systems would copy the entropy value of

encapsulated UET packets to the encapsulating packet to ensure ordering and load balancing. UET does

not currently define details for tunneling and leaves it up to the system administrator to ensure correct

encapsulation and decapsulation.

3.2 UET Layers, Components, and Capabilities

The Ultra Ethernet transport layer is built on four largely independent sublayers: semantics, packet

delivery, congestion management, and security. See Figure 3-1. Each piece is designed to be separable

from the others; however, implementations may choose to build and integrate the functionality in any

way.

 124

Copyright © 2025 Ultra Ethernet ConsortiumTM. All rights reserved.

The semantics sublayer (SES) defines addressing, authorization, message types, protocols, and semantic

header formats between endpoints. SES works at the level of transactions, such as messages or remote

memory accesses (RMA), and breaks those into multiple packets to be transmitted by the packet

delivery sublayer. The packet delivery sublayer (PDS) transports a stream of packets reliably to the

destination FEP and passes them to the target’s SES layer for processing. It generates and interprets ACK

and NACK packets to ensure reliable transmission and uses ephemeral state to track outstanding

packets in the network. The congestion management sublayer (CMS) ensures that the packets are

transmitted at highest rate while minimizing network congestion. The transport security sublayer (TSS)

defines scalable encryption and authentication mechanisms for peer-to-peer as well as client-server

communications.

Figure 3-1 shows an overview of the overall UE stack and the UET sublayer structure. The key

architectural features of each sublayer are summarized, including how they are composed to form UET.

Full details of the specification are defined in the respective sections of this document.

Figure 3-1 - Overview of UET

Each sublayer uses specific header fields in the packet. The UET payload is the data portion of a UET

packet beginning immediately after the SES header fields and of length specified by the length field of

the SES header. The length field of the SES header does not include the UET trailer if present. The total

 125

Copyright © 2025 Ultra Ethernet ConsortiumTM. All rights reserved.

size of a UET packet is the sum of UET header, UET payload, and UET trailer. The UET packet structure is

shown in Figure 3-2.

3.2.1 Semantic Sublayer (SES)

The objective of UET’s semantic sublayer is to provide high-performance and highly scalable messaging

to enable specialized AI and fully featured HPC deployments. The SES bridges between the user-facing

libfabric API and the PDS by mapping libfabric API calls to a set of UET communication operations, such

as tagged and untagged send/receive, RMA read/write, and atomics. Utilizing libfabric inherits benefits

from a wider ecosystem in which user-facing libraries using libfabric already exist and are portable even

beyond UE devices. SES is optimized for common end-user-facing APIs – from *CCL to MPI to

OpenSHMEM. It provides optional message ordering and various optional initiator or target completion

notifications (e.g., global observability). SES supports libfabric’s connectionless API to allow the

underlying hardware to support a large number of endpoints.

SES translates libfabric communication calls into messages that transmit data from or to buffers at the

initiator or target process, respectively. It transmits message transactions by utilizing PDS functionality,

packetizing messages and mapping packets into messages at the destination. PDS interactions include

the packets of the message but also control packets for reliability and status exchanges.

SES defines two protocols for (large)message transmission: rendezvous and deferrable send. The

rendezvous protocol is used for messages that exceed the available temporary eager buffer limit at the

Figure 3-2 - UET Packet Structure

 126

Copyright © 2025 Ultra Ethernet ConsortiumTM. All rights reserved.

target. The target waits (“rendezvous”) until the receiving process has posted a matching receive and

then triggers a read from the source. The deferrable send protocol simply sends messages of any size,

and a target that cannot receive it yet sends a message to stop the sender. Later, once the buffer is

posted, the target sends a resume message to continue the transaction. The main difference is that with

the rendezvous protocol, a sender decides before sending the message whether it is sending it using an

eager or a rendezvous transaction, while the deferrable send behaves the same at the sender, and the

receiver reacts dynamically and defers the send if the receive has not been posted and the message

cannot be buffered.

SES supports two fundamental addressing types: relative addressing for peer-to-peer communication in

large compute jobs and absolute addressing for client-server connections. Once a message endpoint is

identified, a buffer is selected with optional matching criteria (based on a packet-carried initiator ID,

e.g., an MPI rank and additional match bits).

OFI libfabric is an open-source ecosystem with wide adoption – from ISV-certified MPI implementations

to ML communication libraries like *CCL. UEC does not specify how user-facing libraries use libfabric, but

many mappings are natural. For example, *CCL semantics map naturally to fi_tagged(send/recv) with

exact matching semantics, MPI-1 semantics map to fi_tagged(send/recv), and MPI-3 RMA as well as

OpenSHMEM semantics map to fi_rma(read/write) in libfabric. Collective operations can map to

fi_collective() for acceleration. Of course, it is always possible to implement any messaging semantics

(e.g., *CCL) over any lower-layer semantics (e.g., fi_rma()), but this may add additional software

overhead and prevent full offload.

3.2.2 Packet Delivery Sublayer (PDS)

PDS implements reliable packet transmission for the SES. It receives packets from the SES at the initiator

and delivers packets to the SES at the target, which the SES resolves to messages that may update target

memory. It also delivers SES return codes and return data (read and atomics) back to the initiator. The

PDS offers various ordering modes for packet delivery. All packets of a UET message, excluding the last

packet, are of size MTU.

Achieving a scalable reliability solution requires that the state retained in the NIC be based on the

number of simultaneously active (concurrent) communications – not the total number of endpoints in

the application. The reliability layer is designed to cover three key requirements:

1. Extreme scalability

2. Ordered delivery of some packets

3. Unordered delivery of some packets – particularly of bulk payload

Those requirements enable efficient support for packet spraying. PDS defines three packet types:

request, response (aka ACK/NACK), and control packets. PDS request packets flow from the initiator of a

message to the target (reads are an exception). PDS responses flow in the opposite direction. Request

packets usually carry data; ACKs carry SES codes to complete the message or defer it. As an

optimization, PDS responses may also carry small read data directly. Larger reads are handled

differently. The SES response code for a read request indicates “read accepted,” and a separate SES

 127

Copyright © 2025 Ultra Ethernet ConsortiumTM. All rights reserved.

response with data is sent using a PDS request from the target to the initiator. Control packets are used

for management purposes, e.g., to re uest the status of a re uest packet or to probe a path’s

congestion situation.

In support of the ordering objectives and the use of multiple, concurrent, independent paths, the

reliability layer is designed with four packet delivery modes. Those modes support the semantic needs

of both HPC and AI, while enabling highly optimized, highly scalable implementations. In some use

cases, the same message may utilize more than one packet delivery mode. For example, an MPI

implementation might use an ordered mode to ensure header ordering together with an unordered

delivery mode for the payload. The four packet delivery modes are:

1. Reliable, unordered delivery for operations (RUD): The RUD packet delivery mode is designed

to enable operations that are passed to the semantic sublayer only once but can tolerate

reordering in the network (e.g., atomic add operations). This allows all bulk data to be routed

unordered across the network. The reliability sublayer detects duplicate packets so that each

packet is delivered to the semantic sublayer only once (i.e., operates on host memory only

once).

2. Reliable, ordered delivery (ROD): The ROD packet delivery mode maintains the order for all

packets between two endpoints. It is designed for applications that require message ordering,

e.g., MPI’s match ordering or OpenSHMEM put-with-signal semantics. As an example, MPI can

transfer a header using an ordered delivery protocol and then transfer the body of the message

using a different protocol. This provides ordering at the message level and unordered bulk data.

The reliability sublayer detects replays and ensures that the operation within each packet

interacts with host memory only once.

3. Reliable, unordered delivery for idempotent1 operations (RUDI): The RUDI packet delivery

mode supports special applications where very small messages need to be delivered between an

extreme number of endpoints. It takes advantage of the fact that some data – like bulk payload

delivery – can be written into memory multiple times up until the final message completion is

delivered at the initiator. RUDI packets can be reordered in the network and replayed due to

loss, leading them to be delivered more than once to the semantic sublayer and in any order.

Because end-user semantics can be complex, this protocol may not be appropriate for all use

cases; yet, due to its stateless nature at the receiver, it is the most scalable of the delivery

modes because it requires no state at the receiver.

4. Unreliable, unordered delivery (UUD): As with most transport layers, UET provides an

unreliable packet delivery mode. Unreliable packets (or datagrams) can be used if guaranteed

delivery is not required.

Both RUDI and UUD traffic are not subject to UET congestion control and therefore it is not

recommended for their traffic to share the same traffic class with either ROD or RUD traffic.

1 Idempotent operations give the same result with the no additional side effects when performed multiple times.

 128

Copyright © 2025 Ultra Ethernet ConsortiumTM. All rights reserved.

Informative Text

UET does not use connections but defines various packet transport modes. UET first distinguishes

between reliable and unreliable packet transmission, then between ordered and unordered delivery.

The reliable unordered mode differentiates between idempotent (RUDI) and non-idempotent (RUD)

operations, where the former can be applied multiple times in the context of the same message

transmission (e.g., write or read). Examples for non-idempotent operations are atomic operations and

operations that have other side effects at the target (e.g., delivering header data to a completion

queue). The ability to apply a packet operation multiple times has implementation benefits.

Idempotent packet operations may not change the message transmission or matching state when

they are applied multiple times.

UET supports in-order message delivery while allowing the majority of the associated bulk data

placement to be out of order. This includes ordered buffer addressing. For example, many AI

applications rely on in-order buffer matching semantics in *CCL libraries. This can be implemented with

UET using user-level message sequence numbers as matching tags. This way, incoming multi-path RUD

messages can be matched at the receiver in the order they were issued at the sender. If wildcard

matching is required by the user code (e.g., in MPI), a combination of ROD and RUD can be used to

deliver rendezvous messages: The initial part of the message would be delivered in order through ROD,

and the remainder could be delivered as part of rendezvous or deferrable send through RUD.

Extreme scalability is also supported by using dynamically created packet delivery contexts (PDCs). This

means that reliability state is required only between peers with ongoing communications. PDCs can be

created as part of normal packet transmission without incurring additional round trips. Depending on

resource availability, PDCs can be kept alive for extended periods of time (up to 231 packets) as well, and

the mechanism supports cache-like PDC management.

3.2.3 Congestion Management Sublayer (CMS)

UET’s congestion management involves the combination of mechanisms for window-based congestion

control and load balancing that is performed at each FEP. UET defines various congestion-control

algorithms to enable interoperability between vendors. Specific load balancing techniques and

mechanisms to ensure fairness of congestion control in the presence of multiple FEPs are outside of the

scope of UET, as they are not required for FEP-FEP interoperability. By necessity, different vendor

solutions operating in the same fabric plane are required to co-exist. UET exemplifies various possible

algorithms.

CMS reacts to endpoint contention (e.g., incast) and network congestion (e.g., in oversubscribed

scenarios). CMS defines two fundamental congestion control algorithms: Network-signal based

congestion control (NSCC) that runs primarily at the sender and receiver-controlled congestion control

(RCCC) that runs primarily at the receiver. Either can be used in isolation, or deployments can combine

both. NSCC is designed as a generic stand-alone algorithm supporting arbitrary deployments and traffic

patterns. It relies only on round-trip time and ECN, while RCCC explicitly monitors incoming flows at the

receiver. RCCC is expected to work best on fully provisioned (nonblocking) fat trees and can be

 129

Copyright © 2025 Ultra Ethernet ConsortiumTM. All rights reserved.

complemented with NSCC in oversubscribed fat trees. UET also specifies optional packet trimming

support for more rapid congestion information provided to both algorithms.

Both algorithms limit the amount of pending data (in unacknowledged packets) in the network. UET

defines a congestion control context (CCC) that contains the state required to implement the congestion

control algorithm(s). The CCC state controls the window size that limits the number of data packets in

the network for the one or more PDCs associated with the CCC. This efficient scheme supports multiple

PDCs between the same two FEPs that share the same traffic class (TC). CCCs may be helpful to

coordinate multiple PIDonFEP endpoints, for example, or different logical types of traffic sharing the

same TC. Such a set of PDCs is called a PDC group and is matched to a single CCC such that all traffic on

the same TC between the same pair of FEPs is coordinated. Multiple CCCs may exist between the same

FEPs to enable co-existing RUD and ROD flows.

Path load balancing algorithms choose which path to utilize for a specific packet. UET does not mandate

any path selection or load balancing algorithm to enable vendor differentiation. It provides examples

where path selection is implemented using equal-cost multi-pathing (ECMP) and is controlled through

changing the entropy in the packet headers. Those example algorithms aim to reduce hash collisions and

congestion and improve performance. The UDP source port is used as the common field in the packet

headers to specify entropy. ECMP forwarding behavior of switches is assumed to guarantee (in the

absence of failures) that packets with the same entropy use the same path.

3.2.4 Transport Security Sublayer (TSS)

Security is a first-class citizen in UET and designed in from the start. UET’s security solution provides the

option to encrypt and authenticate all data payload and most of the transport headers while being

designed to enable packet spraying. The security solution provides a scalable solution using a single key

across an entire parallel application and no per-peer security state for large parallel jobs. It also provides

a scalable mechanism to secure many clients that communicate with a server using key derivation. The

PDS is designed in conjunction with the TSS to enable the detection of replays. TSS is robust against

known attacks on other low-level transport schemes, such as various exhaustion attacks [3].

3.2.5 Layering Summary

UET can run on top of IP/UDP or experimentally on top of IP directly; implementations may be

configured with a protocol number as described in IETF RFC 3962 [4]. Detailed packet header formats

can be found in the SES, PDS, CMS, and TSS sections of this specification. Packet formats include an

entropy value field in the UDP source port to enable compatibility with existing switches and common

ECMP path selection approaches.

Because UET uses a standard IP packet carried over Ethernet, it is implicitly possible for UET to be

tunneled using standard technologies such as VXLAN and NVGRE.

Within a UET packet, there is an optional encryption header followed by a reliability header and then a

semantic header. The encryption and reliability headers both leverage a next-header encoding so as not

to prohibit the UET definition from evolving to allow other traffic – including RoCE or TCP – to be layered

 130

Copyright © 2025 Ultra Ethernet ConsortiumTM. All rights reserved.

within the encryption and reliability mechanisms. While the initial design of UET does not consider such

encapsulations, the packet layering is provisioned to enable this as a future option.

3.2.6 Sublayer Interfaces

The sublayers of UET are modularized to specify roles and responsibilities of functionality rather than

indicate implementation requirements. Actual implementations are free to choose whatever modularity

is appropriate, as long as the external observable behavior of the implementation is compliant with the

normative directives in the specification. Interfaces between the UET components and the users of UET,

both above and below, are described in the specification to further delineate the roles and

responsibilities of the modular functionality.

Figure 3-3 depicts the UET components and component interfaces. The UET libfabric provider is the

primary application-facing layer of UE. It is responsible for mapping libfabric API calls to the UET

semantic sublayer to support the communication needs of the libfabric endpoint. Send and completion

queues are the primary means of interfacing between the UET libfabric provider and the semantics

layer.

SES connects the UET libfabric provider to the PDS. SES packetizes messages at the source of the data

and deposits the received data into memory at the target. In addition, it implements various higher-level

protocols, such as rendezvous or deferrable sends, to synchronize initiator and target. SES in turn makes

transmission requests to the reliability component of PDS, which (if needed) creates and assigns a

packet delivery context (PDC) and a congestion control context (CCC) for those packets. PDS is

responsible for delivering packets from sender to receiver. PDS implements reliability and is designed to

operate on both lossless and best-effort networks. CMS is optimized to support best-effort networks. It

manages the assignment of packets to traffic classes. The PDS interfaces with the congestion

management sublayer on each packet to determine whether new packets can be sent into the network,

Figure 3-3 - Component Interface Overview

 131

Copyright © 2025 Ultra Ethernet ConsortiumTM. All rights reserved.

as well as an entropy value to be used. Send completion notifications and congestion signals from

received packets and ACKs are passed to the congestion management sublayer to manage transmission

windows. The TSS performs encryption and authentication at the sender, and decryption and

authentication at the receiver, of each packet. The data is then forwarded to the output ports of the

fabric interface.

3.2.7 Error Handling

Each layer may generate errors that are either to be passed to the application through the libfabric

bindings (see libfabric mapping section 2.2.5.6) or to the system administrator through logging or other

alert mechanisms. In UET, only the SES layer interfaces to the application directly; other layer errors are

either passed through SES to libfabric or logged in a vendor-specific form.

3.3 Profiles and Capabilities [normative]

UET covers various application use cases utilizing different communication libraries and services with

differing communication requirements for both HPC and AI. Not all use cases require all semantics, and

simplified semantics offer opportunities to specialize and optimize hardware. Thus, UET defines three

profiles called HPC, AI Base, and AI Full, respectively. The HPC profile supports full-fledged HPC

semantics and supports a wide range of applications. The AI Base profile is specialized to support *CCL

and unreliable datagram communication focusing on minimal implementation complexity. The AI Full

profile is intended to support all AI training and AI inferencing requirements to serve that emerging

market most effectively. A specific endpoint implementation can support either the AI Base, AI Full, or

the HPC profile or any combination of the three. However, communication between two endpoints

requires that those endpoints both support the same profile.

Within each profile, specific features of the protocol may be defined as being optional. For example, all

profiles define encryption as optional. This means that devices choosing to implement a profile would

implement the upper layers of semantics with or without encryption, and then a deployment could

decide whether to enable encryption. A device that does not implement encryption can be compliant to

a profile, and deployments using that device could not enable encryption. Yet, communication between

devices of the same profile shall be possible through the least common denominator feature set.

The following specifies the UET features included in each of the profiles. The keyword “MUST” indicates

that a feature must be implemented. If a cell is empty, it means that the feature does not have to be

supported, but vendors are free to support it in enhanced profiles (e.g., AI Base + Read). In this case,

vendors should be sure to track all dependencies. Optional features may be disabled at runtime. That

means that an implementation declaring support for AI Base may implement all features (which would

make it also HPC and AI Full compliant). The following tables assume familiarity with the respective UET

subsections. All requirements apply to both best-effort and lossless deployments unless otherwise

specified.

3.3.1 SES Transactions

Table 3-1 defines the requirements for supporting various transactions to be compliant with each

profile. Multi-packet transactions such as UET_WRITE, UET_READ, and UET_SEND MUST use a consistent

 132

Copyright © 2025 Ultra Ethernet ConsortiumTM. All rights reserved.

payload MTU size to transport the SES payload. Therefore, a deployment MUST use a consistent payload

MTU size across all FEPs communicating in a fabric.

Table 3-1 - Profile Requirements for Supporting libfabric Transactions

Transaction Description AI
Base

AI
 Full

HPC

NO_OP Null message as
defined by the
UET_NO_OP
opcode in SES
section 3.4.6.2

MUST MUST MUST

SEND Send a message
that uses the buffer
at head of the
receive queue

MUST support at
least 1 payload

MTU request size

MUST support
4GB-1 request size

MUST support
4GB-1 request size

DATAGRAM SEND Used for UUD MUST MUST MUST

TAGGED SEND
(EM)

Exact tag match MUST MUST

TAGGED SEND
(WC)

Wildcard tag match MUST

WRITE
WRITE IMM

RMA write
RMA write with
immediate

MUST MUST MUST

READ RMA read MUST MUST

Non-fetching
ATOMIC

Atomics support MUST MUST MUST

Fetching
ATOMIC

Atomics support MUST MUST

Tagged Atomics Both fetching and
non-fetching

 MUST

DEFERRABLE
SEND

Send operations
that can be
deferred by the
target until the
corresponding
receive buffer is
posted

 MUST

DEFERRABLE
TSEND

Deferrable send
with matching

 MUST

RENDEZVOUS with unexpected
msg support

 MUST

Note:
1. The libfabric provider advertises the max SEND message size
2. Atomic operation support is determined via libfabric capability discovery (see SES section 3.4.1.5.4).

3.3.2 Buffer Addressing Mechanisms

Implementations of all profiles MUST conform to all basic buffer addressing schemes (described in SES

section 3.4.1.3) except for matching (described in SES section 3.4.1.3.5). Implementations of all profiles

MUST support the use of memory keys for UET_WRITE operations. All implementations MUST support

 133

Copyright © 2025 Ultra Ethernet ConsortiumTM. All rights reserved.

the use of memory keys for UET_READ and UET_ATOMIC operations if RMA read is supported. Exact

matching support may be implemented using wild card matching.

Table 3-2 - Addressing Requirements for Implementations of Profiles

3.3.3 Authorization

All profiles MUST implement the authorization semantics (SES section 3.4.1.4). All profiles MUST be able

to insert the JobID according to SES section 3.4.1.4.1. The profile implementation MUST check the JobID

before allowing buffer access. All profiles MUST support at least one JobID per FEP.

3.3.4 Buffer Behavior

The profiles MUST support the buffer behaviors shown in Table 3-3.

Table 3-3 - Profile Buffer Behavior Requirements

Transaction Type Notes AI

Base

AI

 Full

HPC

Use-Once RMA Use-once applicable to RMA operations MUST

Memory Key Full range (standard header) MUST MUST MUST

Limited range (optimized header) MUST

Tagged Operations:

Exact Match

Applicable to tagged send and

deferrable tagged send and rendezvous tagged

send (if supported)

 MUST MUST

Tagged Operations:

Wild Card Match

Applicable to tagged send and rendezvous

tagged send

 MUST

Multi receive Support FI_MULTI_RECV

3.3.5 Packet Formats

Table 3-4 lists the SES header formats (SES section 3.4.2) that implementations of each profile MUST

support. All fields and flags in the headers MUST be supported unless specifically called out as an

exception in the table.

Operation Description AI

Base

AI

 Full

HPC

Relative Addressing Select libfabric endpoint using:

{FA, JobID, PIDonFEP, RI[range]}

MUST MUST MUST

Absolute Addressing Select libfabric endpoint using:

{FA, PIDonFEP, RI[range]}

MUST MUST MUST

Exact tag match Exact tag match for send operations MUST MUST

Wildcard tag match Wildcard tag match operations MUST

 134

Copyright © 2025 Ultra Ethernet ConsortiumTM. All rights reserved.

Table 3-4 - Profile Summary – SES header formats

Header Format Description AI
Base

AI
 Full

HPC

Standard 44 B full header MUST MUST MUST

Deferrable Send 44 B header with restart token MUST

Deferrable Send RTR 44 B header with restart token MUST

Deferrable Send as
Send

Target should treat arriving deferrable sends as
send

MUST MUST MUST

Optimized
Non-matching

20 B header without match, initiator ID, header
data, and
message ID fields (single packet)

 MUST

Optimized
Small Message

32 B header without message ID and with either
header data OR offset (single packet)

 MUST

Rendezvous
Extension

24 B header with eager length and address
information for read

 MUST

Atomic
Extension

4 B header with opcode, datatype, control MUST MUST MUST

Compare-and-Swap
Header

Two operand header format (if CAS is
supported)

 MUST MUST

Response 16 B header with return code MUST MUST MUST

Response with Data Variable size header with 20 B response header
+ data

 MUST MUST

Optimized Response 8 B compact header MUST

Delivery Complete
(GO)

Delivery complete (DC) as implemented with
global observability (GO)

MUST MUST MUST

3.3.6 PDS Ordering Modes

Table 3-5 lists the PDS ordering modes and network behavior that implementations of each profile

MUST support.

Table 3-5 - Profile Summary – PDS ordering modes

Service Description AI
Base

AI
 Full

HPC

Reliability and
Ordering Modes

Reliable, unordered delivery (RUD) MUST MUST MUST

Reliable, ordered delivery (ROD)

MUST MUST MUST

Reliable, unordered delivery for idempotent
operations (RUDI)

 MUST

Unreliable, unordered delivery (UUD) MUST MUST MUST

 135

Copyright © 2025 Ultra Ethernet ConsortiumTM. All rights reserved.

3.3.7 CMS Congestion Control Algorithms

The CMS offers two complementary congestion control algorithms: NSCC and RCCC. The following tables

specify the implementation requirements in each profile. Independent requirements are provided for

best-effort and lossless networks. Each implemented algorithm must support a mechanism to disable it

at deployment time such that either NSCC or RCCC can run in isolation or together if the implementation

supports both.

Table 3-6 - Profile Summary – Best Effort

Service Description AI
Base

AI
 Full

HPC

NSCC Network-signal-based congestion control MUST MUST MUST

RCCC Receiver-controlled congestion control

Table 3-7 - Profile Summary – Lossless

Service Description AI
Base

AI
 Full

HPC

NSCC Network-signal-based congestion control

RCCC Receiver-controlled congestion control

3.3.8 Encapsulation

Many of the transport components of all profiles inherently rely on consistent lower-level protocol

encapsulation (e.g., IPv4 vs. IPv6 as network layer encapsulation and native UET vs. UDP encapsulation

at the transport layer). For example, TSS uses confidentiality and encryption offsets for the secure

domain specific to the encapsulation type, and CMS uses a nominal packet size to calculate bandwidth.

An implementation SHOULD use consistent encapsulations on all packets on a FEP, PDC, and TSS security

domain.

 136

Copyright © 2025 Ultra Ethernet ConsortiumTM. All rights reserved.

3.4 Semantics Sublayer (SES)

UET specifies a semantic sublayer (SES) that supports the OFI libfabric API. To support libfabric, the

semantic sublayer uses concepts that have been deployed in HPC networking products as part of

libfabric implementations. This specification defines optimized profiles for AI and HPC deployments that

allow seamless interoperability between the common features of the profiles. Mappings of the popular

send/receive semantics in *CCL to the proposed AI semantics are discussed in section 3.4.9.

The products that have seeded this initial effort are inspired (to varying degrees) by the semantics

exposed through the Portals 4.x API [5]. In particular, various pieces of nomenclature are similar to what

is found in Portals 4, as is much of the addressing and authorization model. Portals 4 is mentioned here

as a resource for additional insight into some of the concepts.

Because libfabric was modeled after Portals 4, a strong semantic match remains between the two.

However, libfabric does not define how to handle various challenges for a wire protocol that lie beneath

the API (e.g., unexpected messages). Portals does not define a wire protocol either, and many of the

Portals semantics relate to NIC or software behavior that is beyond the scope of UET (e.g., event

delivery). By necessity, UET defines some behaviors of network hardware and software, but only to the

extent necessary to build compatible devices. The UET on the wire protocol does not intend to achieve

compliance with any existing semantics (neither IBTA nor Portals 4) and interoperates only with a peer

UET device.

SES defines the behavior of processing the wire protocol only to the extent that is necessary to achieve

interoperability between implementations of the libfabric API over the wire. FEP semantics and

implementation details are left to individual implementation choices, and the split of the

implementation between hardware and software is not defined. Several details of the libfabric

implementation requirements are not defined by the wire protocol. The libfabric mapping specification

covers some additional requirements for achieving interoperable providers.

3.4.1 Definition of Semantic Concepts

This section articulates the semantics provided by the UET to support AI and HPC applications. Fields

within the header are articulated in this section, and the proper semantic handling of those fields is

described; additional normative text is found in section 3.4.3. The section starts by describing

addressing: how is a buffer selected. This is followed by a discussion of authorization: the process of

determining whether a message is allowed to access a buffer. In addition, this section covers the

Informative Text:

SES uses the terms “initiator” and “target” in various places. Whereas many implementations use

“sender” and “receiver”, respectively, those terms are often difficult when talking about transactions

like “read” or even more complex transactions like rendezvous. For example, in a rendezvous

transaction, an initial re uest is sent from the initiator to the target. The target then issues a “read” to

pull the data from the initiator.

 137

Copyright © 2025 Ultra Ethernet ConsortiumTM. All rights reserved.

network operation types, how the ordering modes interact with the semantics provided, and network

protocol security.

3.4.1.1 Operations, Messages, and Transactions

A “transaction” is composed of all of the packets needed to eventually deliver the payload desired by

the user and implement the libfabric re uest. A “message” consists of a set of packets sharing a single

message ID. A transaction consists of one or more messages and supporting packets. As an example, a

32 KB libfabric fi_send() would carry the payload in 8 packets with the same message ID that would be

the send. A send transaction would include the acknowledgments and semantic responses to the send

message packets. A more complex example would be a large fi_send() using rendezvous (3.4.4.3). This

would consist of one or more packets as part of an eager message plus one or more packets as part of

the read message (a second message). Each of those messages would have associated responses and

acknowledgments. All of these together would make up the rendezvous transaction.

The term “operation” is reserved for the behavior implemented at the endpoint. The operation is

encoded in the opcode (3.4.6.2) and specifies operations such as reads and writes to memory, sending

of messages, and atomic operations on memory. Operation is also used in a handful of cases when

referring to libfabric concepts (e.g., a receive operation).

3.4.1.2 Services and Resources

A “service” is a libfabric-level construct that encapsulates all of the resources associated with a higher-

level library (e.g., *CCL, MPI). Resources can include constructs such as buffers, completion queues, and

completion counters. A “Resource Index” is an addressing construct used to select an addressable set of

resources within a service. Three Resource Index spaces exist, corresponding to three operation types:

RMA, SEND, and TAGGED. That is, Resource Index 0 for an RMA opcode (e.g., UET_WRITE) has a

different meaning from Resource Index 0 for a SEND opcode (e.g., UET_DEFERRABLE_SEND). Similarly,

TAGGED opcodes (e.g., UET_RENDEZVOUS_SEND) have a third meaning for Resource Index 0.

Informative Text:

Throughout the semantic section, the text refers to “buffers” or “data buffers.” In this specification,

the term buffer is used generically to refer to an addressable section of memory. This includes a

libfabric “memory region” (i.e., the target of an RMA operation) as well as the pointers passed into an

fi_tsend()/fi_trecv() that refer to memory to send from or receive into. It includes areas described by a

scatter/gather list as well.

Informative Text:

Tagged and untagged messages inherently re uire two different “lists” at the target, which re uires

two different addressing points. The original mechanism considered was to have a single opcode (e.g.,

UET_PUT) for all, with the target resources addressed based on the configuration of the target

resource. An alternative mechanism considered was to have each resource index be configured for

what type of operation could be performed on it and reject operations of other types.

 138

Copyright © 2025 Ultra Ethernet ConsortiumTM. All rights reserved.

3.4.1.3 Addressing

Addressing describes the entire process of selecting a target and identifying a data buffer at the target.

This may be the destination of data (e.g., for a Send (3.4.1.5.1)– or a Write (3.4.1.5.2), the source of the

data (e.g., for a Read (3.4.1.5.3), or both a source and destination of data (e.g., for atomic operations).

There are two types of addressing: relative addressing and absolute addressing. Both types rely on a

Fabric Address (FA), PIDonFEP (3.4.1.3.2), and set of Resource Index (3.4.1.3.3) values to select a

libfabric endpoint. They differ in how a PIDonFEP is interpreted. In relative addressing, the PIDonFEP is

relative to the JobID (3.4.1.3.1). In absolute addressing, the PIDonFEP is interpreted without a JobID. The

libfabric endpoint has a variety of resources that can include such things as a receive queue for

send/receive operation, a set of matching buffers, RMA resources, and completion delivery – both

completion queues and counters. This list does not attempt to be exhaustive, and the exact types and

nature of the resources are not intended to be prescriptive.

For each matching, nonmatching, or RMA operation that an implementation supports, separate

resources are identified by the combination of a Resource Index and operation type. Buffers provided

for different operation types are addressed independently, as illustrated throughout the following

examples; however, none of the following text or illustrations should be interpreted as suggestive,

prescriptive, or proscriptive of any implementation architecture in any way other than the resolution of

a message to a buffer.

The addressing hierarchy begins with a Fabric Address. An FA selects a fabric endpoint (FEP). Once a FEP

is selected, two addressing modes are defined. Relative addressing is intended to enable scalable

addressing for parallel communication within a distributed application, which is called a job. Absolute

Addressing is intended to enable scalable addressing for client/server operations where the server is not

required to be part of the application. In both cases, the initiator of a transaction is assigned a JobID

(3.4.1.3.1) that is inserted in each packet in a trusted way (3.4.7.1). The JobID is an identifying property

of the initiator only, and then is used as part of addressing and authorization (3.4.1.4) at the target.

In relative addressing, the FEP uses JobID to define the scope of the PIDonFEP. Within the PIDonFEP, a

Resource Index (RI) is associated with a “service”. A service can correspond to a specific use case or

library. In libfabric, a libfabric endpoint is opened for the service, and the number of Resource Index

values used depends on the service. The details of the usage of the Resource Index is hidden beneath

the libfabric endpoint2 that was opened in association with the service. The mapping of services to

Resource Index values is covered in the libfabric mapping specification [6]. Within a service, each

Resource Index creates a unique addressing space where a send operation, tagged send operation, or

RMA operation can select a buffer. This is highlighted in Figure 3-4. Figure 3-4 specifically illustrates the

operation of send/receive and tagged send/receive, where there is a pool of buffers behind a Resource

Index. For send/receive, the first buffer is consumed from the queue by an incoming message. For

tagged send/receive, the buffer is selected using the matching criteria. An initiator identifier is provided

2 Implementation of various libfabric features (e.g., scalable endpoints) can lead to a limited level of application
level visibility of index values.

 139

Copyright © 2025 Ultra Ethernet ConsortiumTM. All rights reserved.

as part of the matching criteria (3.4.1.3.4). Note that send/receive and tagged send/receive have a

different pool of buffers – even when they use the same Resource Index.

While Figure 3-4 provides an overview of how the addressing might be used in a complete HPC software

stack – where multiple complex applications might share a node – it is also possible to implement a

simplified version of this hierarchy for more purpose-built use cases (e.g., an integrated FEP in an AI

accelerator). As illustrated in Figure 3-5, a FEP may choose to support only one JobID at a time to

effectively remove the first level of indirection. In this model, the FEP is expected to validate that the

received JobID is the same as the one JobID using the FEP. In addition, while the PIDonFEP plus Resource

Index space is drawn hierarchically, the total number of bits dedicated to this addressing (24 bits) is

consistent with implementation as a flat address space, if desired. PIDonFEP and Resource Index select a

receive queue at the target, which is a resource that scales based on the messaging patterns rather than

the total size of the system (in endpoints or ranks). Thus, similar solutions for direct mapping to

resources could be employed. Finally, UET defines return codes and recovery mechanisms for how to

cleanly handle transactions that go beyond the resources implemented by a particular device.

Informative Text:

A libfabric implementation associates multiple types of resources with a libfabric endpoint. This

includes things such as completion queues, memory regions, and receive buffers. Because a PIDonFEP

combined with a Resource Index is how an endpoint is addressed, this effectively selects a set of

resources – some of which are directly addressable from the network (e.g., a memory region) and

others which are not (e.g., a completion queue). Within a space selected by a PIDonFEP and Resource

Index, a memory key can also address a memory region. Each resource may have an (implementation-

defined) limited range.

Figure 3-4 - Overview of Relative Addressing

 140

Copyright © 2025 Ultra Ethernet ConsortiumTM. All rights reserved.

Absolute addressing differs from relative addressing in that the PIDonFEP is an absolute number that

spans the process space on the target node instead of being relative to a JobID. This allows a service to

exist that is not associated with any job and allows addressing of those services within the UET

framework. An absolute address facilitates a client directly addressing a process that is not part of its

job, and the authorization model (3.4.1.4.1) enables scalable authorization using the JobID. For example,

a client can use this approach to access a service residing at a well-known PIDonFEP (or a PIDonFEP

obtained through some form of address resolution) on a server node. The JobID at that point is used

only as part of authorization to access a buffer (3.4.1.4.1). Buffer authorization in this scenario is

expected to occur on a per-buffer basis (e.g., per memory region or per receive buffer).

RMA operations (e.g., fi_read() and fi_write()) use a Resource Index space independent from

send/receive (and tagged send/receive) operations. At the libfabric level, a target memory region is

accessed using a memory key. A Resource Index defines a context within which a memory key has

meaning. Figure 3-7 illustrates this concept. A given Resource Index (e.g., RI 0) selects a service (e.g.,

SHMEM). Within that service, a memory key is mapped to a descriptor of a memory region in a vendor-

Figure 3-6 - Overview of Simplified Absolute Addressing

Figure 3-5 - Overview of Absolute Addressing

 141

Copyright © 2025 Ultra Ethernet ConsortiumTM. All rights reserved.

defined way that is compliant with the memory key structure definition in the libfabric mapping

specification. Each combination of FA, JobID (in the case of relative addressing), PIDonFEP, Resource

Index, and Memory Key selects a unique buffer.

Figure 3-8 illustrates the case where optimized headers (Figure 3-13) that do not include a memory key

can be used. Here, a single buffer is associated with a Resource Index. A Resource Index is one of many

associated with a service (e.g., SHMEM); thus, the Resource Index can directly select a buffer.

3.4.1.3.1 Job Identifiers (JobID)

A JobID identifies an application (spanning one or more FEPs) that a communicating process belongs to

(e.g., within a distributed parallel application). The JobID is assigned to the initiating process and is part

of both addressing and buffer access authorization. In relative addressing for a FEP, it defines the scope

of the PIDonFEP within the FEP. In absolute addressing for a FEP, JobID is used only for buffer access

authorization. See 3.4.1.4.1 for an elaboration on the use of JobID for authorization. In both absolute

and relative addressing, the JobID is populated with the JobID of the initiating application.

Job identifiers are useful in a traditional parallel computing environment (e.g., both HPC and AI) to

segregate different user applications. They also provide a scalable authorization field when

communicating in a client/server environment. A JobID is assigned by a provisioning system – much like

a VXLAN ID would be. The numerical relationship of the JobID to the security domain is not defined by

Figure 3-7 - Overview of Relative Addressing for RMA Operations

 142

Copyright © 2025 Ultra Ethernet ConsortiumTM. All rights reserved.

UET. The JobID MUST be unique for all jobs that are concurrently executing within the reachable

network, and it could potentially utilize an existing ID if that is how the provisioning system is designed.

Phrased differently, two entities that can reach each other across the network MUST have different

JobIDs unless they are allowed to communicate. A distributed parallel application MAY be associated

with more than one JobID.

3.4.1.3.2 Process Identification (PIDonFEP)

UET provides a process identification field in the SES header called ses.PIDonFEP, which is used to select

a set of resources associated with a specific process. Because operating systems tend to evolve

independently of network protocols, the UET PIDonFEP is decoupled from the OS process ID as well as

the PCI Express PASID. The PIDonFEP-to-OS process mapping is many-to-one. That is, each OS process

Informative Text:

An example of a parallel application being associated with more than one JobID is the case where two

separately launched distributed parallel applications need to communicate. These two jobs may be

launched at somewhat different times such that the first job has no knowledge of the details of the

second job at launch time. Multiple mechanisms can achieve this. The two historical solutions are: 1)

Create a spanning JobID where each process uses relative addressing in two different jobs, and 2) Use

absolute addressing. In either case, separate resources (e.g. separate sets of receive buffers and

completion queues) are used for communicating between the two jobs.

Informative Text:

JobID assignment is conceptually similar to VXLAN ID assignment. The relationship of the JobID to a

VXLAN ID (or other virtualization ID) is not defined by UET. In either case, the JobID could potentially

be the same as a virtualization ID or a security domain, but that is not a requirement.

Figure 3-8 - Overview of Relative Addressing for RMA Operations Using Optimized Headers

 143

Copyright © 2025 Ultra Ethernet ConsortiumTM. All rights reserved.

using the network stack MUST have a different PIDonFEP, but more than one PIDonFEP may be assigned

to an OS process. A PIDonFEP MUST have either a scope that is relative to a JobID (relative addressing)

or a scope that is relative to a Fabric Address (absolute addressing).

3.4.1.3.3 Separation of Services within a Process (Resource Index)

Within a process, it is often necessary to separate different usages of the network stack. For example, a

user-level networking stack – such as MPI or *CCL – would want a separate set of communication

resources from a user-level object storage system (e.g., Distributed Asynchronous Object Storage

(DAOS) [7]). A specific set of resources within a process is a libfabric endpoint. A libfabric endpoint may

acquire more than one Resource Index – as defined by the service that was used to open the endpoint.

A communication context within that endpoint (e.g., a receive queue) is selected by the Resource Index.

Different operation types (e.g., UET_SEND, UET_READ, and UET_TAGGED_SEND) have different

Resource Index spaces. When used with a tagged operation on the wire, a Resource Index refers to a set

of buffers using tag matching for buffer resolution (accessed using TSEND opcodes). The same numerical

value of Resource Index used with a SEND opcode accesses a nonmatching queue. One or more RMA

resources (accessed using UET_READ, UET_WRITE, UET_ATOMIC, and others) can be associated with a

Resource Index. An RMA operation using an optimized header (Figure 3-13) MUST select exactly one

RMA resource using the Resource Index. An RMA operation using the standard header (Figure 3-9) MAY

target a Resource Index that has exactly one RMA resource. This configuration is part of the Resource

Index configuration at the target FEP.

Informative Text:

A PIDonFEP used in relative addressing mode can be thought of as a “rank on node.” Relative

addressing mode is designed to allow hierarchical, algorithmic addressing so that a “rank” – such as

for MPI or *CCL – can be expressed as a logical node and rank on that node. Thus, a CCL or MPI rank

would be decomposed into “node X and PIDonFEP Y” – such as an application with 8 ranks per node

translating Rank 33 into node 4 and PIDonFEP 1. In this case, PIDonFEP 1 says that Rank 33 is the

second rank on node 4.

Informative Text:

Multiple PIDonFEPs have been bound to a single OS process in historical implementations to expand

the flexibility of resource management. In most hardware architectures, this is “harmless” since the

hardware must map PIDonFEP to some address translation context and typically uses structures that

are agnostic to N:1 mappings. For example, if the Resource Index space proves to be too small for

multi-programming model applications, it may be possible to map a service to an alternate PID to give

it the full range of Resource Index values.

 144

Copyright © 2025 Ultra Ethernet ConsortiumTM. All rights reserved.

3.4.1.3.4 Initiator Identifiers

The ses.initiator field is included in the UET header and is part of the matching criteria (3.4.1.3.5). The

ses.initiator field contains the job level “rank” of the initiating process. An initiator has meaning only

within the context of a JobID (i.e., it is a rank numbered from 0 to N-1, where N is the total number of

ranks in the application). As such, it MAY be assigned by a user-controllable resource. In many

messaging APIs – including various CCL libraries and MPI – the receive operation (e.g., MPI_Irecv())

specifies the rank that a message must come from in order to match to that receive. This ses.initiator

field is intended to carry that rank – or a proxy for that rank (e.g., the source rank could be translated to

a global rank rather than the communicator-specific rank used in MPI). This is expressed in libfabric

through the FI_DIRECTED_RECV portion of the API.

3.4.1.3.5 Matching and Nonmatching Operations

The UET header defines a set of fields to enable either matching or nonmatching operations. When the

message indicates it is a tagged send (e.g., UET_TAGGED_SEND, UET_RENDEZVOUS_TSEND), the

“matching criteria” (the 64 ses.match_bits field and the ses.initiator_id field) are used for buffer

selection. When matching is not requested (e.g., UET_SEND, UET_RENDEZVOUS_SEND), a network

message selects the next buffer provided by the Resource Index. The matching (if present) and

nonmatching resources associated with a Resource Index are logically separated.

Matching operations exist in various forms. The traditional form of matching as defined through the

libfabric fi_trecv() API uses matching criteria – specifically the ses.match_bits and the ses.initiator fields

of the message – to select the buffer. In this approach (as exemplified in fi_trecv() and other historical

software APIs), the matching criteria can provide ignore bits for each of the 64 match bits and/or be set

to receive from “any source” (i.e., using FI_ADDR_UNSPEC – see fi_trecv()). Support for MPI matching

requires wildcard matching for both a tag field and a source field, and this is accomplished through a

combination of ignore bits and FI_ADDR_UNSPEC. For *CCL implementations that support send/recv,

their matching behaviors are typically a subset of this behavior, where the matching criteria may not be

Informative Text:

The text above notes that send/receive, tagged send/receive, and RMA opcodes have three different

Resource Index spaces. That is, a Resource Index using send/receive selects different resources

(completion queue, set of target buffers) from a tagged send/receive using that same Resource Index

value. Similarly, an RMA opcode using that same numeric value accesses a third set of resources.

Whether that is thought of as three separate Resource Index tables or one table with three sets of

resources selected by the operation type is an implementation detail beyond the scope of this spec.

Informative Text:

The ses.initiator field is currently defined as the initiator ID and is relative to the JobID in both relative

addressing and absolute addressing. The initiator ID does not currently have a separate trust model or

addressing model for absolute addressing, because there is not a currently known use case for the

initiator ID in absolute addressing mode. Future extensions of the specification may include updates

to the initiator ID definition for absolute addressing if a well-defined use case emerges.

 145

Copyright © 2025 Ultra Ethernet ConsortiumTM. All rights reserved.

wildcarded; however, that is a property of the libfabric endpoint and not the wire protocol. When

wildcard matching is used with ROD, the message MUST consume the entries in the FIFO order provided

by software amongst all buffers that match the matching criteria; thus, for a given {FA, JobID, PIDonFEP,

Resource Index} matching is performed in the order that buffers were added to that Resource Index.

When RUD is used, the matching process SHOULD consume the entries in the FIFO order provided by

software amongst all buffers that match the matching criteria – whether exact matching or wildcard

matching is used; however, because RUD is unordered, the fabric is allowed to reorder packets. Entries

are allowed to be consumed in any order when using RUD.

The match bits MAY be used as part of the RMA operations for libfabric. In this use case, the target of an

RMA operation configures the resources identified by a {JobID, PIDonFEP, Resource Index} tuple in an

RMA operation (e.g., fi_write(), fi_read(), fi_atomic()) as expressed as an RMA opcode (e.g., UET_WRITE,

UET_READ, UET_ATOMIC, UET_FETCH_ATOMIC) for access using a “key” provided as a parameter of the

fi_write() or fi_read() API. The implementation MUST map the key into the match bits on the wire. On

some implementations, this key (as carried in the match bits) MAY have a very limited range and simply

index a table of memory regions affiliated with a {JobID, PIDonFEP, Resource Index} tuple. On other

implementations, some values of this key MAY use a hash table to identify a buffer associated with that

{JobID, PIDonFEP, Resource Index, key} tuple. On still other implementations, the hardware MAY be

simply configured to use the matching logic used to support tagged messaging. Each of these modes is

enabled through the libfabric mapping because the libfabric API allows implementations to control the

actual values of a memory key and how those values are used. Interoperability between various

implementation strategies for the use of match bits is discussed in the libfabric mapping specification.

3.4.1.3.6 Memory Addressing

The UET header provides an offset within the buffer selected through the above processes. The offset is

zero based (with respect to the buffer start) and matches the default memory region behavior for

libfabric (formerly known as FI_MR_SCALABLE). Implementations MAY support the FI_MR_VIRT_ADDR

option. FI_MR_ENDPOINT is required to be set by the user of the libfabric provider.

3.4.1.3.7 Addressing Summarized

A message that uses relative addressing selects a set of resources associated with a libfabric endpoint

using a JobID, PIDonFEP, operation type, and Resource Index combination. For an untagged operation, a

given {JobID, PIDonFEP, Resource Index} tuple MUST be used to select one buffer. If the message uses a

tagged operation, the FEP uses the match bits as part of selecting a buffer. In a matching operation, a

given {JobID, PIDonFEP, Resource Index, Match Criteria} tuple MUST be used to select one buffer;

however, the FEP MAY use one or more mechanisms to uniquely identify that buffer (as defined in

Informative Text:

The design of SES always provides an ses.initiator field to be part of the matching criteria. This

enables libfabric to support FI_DIRECTED_RECV. An endpoint could be opened without

FI_DIRECTED_RECV. In this case, the target side endpoint would ignore the ses.initiator field. This is a

topic for coverage in the libfabric mapping specification but is noted here for the sake of the reader.

 146

Copyright © 2025 Ultra Ethernet ConsortiumTM. All rights reserved.

section 3.4.1.3.5). The mechanism used MAY depend on the {JobID, PIDonFEP, Resource Index} tuple. An

RMA operation MAY include a memory key in the same header field used for match bits (i.e.,

ses.memory_key). If a memory key is not used, the {JobID, PIDonFEP, Resource Index} tuple MUST

uniquely select one buffer. Note that the Resource Index space used for untagged operations, tagged

operations, and RMA operations are three separate spaces.

A message that uses absolute addressing selects a set of resources associated with a libfabric endpoint

using a PIDonFEP and Resource Index combination. Within this set of resources, addressing proceeds in

the same way as it does for relative addressing.

3.4.1.3.8 Addressing and libfabric [Informative]

This section is informational and provides the design intent for the addressing modes and how they are

used in libfabric. Addressing for libfabric utilizing a UET provider is standardized in the libfabric mapping

specification (see section 2.2.5.1).

A libfabric endpoint is part of one or more JobIDs. It exists only in the context of one OS process, and it

would typically exist on one PIDonFEP. A libfabric endpoint may allocate one or more values of Resource

Index.

A libfabric endpoint is likely to utilize one or more {JobID, PIDonFEP, Resource Index} tuples. At least one

motivation is to provide a control channel within the provider. Here, a control channel is defined as a

mechanism through which two instances of a provider in different processes can exchange control

information.

In libfabric, the fi_addr_t (e.g., dest_addr) determines whether relative addressing or absolute

addressing is used.

For an fi_send(), the {JobID, PIDonFEP, Resource Index} tuple selects a set of resources in a libfabric

endpoint that is similar to a shared receive queue.

For an fi_tsend(), the {JobID, PIDonFEP, Resource Index} tuple selects a construct similar to a shared

receive queue in a libfabric endpoint. Within the resources selected by that tuple, the matching criteria

(ses.match_bits plus ses.initiator) select a buffer based on the corresponding matching criteria provided

in the fi_trecv(). It is expected that libfabric will be extended to allow an endpoint to specify that it

supports only exact matching (i.e., that all of the ignore bits must be 0). Exact matching is a property of

the libfabric endpoint – particularly the target libfabric endpoint – and not the wire protocol itself. The

exact matching semantic is defined as not allowing a wildcard to be applied to the match field. It is

intended to be used with exactly one copy of the matching criteria (ses.match_bits plus ses.initiator) in

flight at any given time on the wire and exactly one copy of the match bits in use in the tagged receive

list; however, that is not required. If these criteria are violated, then the order in which buffers are

matched is undefined.

In libfabric, RMA operations (e.g., fi_write(), fi_read()) utilize a 64-bit memory key. The wire formats

provide two encodings of the key information for these operations. In one mechanism, only the {JobID,

 147

Copyright © 2025 Ultra Ethernet ConsortiumTM. All rights reserved.

PIDonFEP, Resource Index} tuple is available in the UET header, and this chooses exactly one buffer. In

this mechanism, the key pass through the libfabric API uses an encoding that is compatible with an

abbreviated encoding on the wire – essentially placing all key information needed for addressing into

the Resource Index itself. In the second mechanism, the wire protocol provides 64 bits for transporting

the memory key (i.e., ses.memory_key). The {JobID, PIDonFEP, Resource Index} tuple selects a set of

resources associated with a libfabric endpoint where the key has meaning and selects the completion

queue for delivering libfabric completion data (i.e., the ses.header_data field in the transport header

that is analogous to the immediate data for an RDMA Write-with-Immediate). The libfabric mapping

specification fully defines the memory key encoding and how that encoding is utilized to create the

relevant transport header formats.

3.4.1.4 Authorization

After addressing a buffer, access to that buffer MUST be authorized as specified in 3.4.1.4.1 and

3.4.1.4.2. The security mechanisms outlined in the security chapter assist in establishing the identity of

the sending device and authenticity of the header fields. Beyond that, the JobID plays a key role in

buffer access authorization.

3.4.1.4.1 Job Identifier (JobID) and Authorization

The JobID MUST be assigned by or validated by a trusted layer within the initiating node (3.4.7.1). This

can be within the FEP or OS – if the OS is part of the network trust boundary for a given deployment.

The JobID can be assigned in any way that the provisioning system sees fit.

For every access to a buffer (either RMA memory region or receive buffer), the implementation MUST

apply a mechanism to validate that the JobID is allowed to access the buffer. This mechanism can be as

simple as the JobID being a required part of the mechanism to address the buffer (e.g., in relative

addressing). In absolute addressing, this can require checking the JobID for each buffer.

Implementations MUST support at least one JobID, and an implementation MAY support only one JobID

and support only relative addressing; such an implementation can simply check the JobID of every

inbound transaction. However, an implementation that simply checks that a JobID is one of a set

supported by the FEP, without further applying a mechanism (e.g., relative addressing or a per-buffer

check) to validate that JobID can access the buffer, is not sufficient.

3.4.1.4.2 Encryption and Authorization

Encryption is optionally supported and described in the transport security subsystem. The primary

purpose of encryption in UET is to secure data and authenticate headers. Enforcement of fabric

addresses and JobIDs is covered in section 3.4.7.1. To prevent server state scalability issues, UET does

not require server-side mappings between a secure domain identifier (SDI) and JobID. The JobID is part

Informative Text:

In libfabric, a memory key uniquely identifies a memory region that is the target of an RMA operation

(e.g., fi_read()). The memory key in libfabric may be used to encode various information. The

memory key is controlled by the provider implementation, which is how various usages and

structures of the memory key achieve interoperability.

 148

Copyright © 2025 Ultra Ethernet ConsortiumTM. All rights reserved.

of the identity of the initiating process in absolute addressing and is part of the shared identity of the

initiating process and target process in relative addressing.

When encryption is enabled, a secure domain is logically mapped to a service from an application

perspective. Only members ‘bound’ to the domain are allowed to use that secure domain. This is

achieved by first selecting the endpoint using the {FA, JobID, PIDonFEP, Resource Index} tuple for

relative addressing mode or the {FA, PIDonFEP, Resource Index} tuple for absolute addressing mode.

When encryption is enabled, the FEP MUST validate that the SDI is allowed to access that endpoint. If

this validation fails, the message MUST be dropped and reported as defined in the transport security

sublayer (TSS) section 3.7.4. An SES response MUST NOT be sent in response this failure. A PDS NACK

MUST NOT be sent in response to this failure.

Implementation Note:

The SES is allowed to respond with UET_NO_RESPONSE before determining that the SDI validation for

the endpoint failed. This can cause PDS to later indicate a UET_DEFAULT_RESPONSE for a given

packet, but a message that fails SDI validation will never successfully complete. The PDC will not

survive this and will eventually be torn down due to the lack of responses.

3.4.1.5 Network Transaction Types

Network transactions include various forms of tagged and untagged sends, RMA operations, and atomic

operations. Not all transaction types may be supported on all networks. Graceful behaviors are defined

for when an unsupported network transaction type is received (3.4.5.4.2). In general, all network

transaction types work in conjunction with the full set of addressing options described above.

Network transactions that carry bulk payload (i.e., reads, writes, sends, tagged sends) MAY transfer up

to 232– 1 bytes (4GB – 1) in a single message. This message size limit is defined by the maximum value

that can be represented in the request length in the standard header format. Individual

implementations MAY limit the size of RMA operations and send operations separately. Such a limit is

exposed through the max message size capabilities in libfabric. Implementations MUST break data into

packets containing payload sizes conforming to a Payload MTU (3.4.1.11). All packets in a message –

other than the last packet – carry exactly Payload MTU bytes of data.

Informative Text:

UET is designed to avoid an amount of state that scales with the number of communicating peers

(e.g., in a client/server environment, the number of clients of one server). As an example, the security

specification includes a mode to allow all clients of a server to use a single SDI in order to minimize

the required key storage state at the server – to make it independent of the number of clients. Having

an SDI to JobID mapping would then require that the SDI maintain a list of all client JobID values that

could use the SDI, which is an amount of state that scales with the total number of clients.

 149

Copyright © 2025 Ultra Ethernet ConsortiumTM. All rights reserved.

3.4.1.5.1 Sends – Tagged and Untagged

All sends cross the wire with addressing information – JobID, PIDonFEP, Resource Index, an optional

offset into the target buffer, matching criteria3, header data, and a payload. The target of the operation

(e.g., the receiving process where the data will be deposited) then has some control over the exact

handling of that message and the resulting change in the state of the buffer that addressing information

specifies (3.4.1.6). Sends select the head of the untagged receive queue addressed by the {JobID,

Process ID, Resource Index} and tagged sends use the matching criteria to choose one of the buffers

associated with the tagged receive queue selected by {JobID, Process ID, Resource Index}. Send

operations that arrive at a receive queue that does not have a posted receive buffer are handled using

unexpected header processing (3.4.3.5.1). Similarly, tagged sends that do not find a matching entry

follow the unexpected header processing procedures.

3.4.1.5.2 Writes

A write crosses the wire with addressing information – JobID, PIDonFEP, Resource Index, an offset into

the target buffer, an optional memory key4, header data (immediate data) and a payload. Writes select a

single buffer based on the addressing criteria. The target of the operation (e.g., the memory region

within the target process where the data will be deposited) then has some control over the exact

handling of that message and the resulting change in the state of the buffer that addressing information

specifies (3.4.1.6). For example, a target buffer could be defined as use-once or could be defined as

read-only. For any access violation (e.g., the memory key is not valid, a write accesses a read-only buffer,

etc.), a return code (Table 3-19) is generated that indicates the error.

3.4.1.5.3 Reads

A read utilizes the same addressing information as a write. Reads select a single buffer based on the

addressing criteria. The target of the operation (e.g., the memory region within the target process from

which the data will be retrieved) then has some control over the exact handling of that message and the

resulting change in the state of the buffer that addressing information specifies (3.4.1.6). For example, a

target buffer could be defined as use-once or could be defined as write-only. For any access violation

3 Matching criteria is currently included in the packet for all types of sends, but it is used only as part of buffer
selection for tagged sends.
4 RMA addressing may work in either of two formats – one with and one without a memory key on the wire.

Informative Text:

Where implementations choose different maximum message sizes to export, that decision will

impose requirements on middleware software (e.g., MPI or *CCL implementations). An initiator that

fails to honor the limits of the target FEP will receive a return code indicating a failure to deliver the

message. It is the responsibility of the middleware to coordinate the maximum message size limits

across the environment. In practice, this is not typically a problem, since implementations have

traditionally chosen from a small number of maximum message sizes (either the largest the transport

supports or a single MTU), and the middleware is typically coded to choose from those options.

 150

Copyright © 2025 Ultra Ethernet ConsortiumTM. All rights reserved.

(e.g., the memory key is not valid, a read accesses a write-only buffer, etc.), a return code (Table 3-19) is

generated that indicates the error.

3.4.1.5.4 Atomic operations

Atomic operations are defined within UET. Both fetching atomic and non-fetching atomic operations are

included. Atomics utilize the same addressing semantics as RMA read and write. Fetching atomic

operations are limited to a single element of a datatype. Non-fetching atomic operations (or, just atomic

operations) may be as large as a message – up to the full request length. Atomicity is limited in scope to

a single element granularity and limited to the scope of a single {FA, JobID, PIDonFEP, Resource Index,

Memory Key}. Variants of atomic operations using tagged addressing semantics are supported on

profiles that support tagged sends, in which case atomicity is limited in scope to a {FA, JobID, PIDonFEP,

Resource Index, Matching Criteria}. JobID is not part of determining the scope of atomics when absolute

addressing is used.

3.4.1.5.4.1 Atomic Operations and Datatypes

A broad range of atomic datatypes and operations is supported within the UET definition. These types

and operations target traditional HPC as well as AI/ML workloads. An enumeration of supported

operations and datatypes is found in section 3.4.6.4.

3.4.1.5.4.2 Atomic Operation Control Fields

Atomic operations are tightly tied to the memory model exposed by the network (3.4.8). As such,

controls (Table 3-23) to convey the semantics required for the operation are provided as part of the

atomic header definition.

3.4.1.5.5 Rendezvous Send Transactions

A rendezvous send transaction is defined as an operation that sends a request from an initiator to a

target. On successfully identifying a buffer, the target then “pulls” the data from the initiator. The initial

re uest MAY have an “eager” portion of data that is transferred with it. Eager transfers are payload

transfers before the buffer has been identified at the target. In a rendezvous transaction, the target

controls how the eager portion of the transfer is handled. If the matching buffer is not found, it may be

buffered, or it may be discarded and requested from the initiator later.

In UET, a rendezvous transaction begins with a rendezvous request (send or tsend). The rendezvous

request includes information about a buffer at the initiator. This information is a full set of addressing

information to enable the read to later retrieve the remainder of the full message payload. The read is

semantically identical to other read operations in UET in all ways – including their packetization and

implementation options as described in the packet delivery sublayer (PDS); however, the read for a

rendezvous transaction requires completion tracking at the target beyond the typical scope of fi_read().

See 3.4.4.3 for additional discussion and for an implementation note on rendezvous implementations.

3.4.1.5.6 Deferrable Send Transactions

A deferrable send is a separate type of send transaction (for send or tsend) that can be deferred by the

target of the send. Deferrable sends can then be resumed later. A deferrable send begins with a

 151

Copyright © 2025 Ultra Ethernet ConsortiumTM. All rights reserved.

deferrable send request (send or tsend – see Table 3-17 for a list of opcodes) that includes a restart

token containing a 32-bit portion allocated by the initiator and a 32-bit portion that will be filled in by

the target. The target responds with a semantic response indicating whether the message was accepted

or not. Accepted messages can be accepted in their entirety or partially. If the message was not

accepted in its entirety, a later request from the target to the initiator – a ready to restart – uses a token

to indicate to the initiator that the original message can be restarted. The ready-to-restart request can

include an offset to allow it to start somewhere other than the start of the message. This allows the

implementation to capture the initial portion of the message in an unexpected buffer and copy it when

the matching receive (e.g., fi_trecv()) is posted.

Informative Text:

The deferrable send transaction provides a wire protocol implementation and optimization of an

“eager long” protocol [8]. Conceptually, the round-trip time required for a rendezvous operation has

a negative impact on the performance of moderate sized messages when the message is expected.

Eager long protocols optimize for the expected message case. Deferrable sends go one step further by

providing a wire protocol that reduces (though does not eliminate) the wasted bandwidth associated

with unexpected messages using an eager long protocol. Deferrable sends also include a wire

transaction that does not require implementing a read operation to pull the remainder of the data.

3.4.1.5.7 Responses

Two types of responses are defined. The first is a response to send, tagged send, write, read (for large

reads), and non-fetching atomic operations, which indicates the semantic result of that operation

(3.4.3.3). The second is a response with payload, which is returned as the result of a read or fetching

atomic operation.

3.4.1.6 Target Operation Types: Supported Buffer Behavior

UET attempts to minimize the requirements placed on FEPs to maximize the flexibility afforded to

implementations. Nevertheless, it is important that FEPs – and their associated software stacks –

implement certain behaviors. Minimum requirements for hardware are discussed in section 3.4.7. FEPs

have expected behaviors for use-once, multi-receive, tagged, and RMA operations as described below.

3.4.1.6.1 Use-Once Operation

One important buffer behavior for implementing libfabric is use-once behavior. This behavior means

that once a single message has targeted the buffer, the buffer MUST NOT be accessible by other

messages. The buffer MUST continue to be available for the one operation that started on it. The buffer

MUST NOT be released back to the application (e.g., through a completion notification) until the

operation targeting it has completed. Target-side FEP implementations MUST support use-once

Informative Text:

A deferrable send could be implemented with an “eager” limit; however, this is a matter of device

architecture. In this context, an eager portion does not go into the wire protocol, because it does not

impact the behavior of the target. The eager size is not part of the libfabric API.

 152

Copyright © 2025 Ultra Ethernet ConsortiumTM. All rights reserved.

behavior, since this is the defined behavior for fi_send()/fi_recv(). If tagged messaging is supported,

target-side FEP implementations MUST support use-once behavior as part of the tagged API

implementation.

Target-side FEP Implementations of RMA (fi_read()/fi_write()) MAY implement a use-once semantic.

Use-once can be a useful feature for building more secure implementations, as it minimizes the

exposure window of a buffer. It can also be helpful for software to not have to explicitly tear down

exposed buffers.

3.4.1.6.2 Multi-Receive

Target-side FEP Implementations SHOULD implement support for a multi-receive capability (i.e., the

FI_MULTI_RECV option as specified for API calls such as fi_recv() in libfabric). Multi-receive allows a

single buffer to accept multiple re uests with a locally managed offset “until it is full.” This applies to

send and tagged send operations (and their rendezvous variants).

3.4.1.6.3 Tagged Operations

The target side of an implementation of libfabric over the HPC profile for UET MUST include support for

tagged operations. Tagged operations MAY be accelerated with special mechanisms (e.g., dedicated

hardware support); however, implementations that comply with the minimum requirements in section

3.4.7 are also acceptable. Implementation of tagged operations MUST use the matching criteria

(ses.match_bits plus ses.initiator) provided in the UET header.

3.4.1.6.4 Memory Key Size and Range

Target-side FEP implementations MUST support using the match bit field of a packet as a memory key

for an RMA operation (e.g., fi_write()). The structure of the memory key is not defined as part of the

transport definition and is defined in the libfabric mapping specification. Implementations have

significant freedom to choose the exact usage of the memory key while complying with the libfabric

definition.

3.4.1.7 Ordering

Two basic forms of ordering are defined in libfabric; libfabric message ordering and payload ordering.

The first is the ordering between libfabric messages – where a libfabric message here is loosely defined

Informative Text:

Use-once behavior for RMA operations requires libfabric extensions. This behavior can be an

important building block for secure protocols – especially in client/server operation. Many attack

surfaces for unencrypted protocols depend on “guessing” the value of fields such as the

ses.memory_key. Use-once behavior minimizes the lifetime of the exposure of the buffer, which

reduces the success probability of these attacks. Use-once behavior is also a useful (though not

strictly necessary) building block for the rendezvous protocol, since it eliminates the overhead of

tearing down the buffer that was exposed by software to enable the target to issue a rendezvous

read.

 153

Copyright © 2025 Ultra Ethernet ConsortiumTM. All rights reserved.

as any type of network operation — and the second is payload ordering which is the order in which

bytes targeting a single address are delivered to memory at the target. In contrast, packet ordering is a

property of the packet delivery service (PDS) and is used to implement the ordering requested at the

libfabric layer. The ordering requested at the libfabric layer passes through SES to select a PDS mode

(e.g., ROD, RUD, RUDI) and how that PDS mode is used. Libfabric message ordering – defined as the

order in which message headers are used to select a buffer – is distinct from payload ordering when

utilizing underlying PDS modes. Payload ordering (3.4.1.7.2) refers to the order in which two different

transactions operating on the same target address are applied.

3.4.1.7.1 Libfabric Message Ordering

Message ordering as defined by libfabric (e.g., send-after-send, send-after-write) requires that message

headers be resolved at the target (e.g., matched or consume a receive queue entry) in the order that the

messages were provided by software at the initiator. That is, message ordering begins with the order in

which API calls (e.g., fi_send()) are made from software at the initiating libfabric endpoint and ends

when a buffer has been selected (e.g., tag matching has concluded and the buffer marked as a use-once

buffer is no longer available for other messages to match). Message ordering requirements apply to a

specific {initiator FA, target FA, initiator PIDonFEP, JobID, target PIDonFEP, Resource Index, traffic class}

tuple only. To meet the libfabric message ordering semantics for send-after-send (and other message

orderings), operations MUST use a ROD PDC to transport information required for resolving to a buffer

at the target. This means using a ROD PDC for fi_send() or fi_tsend() when making a request – including

a rendezvous request. Payload may be delivered out of order by using rendezvous transactions (3.4.4.3)

or deferrable send transactions (3.4.4.4). In these transactions, the initial message (e.g., eager portion) is

sent using a ROD PDC, and the remainder (e.g., the rendezvous read) is a separate message that may use

a RUD PDC. section 3.4.9 discusses the mapping of *CCL ordered send/receive over a tagged interface

using a RUD PDC.

The mixture of RMA operations (e.g., fi_write()) with messaging (e.g., fi_send()) that requires message

ordering (e.g., send-after-write) MAY use a ROD PDC. If it does not use a ROD PDC, mixed RMA and

messaging MUST use source-side fencing to force the required ordering between messages. Source-side

fencing refers to the action of waiting for the prior operations to complete – conceptually similar to a

memory fence – and then initiating the subsequent transactions. This action would be applied at the

semantic sublayer, if it were implemented.

3.4.1.7.2 Payload Ordering

Payload order refers to the ordering that two different operations from the same initiating PIDonFEP

from a given initiator FEP perceive when accessing the same buffer associated with a single target FEP.

Common ordering modes (i.e., typical CPU memory model ordering modes that are also defined in

Informative Text:

Most implementations are likely to place multiple independent streams of ordered traffic onto a

single PDC.

 154

Copyright © 2025 Ultra Ethernet ConsortiumTM. All rights reserved.

libfabric) include write-after-write (WAW), write-after-read (WAR), and read-after-write (RAW). RMA

operations that request payload ordering MAY use a ROD PDC. This would effectively order the delivery

of payload data such that the order in which it is presented to the target FEP would match the order of

the requests issued by software. Even then, WAR ordering is likely to have a limited size as defined by

the target implementation (i.e., as expressed through the max_order_war_size attribute in libfabric). To

implement WAR ordering, targets using a ROD PDC to achieve ordering MUST buffer the result of the

first read until an indication has been received from PDS that the result has been received by the

initiator. This is indicated by PDS transmitting a Clear packet for the result. Typical implementations limit

the size of data they buffer (e.g., to the maximum payload size of fetching atomic operations). Even with

these mechanisms in place, implementations need to take care in how the host bus interface (e.g., PCI

Express) semantics interact with the chosen ordering mode.

A second alternative for implementing payload ordering is to use initiator-side fencing in conjunction

with a RUD, or even RUDI, PDC. Initiator-side fencing implies that after one operation is performed, the

initiator waits for that operation to complete, and then the next operation is performed.

3.4.1.7.3 Order of Generation of Packets Within a Message

Packets of a single message are generated with packet sequence numbers (PSNs) and offsets within the

message that are ascending through the message. That is, the first packet of the message MUST have

the first sequence number (e.g., PSN=A) used for the message and MUST have the ses.som bit set. The

Nth packet MUST have PSN=A + N-1; thus, in the logical interface from SES to PDS, packets are provided

in order. Similarly, the first packet of a message MUST have an offset within the message of 0. The Nth

packet MUST carry an offset of (N-1) * PAYLOAD_MTU in the ses.header_data field. The final packet of

the message MUST have the ses.eom bit set. Packets from a single message MUST be contiguous in the

sequence number space. That is, two messages MUST NOT be interleaved in their delivery to PDS for a

single PDC.

For the ROD protocol, packets MUST be delivered to the wire in the order of their sequence number. For

the RUD protocol, packets MAY be delivered to the wire in any order.

From the perspective of generating packets within a message, deferrable sends can behave like one

message (i.e., when they are not deferred), in which case they follow single message packet generation

ordering rules. Deferrable sends can also behave like two (or more) messages (i.e., when the deferrable

send is deferred), in which case the two (or more) messages follow the ordering and interleaving rules of

the PDCs that are used. The first message carries an ses.som bit on the first packet and generates M

packets from the N packets that the overall payload of the deferrable send. It concludes with ses.eom

set on the last packet of the original message. The second (and subsequent) message(s) also carries an

ses.som bit on the first packet. Each message generates up to N packets, where N is the number of

packets needed to transfer the entire message. Each message that is part of the deferrable send is

treated as an independent message for the purposes of the above rules.

 155

Copyright © 2025 Ultra Ethernet ConsortiumTM. All rights reserved.

3.4.1.7.4 Completion Ordering

SES does not directly provide completion ordering. Completion ordering is a function of the FEP – and

the hardware/software interface of the FEP. When using RUD or RUDI, two operations are not

guaranteed to have any particular relationship in the completion of the network portion of the

transaction – either at the initiator or target. Additional discussion of ordering (3.4.8.1) and completion

ordering (3.4.8.1.2) is provided in the memory model description.

3.4.1.7.5 Ordering of Response Data

For the ROD protocol, a read response (UET_RESPONSE_W_DATA) MUST be generated in the order that

the read requests were received for a given PDC.

3.4.1.8 Protocol Isolation Mechanisms

SES provides mechanisms for isolation between jobs on a system. This consists of controlling access to

buffers using device-enforced identities. A FEP is validated as being within a given security domain using

either cryptographic methods (see section 3.7.4) or other site-specific methods beyond the scope of

UET. In a client/server environment, however, this does not indicate which buffers a message may

access. Buffer access authorization depends on the identify information in a UET header (3.4.1.4) being

properly enforced (3.4.7.1).

3.4.1.9 Header Data

Libfabric defines completion data that can have a size up to 64 bits. UET supports this with a field called

ses.header_data that is 64 bits in size. In libfabric, completion data is delivered as part of the

completion queue entry and does not consume an entry from the receive queue. Header data is

provided only in the start of message packet, and only if the ses.hd bit indicates that it was provided by

software.

3.4.1.10 Additional Control Fields

Some additional bits of control are included in the UET header (Table 3-8). There are two bits of version

information (ses.ver). Multi-packet messages include a ses.message_length field that describes the

entire length of the payload to be delivered. One bit (ses.dc) is included to request that the semantic

response indicates that the packet has been made globally observable (3.4.8.3). One bit is used to

indicate that the message encountered an error at the source (ses.ie) and should terminate the message

in error. As an example, a PCIe transaction may fail in the middle of a packet in the middle of a message.

Similarly, an address translation may fail for a packet in the middle of a message. One bit indicates

relative or absolute addressing (ses.rel).

3.4.1.11 Packet Sizes Based on Payload MTU

Packets for SES utilize a programmable Payload MTU. The Payload MTU is the amount of payload (in

bytes) that can be carried in a maximum -sized packet. The Payload MTU is configured (out-of-band) to a

value of 1024, 2048, 4096, or 8192. FEP implementations MUST support a Payload MTU of 4096 bytes.

FEP implementations SHOULD support Payload MTU of 1024 bytes, 2048 bytes, and 8192 bytes. The

default for Payload MTU is 4096 bytes, and this size is used for various architectural decisions.

 156

Copyright © 2025 Ultra Ethernet ConsortiumTM. All rights reserved.

The Payload MTU MUST be set such that the resulting packet fits within the limits defined by the

Ethernet MTU along the entire path. The “don’t fragment” bit MUST be set in the IP header. The source

of a message MUST put exactly PAYLOAD_MTU bytes into every packet of the message – except the final

packet. A generated packet MUST NOT be further fragmented by the FEP.

3.4.1.12 Zero-Byte Operations

Zero-byte operations are supported for read, write, send, tagged send, and the atomic put and atomic

get operations. Zero-byte reads and atomic gets issue a memory read at the target using the specified

offset. Zero-byte writes, sends, tagged sends, and atomic puts do not write memory but can generate a

completion at the target. Zero-byte writes, sends, tagged sends, and atomic puts also perform whatever

operation is necessary to honor the delivery complete setting for the message. Zero-byte operations

undergo the same checks (e.g., whether the buffer being written is writeable, whether the address is

valid, etc.) and generate the same return codes as all other operations. Similarly, a zero-byte send or

tagged send consumes the corresponding buffer at the target – using the same target-side controls as a

one-byte send or tagged send would. A zero-byte send or tagged send resolving to a multi-receive buffer

consumes no space in the buffer. Zero-byte operations use the same header formats – both PDS and

semantic headers – as a corresponding one-byte operation would use. The only difference is that the

length field is set to 0. Because the payload length of a zero-byte response is 0, it inherently passes the

PDS test of “payload_len <= PDS_MAX_ACK_DATA”.

3.4.1.13 Interaction of Semantics with Reliability Modes

The packet delivery sublayer (PDS) has four delivery modes. Throughout the semantic specification,

differences in behavior between reliable ordered delivery (ROD) and reliable unordered delivery (RUD)

are specifically enumerated. Unless otherwise stated, all functionality is available for both ROD and RUD

delivery modes. The PDS also supports an unreliable unordered datagram (UUD) mode. The only

semantic provided with UUD is the opcode UET_DATAGRAM_SEND. UUD is provided to enable

applications to use a datagram transport (e.g., like UDP) without having to use a different

communication library. UET_DATAGRAM_SEND utilizes the same addressing mechanisms as ROD and

RUD. As an untagged send, it does not utilize matching. UET_DATAGRAM_SEND supports only single-

packet messages.

The fourth delivery mode – reliable unordered delivery for idempotent messages (RUDI) – has specific

constraints in the way it is utilized. With RUDI, PDS provides reliable delivery but does not provide

deduplication. This means that certain scenarios (e.g., lost acknowledgements) can lead to the duplicate

delivery of packets at the target. RUDI is designed for semantics that are idempotent. For example,

fi_read() and fi_write() are idempotent when they do not deliver a target completion. Semantics that

have side effects are not “safe” when using RUDI. This includes send and tagged send, since both

consume a buffer at the target. Similarly, fi_atomic() would be exposed to delivering the operation to

the target twice.

3.4.1.14 Message Identifiers and Message Construction

Each multi-packet message contains a message identifier (ses.message_id). Single-packet read request

(UET_READ) messages using the standard header (Figure 3-9) MUST include a message ID for the

 157

Copyright © 2025 Ultra Ethernet ConsortiumTM. All rights reserved.

ses.message_id field. Other single-packet requests that have the ses.message_id field MUST include a

message ID or set the value to 0 if no message ID is provided. The message ID MUST be unique across all

messages in flight from one initiator FEP to a given target FEP using a given target PDC. The message ID

MAY be globally unique for a given initiator FEP.

If a message was present in the request, the read responses (UET_RESPONSE_W_DATA) carry the

original message ID from the read request in the ses.read_request_message_id field. Otherwise, the

ses.read_request_message_id field is set to 0. These responses also carry their own response message

ID (ses.response_message_id). The response message ID does not have the same uniqueness

requirements as the message ID in the request.

3.4.1.15 Original Request PSN

Certain optimized header formats for RMA operations do not carry a message ID. These formats use the

PSN from the original PDS Request packet to identify the original request state at the initiator. This

allows an initiator to associate return data with the original SES read request when the original message

ID is not present.

Implementation Note:
The standard SES header carries a ses.message_id that is carried back to the initiator in the SES
“response with data header” (i.e., with read response data). Some optimized SES headers do not carry
a message ID. When the message ID is not present, the original PSN is used to identify the transaction
at the initiator. PDS passes each PSN to SES. The original request PSN is needed only for the optimized
response with data header (Figure 3-20). In these cases, SES passes it back to the initiator in a special
header field.

3.4.2 Semantic Header Formats

Several header formats are needed to implement UET. Those formats are shown here in both illustrated

and tabular forms. Some header fields (e.g., ses.opcode) use enumerated types defined in section 3.4.6.

All reserved fields MUST be set to 0 and ignored upon receipt. Header formats are selected based on the

guidelines in 3.4.2.6.

3.4.2.1 Standard Header Format

The standard header format shown in Table 3-8 is used for most operation types. Table 3-8 illustrates

the fields present when ses.som is set to 1, and Table 3-9 presents the slight variation on the header for

when ses.som is set to 0. Implementations MUST support using the standard header format for any

request operation. It is used for any multi-packet operation and for any operation that requires

Informative Text:

The initiator can track all the information needed to implement read transactions without requiring

uniqueness in ses.response_message_id. This frees the target implementation to leverage the

response message ID in whatever way it desires. This includes the full range of implementation

options, from always populating the ses.response_message_id with 0 to inserting a random value to

having a unique response message ID that is used for all responses to a given read.

 158

Copyright © 2025 Ultra Ethernet ConsortiumTM. All rights reserved.

matching criteria – including those that need a full memory key as part of implementing fi_write() or

fi_read(). Either the standard header or the small message/small RMA header in Figure 3-14 MUST be

used when completion data is needed. The field names and sizes are summarized in Table 3-8 below.

Figure 3-9 - Standard Header Format when ses.som is 1

Table 3-8 - Standard Header Format Fields when ses.som is 1

Field Size Description Section Ref

rsvd 2 Reserved. MUST be 0.

opcode 6 The operation being performed for this packet. (Table 3-17)

3.4.6.2

version (ver) 2 Semantic protocol version – set to 0 in the initial version.

Delivery Complete
(dc)

1 Defer the semantic response for this until the packet has
been made globally observable (3.4.8.3). This matches the
FI_DELIVERY_COMPLETE option in libfabric.

3.4.8.3

Initiator Error (ie) 1 Indicates this packet encountered an error at the initiator.
Initiator Error prevents the packet from being written at the
target. Initiator Error should be set only for packets that
MUST cause the message to complete in error. This is
primarily designed for messages consisting of more than
one packet.

3.4.5.4.1

Relative (rel) 1 This packet uses relative addressing. 3.4.1.3

header data present
(hd)

1 Header data was provided for this message. 3.4.1.9

End of Msg (eom) 1 Indicates the last packet of the message. ses.eom MUST be
set on the last packet of a message.

3.4.1.7.3

Start of Msg(som) 1 Indicates this is the first packet of a message. Impacts the
interpretation of header data.

3.4.1.7.3

 159

Copyright © 2025 Ultra Ethernet ConsortiumTM. All rights reserved.

Field Size Description Section Ref

message_id 16 Message identifier – assists in associating different packets
to one message at the target. Also assists in reverse-
mapping responses to message.
The value of 0 is reserved to indicate that the message ID is
not valid.

3.4.1.14

ri_generation 8 Resource Index Generation 0

JobID 24 JobID used for relative addressing and for buffer access
authorization.
Note: Matches size of VXLAN VNI.

3.4.1.3.1

rsvd 4 MUST be 0.

PIDonFEP 12 The PIDonFEP value to be used at the target. 3.4.1.3.2

rsvd 4 Reserved. MUST be 0.

resource_index 12 Resource Index field.

3.4.1.3.3

buffer_offset 64 Offset within the target buffer used for 0 based addressing.
The first memory access of the first packet in a message
begins at Buffer Offset bytes from the base of the memory
region selected. In multi-packet messages, Buffer Offset is
the same across packets, so that the Buffer Offset and
Request Length can be used together to determine if the
message fits in the target buffer. The access address of a
given packet is Buffer Base Address (from the memory
region) + Buffer Offset + the offset within the message
(taken from the header data field for packets on which
ses.som=0).
Special use case for deferrable send requests: carries the
restart token. All active restart tokens must be unique at
the initiating FEP. The upper 32 bits of the restart token are
allocated by the initiator, and the lower 32 bits are set to 0.
Usage of FI_MR_VIRT_ADDR: Some implementations may
support the setting of FI_MR_VIRT_ADDR in the libfabric
API. In these cases, the buffer offset field of the packet
carries the absolute virtual address where the payload is
delivered.

initiator 32 Initiator ID used as part of matching criteria. 3.4.1.3.4

match_bits 64 Used for tagged matching or as a memory key, depending
on the opcode being used. In ready-to-restart requests
(UET_DEFERRABLE_RTR), this field carries the upper 32 bits
of the restart token that was part of the deferrable send
request as well as 32 bits allocated by the target in the
lower 32 bits.

3.4.1.3.5

header_data 64 This is the completion data to deliver at the target when
this operation completes when ses.som=1. If ses.hd=0, this
field is ignored. See Table 3-9 for usage when ses.som=0.

3.4.1.11

request_length 32 Length of the payload to be transferred (in bytes). 0 is a
legal transfer size (0 byte write/read). Maximum size is
2^32-1. The request length field MUST be populated both
when ses.som=1 and ses.som=0.

 160

Copyright © 2025 Ultra Ethernet ConsortiumTM. All rights reserved.

Figure 3-10 - Standard Header Format when ses.som is 0

Table 3-9 - Standard Header Format Fields when ses.som is 0

Field Size Description Section Ref

rsvd 1 Table 3-8

opcode 6 Table 3-8 3.4.6.2

version (ver) 2 Table 3-8

Delivery Complete
(dc)

1 Table 3-8 3.4.8.3

Initiator Error (ie) 1 Table 3-8 3.4.5.4.1

Relative (rel) 1 Table 3-8 3.4.1.3

header data present
(hd)

1 Table 3-8 3.4.1.9

End of Msg (eom) 1 Table 3-8

Start of Msg(som) 1 Table 3-8

message_id 16 Table 3-8 3.4.1.14

ri_generation 8 Table 3-8 3.4.3.6.3

JobID 24 Table 3-8 3.4.1.3.1

rsvd 4 Table 3-8

PIDonFEP 12 Table 3-8 3.4.1.3.2

rsvd 4 Table 3-8

resource_index 12 Table 3-8 3.4.1.3.3

buffer_offset 64 Table 3-8

initiator 32 Table 3-8 3.4.1.3.4

match_bits 64 Table 3-8 3.4.1.3.5

rsvd 18 Reserved

 161

Copyright © 2025 Ultra Ethernet ConsortiumTM. All rights reserved.

Field Size Description Section Ref

payload_length 14 Length (in bytes) of the payload portion of this packet.

message_offset 32 32-bit offset (in bytes) from the start of the message.

request_length 32 Table 3-8. The request length field MUST be populated both
when ses.som=1 and ses.som=0.

A special case form of the standard header format is used for deferrable sends (Figure 3-11). Deferrable

sends are designed for *CCL-style messaging where unexpected messages may occur, and the sequence

of messages in a deferrable send is illustrated in 3.4.4.4. Deferrable sends always deliver data starting at

the first byte of the receive buffer; thus, deferrable sends do not require a buffer offset field. This allows

the offset in the standard header to be replaced by a restart token, which is broken into an initiator

restart token and a target restart token. The upper half of the restart token is entirely defined by the

initiating FEP. This allows implementations to choose how the bits are populated and how they are

encoded. The lower half is set to zero in the initial request and contains the target restart token when

the operation is restarted using a ready-to-restart message.

The ready-to-restart (RTR) message (Figure 3-12) in the deferrable send sequence uses a similar special

case. In the ready-to-restart message, the restart token is placed in the match bits. This consists of an

echo of the initiator restart token as well as a restart token allocated by the target. The target is not

required to allocate a restart token. If the target does not allocate a restart token, it MUST populate the

target restart token field with 0. If the target allocates a restart token, it MUST accept the restarted

deferrable send. If the target does not allocate a restart token, it MAY defer the deferrable send again.

An offset from the start of the buffer originally being sent is placed in the buffer offset field. This buffer

offset is limited to the range 0 to 2^32-2 and is used to select the portion of the transfer that the target

Figure 3-11 - Standard Header Format as Used for Deferrable Sends

 162

Copyright © 2025 Ultra Ethernet ConsortiumTM. All rights reserved.

did not capture when it was first transmitted. When the deferrable send restarts, it creates a new

message using the format in Figure 3-11 and carries the full restart token (initiator restart token and

target restart token) that was provided in the RTR message. As with all other send operations, the offset

relative to the start of this new message is carried in the header data field. When the deferrable send

restarts, it MUST set the ses.som bit. A deferrable send can only be restarted if a corresponding buffer is

not found at the target. A deferrable send MUST be restarted using an RTR message containing a target

restart token value other than 0 exactly once and MUST NOT be deferred after being restarted by an

RTR message containing a target restart token value other than 0. Any deferrable send that contains a

target restart token value of 0 MAY be deferred.

Each time the deferrable send is restarted, it MUST carry the addressing fields and header data from the

original request. This allows for implementations where the deferrable send is restarted multiple times

without reserving a buffer at the target. The request length in the restarted deferrable send MUST be

the request length indicated by the target in the RTR message.

Informative Text:

Deferrable sends can utilize the various resource exhaustion sequences described in 3.4.3.5.1. These

sequences do not count as deferrals of the deferrable send.

Implementation Note:

It should be noted that the restarted deferrable send cannot carry a starting offset for delivering the

payload; thus, if the target has buffered a portion of the payload and the restart of the deferrable

send begins at a non-zero offset into the buffer, the target is required to remember this.

Figure 3-12 - Standard Header Format as Used for Ready-to-Restart Requests

 163

Copyright © 2025 Ultra Ethernet ConsortiumTM. All rights reserved.

3.4.2.2 Optimized Header Formats

Two use cases of small transfers motivate creating a set of optimized semantic headers. The first of

these is the case of non-matching transfers that do not require header data. These single packet

messages can eliminate the ses.match_bits and ses.initiator fields (i.e., all matching criteria) as well as

the ses.header_data and ses.message_id. They carry an abbreviated (14-bit) ses.request_length field

that enables single packet payloads up to 8192 bytes. It should be noted that the packet sequence

number (PSN) from the packet delivery context (PDC) is needed within the semantic implementation to

resolve responses back to the original request since a message ID is not carried in the optimized header

format. Single-packet messages using the format in Figure 3-13 set both ses.som and ses.eom.

Informative Text:

The 14-bit abbreviated ses.request_length field is focused on the purpose of the optimized header

formats: efficiency at small transfer sizes. The overhead of a standard header (relative to an

optimized header) for messages larger than 8 KB is nominal.

Table 3-10 - Optimized Header Format Fields

Field Size Description Section Ref

rsvd 1 Table 3-8

opcode 6 Table 3-8 3.4.6.2

version (ver) 2 Table 3-8

delivery complete
(dc)

1 Table 3-8 3.4.8.3

initiator error (ie) 1 Table 3-8 3.4.5.4.1

relative (rel) 1 Table 3-8 3.4.1.3

rsvd 1

end of msg (eom) 1 Table 3-8

start of msg (som) 1 Table 3-8

rsvd 2

request_length 14 Table 3-8

ri_generation 8 Table 3-8 3.4.3.6.3

JobID 24 Table 3-8 3.4.1.3.1

rsvd 4 Table 3-8

Figure 3-13 - Optimized, Non-Matching Format

 164

Copyright © 2025 Ultra Ethernet ConsortiumTM. All rights reserved.

Field Size Description Section Ref

PIDonFEP 12 Table 3-8 3.4.1.3.2

rsvd 4 Table 3-8

resource_index 12 Table 3-8 3.4.1.3.3

buffer_offset 64 Table 3-8

A second use case for an optimized transfer is a single-packet message with matching criteria. Most

implementations of this scenario still utilize header data but do not need an offset. A third use case for

an optimized transfer is a single-packet RMA operation with immediate data or extended (memory key)

addressing. Both use cases carry an abbreviated (14-bit) request length and share the format shown in

Figure 3-14. In this format, ses.som and ses.eom must be set.

3.4.2.3 Rendezvous Extension Header Format

The wire protocol includes the option for rendezvous transactions. Rendezvous transactions leverage an

extension header shown in Figure 3-15. This extension header includes a 32-bit eager length. The eager

length indicates how much message payload is being pushed with the request. The remaining fields

correspond exactly to the addressing information needed to issue a read operation. Details of how these

fields are used to generate a read are discussed in section 3.4.3.4.

The rendezvous extension header is used immediately following Figure 3-9. It is used when a rendezvous

send or Tsend opcode is used. Rendezvous does not require any additional headers or operation types.

A rendezvous extension header should be placed on every packet using a rendezvous opcode

(UET_RENDEZVOUS_SEND, UET_RENDEZVOUS_TSEND).

Figure 3-14 - Small Message/Small RMA Format

 165

Copyright © 2025 Ultra Ethernet ConsortiumTM. All rights reserved.

Figure 3-15 - Rendezvous Extension Header Format

3.4.2.4 Atomic Operation Extension Header Format

Atomic operations include an atomic header to describe the atomic operation. The memory model for

atomic operations is discussed in section 3.4.8. Atomic headers – shown in Figure 3-16 – are carried with

every packet of an atomic operation. Atomic headers are used with any of the optimized header formats

or the standard header formats. Atomic headers MUST NOT be combined with the rendezvous header

format. For non-fetching atomic operations, the number of elements in an atomic operation is

determined by the request length of a message (equivalently, the payload length of a packet in the

optimized header formats) divided by the size of the atomic datatype. The payload part of messages

containing atomic operations should be an integral multiple of the atomic datatype size. In messages

where this is not true, an implementation of the target FEP MUST truncate the operation to 0 bytes (i.e.,

a message with an incorrect length is not performed for any of the bytes in the message).

The atomic operation extension header introduces three new types: an atomic opcode, an atomic

datatype, and semantic control. Semantic control (Table 3-23) provides additional information for

handling of atomic operations. Payload for all atomic operations follow the atomic header.

Figure 3-16 - Atomic Operation Extension Header Format

Fetching atomic operations are more limited than general atomic operations. Because fetching atomic

operations impose the need to buffer data at the target (i.e., the original data), fetching atomic

operations MUST NOT operate on more than one element. That element is of the size of the atomic

datatype and follows the atomic header in the packet.

A special type of fetching atomic operation is a dual operand fetching atomic. This exists as a compare-

and-swap or swap-under-mask operation. Dual operand fetching atomics use the packet format shown

in Figure 3-17, with the compare or mask value first and the swap value after. The largest supported

 166

Copyright © 2025 Ultra Ethernet ConsortiumTM. All rights reserved.

compare and swap (or masked swap) is 16 bytes. The payload length for a compare and swap operation

is exactly 32 bytes, and the atomic datatype defines the total size of the operation. Note that, in the

optimized header formats, this means that the request length is set to 32 bytes and the actual length of

the operation is inferred from the datatype. The compare/mask values and swap values start in the low

order bytes of the respective fields.

Figure 3-17 - Compare and Swap Operation Atomic Header and Payload Format

3.4.2.5 Semantic Response Header Formats

Standard semantic responses are carried in PDS acknowledgements and use the format shown in Figure

3-18. Semantic response headers are used for semantic acknowledgements (e.g., a semantic response to

a Send). The response header includes a field to indicate the modified length. The modified length in a

semantic response indicates the amount of payload that will be delivered as part of processing the

message. Some use cases require message truncation at the target (e.g., the MPI unexpected message

sequence). In other cases, the modified length is used as part of the rendezvous sequence as described

in section 3.4.3.4.

Figure 3-18 - Semantic Response Header Format

 167

Copyright © 2025 Ultra Ethernet ConsortiumTM. All rights reserved.

Table 3-11 - Response Header Fields

Field Size Description Section
Ref

list 2 Indicates if the payload was delivered to the
expected or unexpected list.

3.4.6.3

opcode 6 Indicates type of response (e.g., default
response, response with payload, etc.). Table
3-18.

3.4.6.2

version (ver) 2 Semantic protocol version – set to 0 in the
initial version.

return_code 6 Indicates success conditions and some types of
error conditions detected at the semantic
sublayer.

3.4.6.3

message_id 16 Message ID of the original request 3.4.1.14

ri_generation 8 Contains the new index generation on a
generation mismatch response.

JobID 24 JobID of the original request 3.4.1.3.1
3.4.1.4.1

modified_length 32 Indicates the number of bytes of the target
buffer that will be modified by this transaction.
For example, some message may be truncated
because no buffer is available.

Two variations on the semantic response with data are used. The first (Figure 3-19) mimics the basic

semantic response and adds a payload length – to indicate the number of bytes in the packet – and a

message offset – to indicate where within the message this packet falls. The message ID is used to

identify the original read request. At the semantic level, all operations – including read operations – are

packetized based on the Payload MTU. A multi-packet fi_read(), for example, will use the same message

ID in each packet and use that to issue a single completion at the initiator. This format MUST be used for

responses with data to requests that include a request length larger than the Payload MTU. This format

MUST NOT be used to respond to optimized request headers (Figure 3-13), because various fields are

not available in that request to generate this response.

Figure 3-19 - Semantic Response with Data Header Format

 168

Copyright © 2025 Ultra Ethernet ConsortiumTM. All rights reserved.

Table 3-12 - Response with Data Header Fields

Field Size Description Section Ref

list 2 Indicates if the payload was delivered to the expected or
unexpected list.

3.4.6.3

opcode 6 Indicates type of response (e.g., semantic ACK, response
with payload, etc.).

3.4.6.2

version (ver) 2 Semantic protocol version – set to 0 in the initial version.

return_code 6 Indicates success conditions and some types of error
conditions detected at the semantic sublayer.

3.4.6.3

response_message_id 16 Message ID of the response. 3.4.1.14

rsvd 8 Reserved

JobID 24 JobID of the original request. 3.4.1.3.1
3.4.1.4.1

read_request_message_id 16 Message ID used in the original read request (or of the
original fetching atomic operation request).

3.4.1.14

rsvd 2 Reserved

payload_length 14 Length of the payload in this specific packet for a
response with data.
Note: These bits are reserved in a semantic response
without payload.

modified_length 32 Indicates the total number of bytes of the initiator buffer
that will be modified by this transaction. For example, a
message may be truncated because no buffer is available
or the buffer it was targeting is too small.

message_offset 32 Indicates the relative position in the message that this
payload corresponds to.

The second response with data header format (Figure 3-20) is used for responses with data where the

original operation consisted of an optimized request header (Figure 3-13) with a request length that

described a total payload that could be carried in a single Payload MTU. Here, the payload length is also

the modified length and a message ID is not needed, because PDS can associate the response with the

original request using the packet sequence number (PSN) echoed in this packet format. This MAY be

used for small reads and for fetching atomic operations. The payload length in this format is placed

where the message ID is carried in the full format, and the modified length and message offset are

omitted.

Figure 3-20 - Optimized Response with Data Header Format

 169

Copyright © 2025 Ultra Ethernet ConsortiumTM. All rights reserved.

Table 3-13 - Optimized Response with Data Header Fields

Field Size Description Section Ref

list 2 Indicates if the payload was delivered to the expected or
unexpected list.

3.4.6.3

opcode 6 Indicates type of response (e.g., semantic ACK, response with
payload, etc.).

3.4.6.2

version (ver) 2 Semantic protocol version – set to 0 in the initial version.

return_code 6 Indicates success conditions and some types of error
conditions detected at the semantic sublayer.

3.4.6.3

rsvd 2 Reserved

payload_length 14 Length of the payload for a response with data. This field
serves at the modified length as well. For two-operand
atomics, this value contains the length of the datatype in the
typical case.
Note: These bits are reserved in a semantic response without
payload.

rsvd 8 Reserved

JobID 24 JobID of the original request. 3.4.1.3.1
3.4.1.4.1

original_request_psn 32 The PSN of the original request (either fetching atomic or
read) that yielded this return data.

3.4.1.15

Informative Text:

The original request PSN is provided for the case where the returned data is larger than the

Max_ACK_Data_Size in PDS. In these cases, the data is returned on the response direction channel

using a separate sequence number space. As such, the original request PSN is needed to reconcile the

optimized response header with the original request.

3.4.2.6 Header Parsing Guide

Table 3-14 provides a summary of how to parse the semantic header. The leftmost column contains the

pds.next_hdr enumeration. For each header enumeration, the middle column enumerates the opcodes

or opcode types that are used with the next header definition. The rightmost column cross-references to

the relevant header formats that are used for that opcode or opcode type. In many cases, the header

consists of a base header and extension header. As shown, a parser can look at the pds.next_hdr field to

determine the base header structure and the ses.opcode field to determine whether an extension

header is present and its type. The base header used for deferrable send and ready-to-restart

operations has the same size and overall structure as the standard request header.

Table 3-14 - Parsing Guide

PDS next_hdr opcode type Format

UET_HDR_REQUEST_SMALL Non-Atomic Opcodes Figure 3-13

Atomic Opcodes Figure 3-13 +
Figure 3-16

 170

Copyright © 2025 Ultra Ethernet ConsortiumTM. All rights reserved.

PDS next_hdr opcode type Format

Two Op Atomics Figure 3-13 +
Figure 3-17

UET_HDR_REQUEST_MEDIUM Non-Atomic Opcodes Figure 3-14

Atomic Opcodes Figure 3-14 +
Figure 3-16

Two Op Atomics Figure 3-14 +
Figure 3-17

UET_HDR_REQUEST_STD Non-Atomic Opcodes Figure 3-9

Atomic Opcodes Figure 3-9 +
Figure 3-16

Two Op Atomics Figure 3-9 +
Figure 3-17

Deferrable Send Figure 3-11

Ready to Restart Figure 3-12

Rendezvous Opcodes

Figure 3-9 +
Figure 3-15

UET_HDR_RESPONSE UET_RESPONSE
UET_DEFAULT_RESPONSE

UET_NO_RESPONSE

Figure 3-18

UET_HDR_RESPONSE_DATA UET_RESPONSE_W_DATA Figure 3-19

UET_HDR_RESPONSE_DATA_SMALL UET_RESPONSE_W_DATA Figure 3-20

Table 3-15 enumerates the legal combination of pds.next_hdr fields and ses.opcode fields. It also

highlights some limitations of the formats that may not be obvious.

Table 3-15 - Header Formats and Legal Opcodes

pds.next_hdr ses.opcode Allowed Limitations

UET_HDR_REQUEST_SMALL UET_NO_OP Payload size must be 0. Single-packet
messages only.

UET_WRITE Payload size must be less than or equal
to one Payload MTU.
Must use
UET_HDR_RESPONSE_DATA_SMALL for
response with data.

UET_READ

UET_ATOMIC

UET_FETCHING_ATOMIC

Vendor Defined

UET_HDR_REQUEST_MEDIUM UET_NO_OP Payload size must be 0. Single-packet
messages only.

UET_WRITE Payload size must be less than or equal
to one Payload MTU. UET_READ

UET_ATOMIC

UET_FETCHING_ATOMIC

UET_SEND Payload size must be less than or equal
to one Payload MTU. UET_TAGGED_SEND

UET_DATAGRAM_SEND

UET_TSEND_ATOMIC Cannot use offset into target buffer.

UET_TSEND_FETCH_ATOMIC

Vendor Defined

 171

Copyright © 2025 Ultra Ethernet ConsortiumTM. All rights reserved.

pds.next_hdr ses.opcode Allowed Limitations

UET_HDR_REQUEST_STD UET_NO_OP Payload size must be 0. Single-packet
messages only.

All Other Request Opcodes

UET_HDR_RESPONSE UET_RESPONSE

UET_DEFAULT_RESPONSE

UET_NO_RESPONSE

Vendor Defined

UET_HDR_RESPONSE_DATA UET_RESPONSE_W_DATA

Vendor Defined

UET_HDR_RESPONSE_DATA_SMALL UET_RESPONSE_W_DATA Cannot be used for responses to
messages larger than one Payload MTU

Vendor Defined

3.4.3 Semantic Processing

This section contains the normative requirements for how semantic headers are processed. Semantic

processing is expected to be implemented by a combination of hardware and software. The division

between hardware and software is an implementation decision.

The semantic processing definition contained here does not override the profile definition or any

discussion of which features are optional elsewhere in this document. Instead, the semantic processing

defines how operations are performed when they are supported.

3.4.3.1 Buffer Selection

For packets using relative addressing, the tuple {JobID, PIDonFEP, Resource Index} MUST identify a

unique set of one or more buffers. Buffers associated with the Resource Index MUST be configurable to

support either use-once or persistent (i.e., not use-once) semantics. This configuration is associated with

the individual buffers. Packets using absolute addressing have a similar requirement: the pair PIDonFEP

and Resource Index MUST identify a unique set of one or more buffers.

3.4.3.1.1 Send/Receive Operation

The requirements in this section apply only to fi_send()/fi_recv() in cases where tag matching is not

used. Where the behavior varies based on ordering, that is noted in the requirement.

Messages arriving on a RUD PDC MAY consume receive buffers in any order. For implementations that

support ordering, messages arriving on a ROD PDC MUST consume the first receive buffer associated

with the receive queue of the Resource Index that is addressed. All packets associated with one message

MUST be delivered to the same receive buffer. This is accomplished using the message ID in the packet.

If no receive buffer is available on a given index when a message arrives, the implementation MUST use

an unexpected message handling procedure described in section 3.4.3.5.1.

3.4.3.1.2 RMA Operation

Some profiles support the optimized header format for RMA operations (Figure 3-13). In this format, an

RMA opcode used with a {JobID, PIDonFEP, Resource Index} tuple MUST map to exactly one buffer.

 172

Copyright © 2025 Ultra Ethernet ConsortiumTM. All rights reserved.

Implementations indicate through the provider when this format can be used following the guidelines

developed for the libfabric mapping (see section 2.2.5.3.4.1).

An implementation MUST support the standard header format for RMA operations. In this format, an

RMA opcode used with a {JobID, PIDonFEP, Resource Index, Memory Key} tuple MUST map to exactly

one buffer.

The libfabric mapping specification defines a memory key format that enables interoperability. Much of

the detail of how the memory key resolved to an actual memory region is implementation-specific. As

an example, the memory key MAY use some of the bits as the memory region lookup and populate the

remaining bits with a random number that is checked before the memory region is accessed.

Informative Text:

The standard way in which memory keys are utilized is for an application to create a memory key and

then share that memory key with the peer that is going to use it. In this way, a memory key is an

opaque token for selecting a memory region. The libfabric mapping spec includes a minimal set of

rules for the construction of the overall memory key that facilitates interoperability while leaving

extensive flexibility for implementations in terms of how a memory key is constructed and used.

3.4.3.1.3 Matching Operation

The requirements in this section apply only to implementations that support matching. Where the

behavior varies based on ordering, that is noted in the requirement. Where the behavior varies based

on wildcarding, that is noted in the requirements.

Messages arriving on a RUD PDC MAY attempt matching in any order, or concurrently across all posted

buffers. This is independent of whether the target uses exact matching or wildcard matching.

If an implementation supports wildcard matching and a message arriving on a RUD PDC matches more

than one buffer that is posted, the implementation SHOULD choose the oldest buffer posted; however,

the implementation MAY choose any matching buffer.

For implementations that only support exact matching, arriving messages MAY attempt matching in any

order – regardless of whether a ROD or RUD PDC was used. The implementation MUST select a

matching buffer if a matching buffer is available. If more than one match is found, the implementation

MAY select any matching buffer. This specification places no bias on which buffer should be selected if

multiple buffers match. If no match is found, the unexpected message procedures are used (3.4.3.5.1).

Informative Text:

The exact matching semantic was created as a way to enable simplified hardware implementations

(e.g., a CAM) to implement matching. While the requirement was relaxed to allow duplicate matches,

the desire was to preserve hardware simplicity. Achieving historical definitions of match ordering with

multiple matches in a CAM is challenging; thus, no preference in match order is defined for cases

where exact matching would return more than one result. Choosing the oldest buffer is marked as a

 173

Copyright © 2025 Ultra Ethernet ConsortiumTM. All rights reserved.

SHOULD, because it typically simplifies the management of software resources if the buffers are

consumed in order.

For implementations that support message ordering and wildcard matching, messages arriving on a ROD

PDC:

1. MUST attempt5 to match buffers in the order the buffers were provided by the application

through the libfabric API for a given {JobID, Target PIDonFEP, Resource Index} tuple.

2. MUST process headers from a given {JobID, Initiator} tuple in the order that they were sent from

the initiating PIDonFEP for a given {JobID, Target PIDonFEP, Resource Index} tuple on a given

target FEP.

Implementations MAY perform optimizations that preserve the appearance of this ordering.

Implementations MAY implement stronger ordering than required at a target. For example, all messages

MAY be ordered when attempting matching at a given FEP.

3.4.3.2 Buffer Authorization

Buffer authorization is a function of the target FEP implementation, including the libfabric provider

implementation associated with the target FEP. Implementations MUST validate the JobID provided in

the packet to determine whether it is allowed to access the buffer found through buffer selection

(3.4.3.1). Two options for buffer authorization based on JobID MUST be supported. First,

implementations MUST allow an option for a buffer to be exposed for exactly one JobID where the JobID

is authorized as specified in 3.4.1.4.1. Second, implementations MUST allow an option for a buffer to be

exposed for “any” JobID such that the JobID check for that buffer is effectively ignored.

A buffer that is addressed using matching criteria effectively limits the access of that buffer using an

initiator check.

3.4.3.3 Response Generation

Each message MUST receive at least one semantic response. For many messages, this may take the form

of a UET_DEFAULT_RESPONSE using the format in Figure 3-18. The semantic response for the last packet

received MUST NOT be returned until all prior packets have completed semantic processing.

Implementation Note:

The requirement to wait until all packets have completed semantic processing before returning the

semantic response for the last packet received is known to require some implementation effort;

however, the congestion management sublayer (CMS) requires early acknowledgements on most

packets. By guaranteeing that any semantic information will be returned no later than the

acknowledgement for the last packet to arrive for the message, it is possible to allow early

acknowledgements of other packets in the message.

5 “Attempt,” because matching can fail to find a corresponding buffer.

 174

Copyright © 2025 Ultra Ethernet ConsortiumTM. All rights reserved.

Informative Text:

There was a trade-off between number of packets on the wire and the need to wait until all semantic

processing had completed before returning the semantic response for the last packet. The congestion

management sublayer needs acknowledgements to be generated quickly in many cases. Other

schemes were considered to meet this goal (e.g., a fast ACK scheme at the packet delivery sublayer),

but those schemes led to two acknowledgements per packet in typical scenarios.

A UET_DEFAULT_RESPONSE contains a ses.JobID, a ses.message_id, a ses.modified_length field that is

equal to the request length, a ses.list field set to UET_EXPECTED, a ses.ri_generation field set to the

generation of the request, and a ses.return_code set to RC_OK. Usage of UET_DEFAULT_RESPONSE

allows PDS to coalesce acknowledgements. Semantic processing MUST complete before setting the

opcode to UET_DEFAULT_RESPONSE. A response opcode of UET_DEFAULT_RESPONSE does not need to

be marked for guaranteed delivery. A message that has received responses for all packets at the initiator

is presumed to be a UET_DEFAULT_RESPONSE unless another response encoding has been sent and

marked for guaranteed delivery at the target. Any response that cannot use the

UET_DEFAULT_RESPONSE opcode (because it does not meet the requirements above) MUST be marked

for guaranteed delivery. Marking a response for guaranteed delivery prevents acknowledgement

coalescing at the packet delivery sublayer, because the packet delivery sublayer cannot communicate

the unique content in a guaranteed delivery response in a coalesced acknowledgement.

Informative Text:

One semantic response per message is a MUST because the transport does not have a way to signal

over the wire that a semantic response is not needed.

Implementation Note:

Acknowledgement coalescing at the packet delivery sublayer is specifically enabled by the

UET_DEFAULT_RESPONSE opcode and the UET_NO_RESPONSE opcode (see below).

Acknowledgement coalescing leads to three quirky characteristics that implementors should be aware

of. First, two UET_DEFAULT_RESPONSE semantic responses can be coalesced into a single

acknowledgement. There is no guarantee that the two UET_DEFAULT_RESPONSE messages will have

the same ses.JobID or ses.message_id. They are certainly not likely to have the same modified length.

Nonetheless, the two can be coalesced, which means that the initiator has no mechanism to retrieve

that required information other than through lookup of the PSN. Second, during coalescing, a

UET_NO_RESPONSE can be coalesced with a UET_DEFAULT_RESPONSE. This effectively promotes the

signal received at the initiator from UET_NO_RESPONSE to UET_DEFAULT_RESPOSE. This semantic

promotion is one of the reasons that the semantic response to a deferrable send is required to wait

for semantic processing to complete. Third, a UET_NO_RESPONSE can be promoted to

UET_DEFAULT_RESPONSE when responding to a retransmit. This is an extreme corner case.

 175

Copyright © 2025 Ultra Ethernet ConsortiumTM. All rights reserved.

An implementation MAY provide multiple semantic responses per message; however, three rules apply

in this case. First, an additional semantic response MUST either utilize the same opcode and return code

as the first semantic response or deliver an error response. Second, the first packet with a semantic

error (non RC_OK) MUST be marked for guaranteed delivery. Error responses MAY be replicated for

many packets; however, subsequent errors MUST NOT be marked for guaranteed delivery. Finally, more

than one semantic response MUST NOT be provided per packet.

Implementation Note:

A careful reader may note that the above rules allow for up to two different responses per message

to be generated and marked for guaranteed delivery in the case of a multi-packet message — a first

response that indicates RC_OK with some other condition that requires guaranteed delivery and a

second response that indicates an error that is marked for guaranteed delivery; however, no more

than one response per packet may be marked for guaranteed delivery.

Except in the case of deferrable send, an implementation MAY acknowledge a packet before semantic

processing. In this case, UET_NO_RESPONSE MUST be used as the semantic opcode for any packet

acknowledged before semantic processing. The PDC at the initiator may use this to determine that a

packet was delivered successfully, but that semantic processing had not concluded. This response uses

the same format as UET_DEFAULT_RESPONSE and contains a ses.JobID and ses.message_id. Deferrable

sends MUST include a semantic response with the response to the first packet received for that

message.

Informative Text:

The semantic response is the mechanism by which deferrable sends are deferred. If a deferrable send

is going to be deferred, then the implementation cannot delay the semantic response which would

lead to deferring the send.

If delivery complete (ses.dc) is set for the message, the response to the last packet that is received for a

message MUST NOT be generated until the completion semantics have been met – that is, until the

entire message is globally observable (3.4.8.3). The last packet received may not be the last packet of a

message (e.g., for the RUD protocol).

Responses MUST include the ses.message_id that was included in the request ses.message_id field or

ses.read_request_message_id field (for responses with data). For request formats that do not contain a

message ID, a response that has a message ID field MUST have the value 0 in the ses.message_id field or

ses.read_request_message_id field (for responses with data).

The ses.JobID in the response MUST be the ses.JobID of the request – if one is present. Certain PDS

control packets do not necessarily provide a JobID to use in the response.

 176

Copyright © 2025 Ultra Ethernet ConsortiumTM. All rights reserved.

For a response with data that contains a message offset, the ses.message_offset field MUST be 0 when

responding to the start-of-message request and MUST be the ses.message_offset carried in the header

data for other responses.

If a UET_DEFAULT_RESPONSE opcode is not appropriate, the response opcode MUST be UET_RESPONSE

when no data is returned or UET_RESPONSE_W_DATA when data is returned (Table 3-17).

UET_RESPONSE and UET_RESPONSE_W_DATA packets MUST be marked for guaranteed delivery.

The ses.return_code field MUST be RC_OK (Table 3-19) for successful operations. Errors from all

previous packets in the message MUST be aggregated into the ses.return_code field using a first error

model for error precedence (3.4.5.1). Here, “first error” is the first error for this message that SES

encountered. Due to out-of-order packet handling, the first error may occur out of packet order.

In normal message processing, the modified length is typically the requested length; however, target

implementations are allowed to truncate the message for a variety of reasons – including, but not

limited to, managing unexpected messages and server use cases that bound the size of the message that

is accepted. The ses.modified_length field MUST indicate the entire length of the accepted operation –

except in the case of deferrable send responses.

A deferrable send response indicates a ses.modified_length of 0 even if it buffers some of the operation

in an eager buffer. The ready-to-restart message indicates how much of the message to resend.

The ses.payload_length field MUST encode the length of the payload (in bytes) returned in this packet.

3.4.3.4 Rendezvous Processing

Informative Text:

The rendezvous transaction is intended to be implemented by a combination of hardware and

software that resides within the libfabric provider. To provide interoperable operation, the entire

rendezvous transaction must be compatible.

A rendezvous send is provided an eager length from software. The portion of the eager length that is

sent before receiving the semantic response SHOULD NOT exceed the current size of the PDC's

congestion management window at the time the eager portion is attempted to be sent. This is true even

if the congestion control window is increased while the eager portion of the message is in flight. A

rendezvous send operation MUST NOT send more data than the eager length before completing the

rendezvous send. Stated differently, the eager length is the full length of the message as it is transferred

on the wire for a rendezvous send or rendezvous tagged send. On receiving a semantic response, the

rendezvous send implementation SHOULD adjust the eager transfer for this specific message to be no

longer than the modified length provided in the response. If the portion of the eager length already

transferred equals or exceeds the modified length, the implementation MUST send at least one more

packet to mark this portion of the transfer with the ses.eom bit set. This additional packet MAY be

0 bytes, Payload MTU bytes, or the remaining fragment of the eager portion. Implementations MAY

 177

Copyright © 2025 Ultra Ethernet ConsortiumTM. All rights reserved.

treat packets in the process of being constructed as if they had already been sent. The last packet of the

eager portion of the message MUST have ses.eom set.

The text above covers the sequence for data delivery when the message is expected. In the unexpected

case, the above scenario would typically have a modified length smaller than the eager length (often 0).

In addition, the unexpected message solution MUST use one of the mechanisms described in section

3.4.3.5.1 to complete the data transfer. When using a RUD PDC, an implementation of rendezvous

SHOULD implement a buffered header solution (3.4.3.6.2.1) and MUST implement a back-off and retry

(0) for when the header space is exhausted. When using a ROD PDC, an implementation of rendezvous

MUST implement a buffered header solution, and MUST implement a resource exhaustion solution

(3.4.3.6.3).

The rendezvous send message contains sufficient information to retrieve the remainder of the payload

using a read operation. The contents of the rendezvous extension header are provided at the initiator by

software or hardware. The rendezvous extension header fields for ses.PIDonFEP, ses.resource_index,

and ses.match_bits MUST be used “as is” for the construction of the read operation that completes the

rendezvous transfer. The ses.read_offset field in the rendezvous extension header MUST be an offset

that can be used to retrieve the entire message. The target of the operation MAY buffer up to the eager

length of the payload if it implements a buffered unexpected message solution (3.4.3.6.2.2). The read

operation uses either the offset provided or the amount of eager payload that was buffered to

increment the offset used in the read.

3.4.3.5 Deferrable Send Processing

A deferrable send from the initiator SHOULD NOT send more data than the current congestion

management window size for the PDC that the deferrable send uses before it receives a semantic

response from the target. On receiving a semantic response with RC_OK, if the ses.modified_length is 0,

the deferrable send implementation MUST send at least one additional packet that has ses.eom set.

This additional packet MAY be 0 bytes, Payload MTU bytes, or the remaining fragment of the eager

portion. The deferrable send implementation MUST send the entire payload if the ses.return_code is

RC_OK and the modified length is equal to the request length.

In some cases, the target may not want to accept the entire deferrable send operation. For example, it

may be an unexpected message in a buffered unexpected header implementation (3.4.3.6.2.1). In such

cases, deferrable sends stop the transfer of payload. An implementation of deferrable sends SHOULD

implement a buffered header solution (3.4.3.6.2.1) and MUST implement a back-off and retry (0) for

when the header space is exhausted.

The deferrable send message contains a token to restart the message transfer that consists of a 32-bit

ses.initiator_restart_token – allocated entirely by the initiator — and a 32-bit ses.target_restart_token,

allocated entirely by the target. In the initial request, the ses.target_restart_token MUST be set to 0.

When the target is ready to restart a deferred send, it sends a ready-to-restart (RTR) message containing

the ses.initiator_restart_token to the initiator and restarts the message transfer. The target MAY

allocate a target restart token and include it in the RTR message. If the target does not allocate a target

 178

Copyright © 2025 Ultra Ethernet ConsortiumTM. All rights reserved.

restart token, the target MUST set the ses.target_restart-token field to 0. If the target allocates a target

restart token, it MUST guarantee that the restarted deferrable send will match a buffer. Otherwise, the

target MAY defer the deferrable send again. If a deferrable send received a semantic response with a

ses.modified_length of 0, the implementation MUST NOT restart the message until the corresponding

RTR is received. Such a response is a request to defer the deferrable send. The restart MUST send the

portion of the original message requested by the RTR message. An implementation that uses the back-

off and retry method MUST NOT send an RTR message for the corresponding deferrable send. In

contrast with the ses.modified_length of 0 response above, the back-off and retry scheme uses an

RC_NO_MATCH response that indicates that no header was captured and that an RTR will never be

generated.

Implementation Note:

The usage of the restart token is defined to directly signal the state of the transaction to

implementations on both ends. An initiator can know whether the deferrable send may be deferred

again, and the target can know whether resources have been allocated.

Informative Text:

Rendezvous transactions and deferrable send transactions are semantically similar operations with

different optimization points and different implementation implications. Rendezvous is optimized to

not utilize bandwidth when messages are unexpected, which is common in HPC. Deferrable send is

optimized for latency in the expected message case. An implementation of rendezvous could set

eager length to the request length, then truncate the eager portion of the message to the size of the

modified length when the semantic response returned. In this case, the difference between

rendezvous and deferable send would be whether the remainder of the data was transferred using a

read message or by restarting a prior transmit message.

3.4.3.5.1 Supporting Deferrable Send as Send

For implementations that do not support deferrable send, it is possible for a target device to implement

deferrable send operations (UET_DEFERRABLE_SEND) as send operations (UET_SEND) by using a subset

of the functionality defined above (and below). This applies to tagged sends (UET_DEFERRABLE_TSEND /

UET_TSEND) as well. A target can accept a deferrable send and treat it as a send by ignoring the initiator

and target restart tokens. When deferrable send is treated as a send, the target MUST respond with

either a ses.return_code of RC_NO_MATCH and a ses.modified_length of zero, or a ses.return_code of

RC_OK and a ses.modified_length that is equal to the requested length. This is used to cover the case of

unexpected messages and expected messages, respectively.

3.4.3.6 Unexpected Message Handling

In HPC, unexpected messages are common. Unexpected messages may also be encountered in *CCL

implementations. This section documents the unexpected message handling requirements when

implementing *CCL over unordered, tagged send/receive operations in libfabric. It also covers the more

challenging aspects related to the MPI ordered matching cases. As a preface, the traditional way to

 179

Copyright © 2025 Ultra Ethernet ConsortiumTM. All rights reserved.

handle unexpected messages is using two mechanisms: For short messages, the payload is captured as

eager payload in an unexpected message buffer at the target. For long messages, a rendezvous protocol

is used so that the payload can be retrieved when the receive is posted. Exact matching simplifies the

implementation of these traditional sequences. The objective of this section is to articulate the

requirements for implementations so that a range of implementations are possible (with different levels

of complexity), while still allowing for interoperability.

3.4.3.6.1 Unexpected Messages over RUD PDC

With unordered packet delivery in general, there is no guarantee of the ordering of resolving a message

to a buffer. This dramatically simplifies the handling of unexpected messages – even in the case of

wildcard tag matching.

Informative Text:

Properly mixing a RUD PDS and wildcard tag matching requires great care; however, it can be done. A

server may have an RPC queue, for example, where the order of arrival of RPCs does not matter. In

such a case, it may accept messages from any source or may use a subset of match bits to divide the

RPCs into types. As long as software has expressed FI_ORDER_NONE, the techniques in this section

can be used.

Three schemes are possible for unexpected message handling with unordered messaging: back-off and

retry (0), buffered headers (3.4.3.6.2.1), and buffered unexpected messages (3.4.3.6.2.2). Buffered

unexpected messages do not require any unique support at the initiator. Target FEPs MUST use at least

one of the three schemes and all three MAY be used in combination. For example, an implementation

can utilize buffered unexpected messages but degrade to buffered headers when the unexpected

message buffering is exhausted. Or an implementation can operate in either buffered headers mode or

buffered unexpected messages mode and degrade directly to back-off and retry.

Informative Text:

A combination mode of operation has been field tested on existing hardware that implements

semantics similar to Portals 4. The exact wire details are different from what is described here, but

the concepts have been deployed for unordered traffic with wildcard matching.

3.4.3.6.1.1 Back-off and Retry

One solution point for unexpected messages is for the target to respond with a semantic response that

indicates that the message could not be matched and was dropped (ses.return_code = RC_NO_MATCH).

If RC_NO_MATCH is set, the ses.modified_length field MUST be set to 0. If a semantic response has an

RC_NO_MATCH return code, the initiator MUST retransmit the message. This retransmit can happen in

hardware or can be performed in software (e.g., inside the provider implementation). The appropriate

back-off time is unknowable, and aggressively short retry times (a few RTT or less) will substantially

increase wasted network bandwidth.

 180

Copyright © 2025 Ultra Ethernet ConsortiumTM. All rights reserved.

All implementations MUST support the back-off and retry mechanism with RUD PDCs for all types of

send and tagged send operations.

3.4.3.6.2 Unexpected Messages with Buffering

Buffering at the target can be used to implement unexpected messages for both RUD and ROD PDCs.

Buffering effectively creates the illusion that messages arrived after the receive call from libfabric

instead of before it; thus, buffering of unexpected headers or messages is expected to conform to the

ordering semantics of the underlying PDC. When buffers are exhausted, RUD PDCs can easily fallback to

a back-off and retry scheme; however, a ROD PDC requires more complex handling (3.4.3.6.3).

3.4.3.6.2.1 Buffered Headers

In situations where the payload is recoverable, an implementation SHOULD choose to buffer semantic

information associated with message headers that arrive and drop the payload when unexpected

messages are encountered. The response in this case MUST be RC_OK with a modified length of 0. If an

implementation chooses this mechanism, these message headers MUST be compared against new

receive operations – that is, calls to fi_recv() or fi_trecv() – that were provided. There are two times

when this can occur: when sends utilize rendezvous sends or deferrable sends.

When rendezvous sends are used with a buffered header mechanism, the buffered header MUST

include the information needed to issue the read. When a new receive matches the buffered header,

the rendezvous operation MUST be completed by issuing the read using the information provided in the

rendezvous send. When deferrable sends are used with a buffered header mechanism, the buffered

header MUST include the initiator restart token. When a new receive matches the buffered header, the

ready-to-restart message MUST be generated using the initiator restart token.

Without buffered headers, an implementation cannot generate an RTR and cannot generate a

rendezvous read; thus, failing to support buffered headers substantially defeatures both schemes (this is

inherent to the definition of these operations). This scheme MUST ONLY be used in conjunction with

rendezvous or deferrable sends.

3.4.3.6.2.2 Buffered Unexpected Messages

An implementation MAY choose to buffer both the message header and the message payload when

unexpected messages are encountered. The response in this case MUST be RC_OK with a modified

length equal to the request length for eager messages. Implementations choosing this mechanism MUST

buffer the entire payload for eager messages. If an implementation chooses this mechanism, the

buffered message headers MUST be compared against new receive operations that were provided. If a

new receive operation matches the unexpected buffered header, the implementation MUST provide the

buffered payload to the target user application. This is accomplished via hardware or software. If an

implementation has chosen this mechanism, it MAY degrade to the back-off and retry mechanism at any

point (e.g., if the buffered header space is exhausted).

 181

Copyright © 2025 Ultra Ethernet ConsortiumTM. All rights reserved.

Rendezvous sends and deferrable sends6 MAY be used with a buffered unexpected message scheme. If a

rendezvous end uses buffered unexpected messages, the implementation MUST return a modified

length less than or equal to the eager part of the rendezvous request. If a deferrable send uses buffered

unexpected messages, the implementation MUST return a modified length of either zero or the request

length. A modified length of zero is the signal in a response to a deferrable send that indicates to the

initiator that the operation was deferred. Note, however, that an implementation MAY combine a

buffered unexpected message scheme for standard sends with a buffered header scheme for

rendezvous sends and deferrable sends.

3.4.3.6.3 Unexpected Messages and Resource Exhaustion over ROD PDC

This section applies to both untagged messages over a ROD PDC and tagged messages using wildcard

matching over a ROD PDC and covers limitations of the resource exhaustion scheme when using

ordering as well as how ordering interacts with resource exhaustion. Handling unexpected messages

over an ordered PDC while using wildcard matching can be a challenging problem. Typically associated

with flow control in MPI, the combination of a strong ordering requirement with the possibility of

matching any receive buffer that has been posted has always been difficult to implement efficiently.

Solutions like back-off and retry do not work well, because a wildcard receive can be posted just after a

message has been rejected as unexpected. For untagged messages, any receive is effectively a wildcard

receive. A subsequent message in flight from the same initiator could match the wildcard receive out of

order because no other mechanism is available to establish ordering. Per-peer sequence numbering at

the MPI level does not work, because one receive is allowed to specify that it wants to receive from

MPI_ANY_SOURCE. The back-off and retry scheme MUST NOT be used for unexpected messages using

wildcard matching over a ROD PDC or for untagged messages over a ROD PDC.

Because these solutions are hard, the general solution implemented is buffered unexpected messages.

Buffered headers with rendezvous sends is also part of the typical solution. Implementations providing

wildcard matching over a ROD PDC MUST implement buffered unexpected messages or buffered

headers as a solution.

Buffered unexpected messages and buffered headers can still run into scenarios where the buffering

resources are exhausted. These scenarios are relatively uncommon but happen deterministically in

some applications. The libfabric over UET definition MUST include a buffer exhaustion solution. Scalable

solutions to buffer exhaustion have long proven challenging. To cover a breadth of use cases, two

solutions are provided in sections 3.4.3.6.3.1 and 3.4.3.6.3.2.

6 In this paragraph, “sends” is intended to capture both tagged and untagged sends.

 182

Copyright © 2025 Ultra Ethernet ConsortiumTM. All rights reserved.

3.4.3.6.3.1 Scalable Parallel Application Deployments

For the most scalable applications, a mechanism is provided to allow a low-state recovery from resource

exhaustion events while still preserving message ordering (i.e., while using a ROD PDC). It is preferable

not to require any per-target tracking at the initiator; thus, the client/server mechanism is less

preferred. The scalable mechanism is simple at a transport level. When resources are exhausted, the

associated target {FA, JobID, PIDonFEP, Resource Index} tuple is disabled. RC_DISABLED is returned for

the target {FA, JobID, PIDonFEP, Resource Index} tuple. All subsequent operations to that target tuple

MUST receive an RC_DISABLED response. That tuple remains in a disabled state until re-enabled by

software. Before being re-enabled, software MUST guarantee that no operations are in flight (i.e., on

the wire) to guarantee that ordering is not violated. Once this condition is met, software MUST re-

enable the tuple at the target. After the target is re-enabled, all initiators MUST retransmit all

operations that received an RC_DISABLED response in their original order.

Informative Text:

In Portals 4, a flow control solution was proposed where the equivalent of a libfabric endpoint (a

portal table entry) is placed into a disabled state. Subsequent operations to that portal table entry

would complete with a bad return code at the initiator until the portal table entry was re-enabled.

Before a portal table entry could be re-enabled, the target with the disabled portal table entry must

first confirm that there were no initiators that were in the middle of an ordered stream. That is, it

must first confirm that no initiators had a message that had been rejected and yet still had other

messages in flight. The proposed solution was to use a barrier amongst all participating processes.

This solution is modeled after that proposal.

3.4.3.6.3.2 Client/Server Buffer Exhaustion

In client/server interactions, the server cannot trust the client to check-in after receiving an

RC_DISABLED response. UET introduces the concept of a “generation” for a Resource Index as a

separate field carried in the header when using tagged or untagged messaging. At the target, a Resource

Index MAY be configured to use a generation. If it is not configured to use a generation, the generation

MUST be zero. A message that arrives at the target MUST contain the correct generation, or the

message MUST receive a semantic response indicating a generation mismatch (RC_BAD_GENERATION).

Informative Text:

Why not receiver not ready (RNR)? Verbs uses an RNR to address this problem. In RNR, a destination

QP enters an RNR state. Recovery uses the process-to-process QP sequence numbering to restore

message ordering. To enhance scalability, UET does not have process-to-process sequence numbers.

Hypothetically, the PDC sequence numbers could be used instead; however, that has several

undesirable characteristics. First, it couples the reliability logic and semantic logic at the target in a

way that makes it hard to achieve high message rates on a single PDC. Second, it couples the

reliability logic and semantic logic at the initiator in a way that stalls the PDC until the semantic

resource issue is resolved. Finally, resource exhaustion on one process using a PDC stalls all other

users of that PDC.

 183

Copyright © 2025 Ultra Ethernet ConsortiumTM. All rights reserved.

This response MUST contain the current generation. A tagged or untagged message using a ROD PDC

that encounters resource exhaustion at the semantic level that prevents accepting the message MUST

disable the target Resource Index. The message MUST receive a semantic response indicating that the

message encountered a disabled index (RC_DISABLED_GEN). The index MUST remain disabled until

additional resources are available and the generation number is incremented.

The implementation – whether in the provider layer or hardware – MUST retransmit messages that

encounter a disabled index. When the message is retransmitted, the implementation SHOULD

increment the index generation before retransmitting the message; however, the implementation MAY

retransmit using the same index until it receives a generation mismatch response. If the implementation

chooses to retransmit the message with an incremented generation, it MUST retransmit only one

message (the oldest message needing retransmission) until it has received a successful semantic

acknowledgement. This avoids a race where the generation could be incremented between the first

retransmitted message and second retransmitted message reaching the target. A message encountering

a disabled index SHOULD defer retransmit using an exponential back-off scheme.

The implementation MUST retransmit messages that encounter a generation mismatch. The

retransmitted message MUST use the new generation returned in the generation mismatch response. A

message encountering a generation mismatch MAY be retransmitted immediately.

Informative Text:

This mechanism is named “client/server buffer exhaustion” because it re uires a state per-peer

process. Most of the specification goes through great lengths to avoid per-peer-process state in the

fast path of messaging libraries for compute applications.

Implementation Note:

RC_DISABLED_GEN is a scenario similar to traditional resource exhaustion concepts (e.g., receiver not

ready). Because the target cannot easily track the full list of initiators that have encountered

RC_DISABLED_GEN, initiators can rely only on traditional retransmit heuristics to determine when to

retransmit the message.

3.4.4 Semantic Protocol Sequences

This section describes the general semantic sequences in the protocol. Ladder diagrams are provided for

the various semantic operations to illustrate the relevant concepts. For simplicity, the diagrams do not

illustrate out-of-order packet delivery. PDS-level packets are not shown unless they are relevant to the

semantic processing. Not all information carried on a packet is illustrated. Only those fields that are

needed to illustrate the concept are included. In this section, lossless networks (as noted in the PDS

specification) use TC_request for green and purple arcs, while the blue and orange arcs use

TC_response. Similarly, in best-effort operation, the solid arcs use TC_low while the dotted arcs use

TC_high. Usage of trimming (and the corresponding TC_med) is not covered in the semantic figures.

Section 3.6.4.7 specifies the mapping of UET to traffic classes and DSCP values. In some figures, two

 184

Copyright © 2025 Ultra Ethernet ConsortiumTM. All rights reserved.

PDCs are used: a forward-direction PDC (green requests with blue responses) and a reverse-direction

PDC (purple requests with orange responses). Green request/completion arcs are shown in the

interaction between libfabric and SES for initiator to target messages, and purple request/completion

arcs are shown in the interaction between libfabric and SES for target to initiator messages.

3.4.4.1 Requests with Payloads

Requests with payloads consist of sends, tagged sends, writes, and atomics. In the figures here, send

operations are used as a general illustration.

3.4.4.1.1 Single-Packet Requests

As illustrated in Figure 3-21, a single-packet request has a single-packet response

(UET_DEFAULT_RESPONSE) where the semantic ACK is combined with the PDS ACK. The PSN from the

PDS ACK is used to identify the original request. Optimized header formats that may be used for a single

packet message do not contain the message ID field; thus, they MUST use the PSN as the mechanism to

identify the original request. This enables SES to deliver a completion at the initiator. The modified

length is equal to the requested length indicating that the entire message is delivered. The semantic ACK

also indicates that the message was captured in the expected list. This can then be used to build a

lightweight MPI_Ssend(). In this sequence, UET_DEFAULT_RESPONSE SHOULD be used (as illustrated),

but UET_RESPONSE MAY be used (not shown). SES MUST NOT return the semantic response to PDS

before the packet has been processed through SES. If delivery complete is set (DC=1), the semantic

response MUST NOT return until the payload has been made globally observable. The single-packet

sequence illustrated applies to a variety of opcodes, including UET_TAGGED_SEND (shown), UET_WRITE,

UET_ATOMIC, UET_ SEND, and UET_TSEND_ATOMIC. The UET_TAGGED_SEND shown in Figure 3-21 can

use either a standard header or a small message/RMA header (Figure 3-14). The choice of header has

some impact on the addressing operations but does not change the overall sequence.

Figure 3-21 - Single-Packet Request, Expected Message

Initiator Target

Tagged SEND
REQUEST

Request
Processed

SES PDSPDS SES
Msgs + PacketsMessages Msgs + PacketsPackets Messages

Tagged SEND

Tagged SEND

MSG
COMPLETION

(optional)

SEND
COMPLETION

ACK PSN=99

 185

Copyright © 2025 Ultra Ethernet ConsortiumTM. All rights reserved.

3.4.4.1.2 Multi-Packet Requests

Figure 3-22 illustrates some additional concepts that are relevant to multi-packet transactions. For the

transaction shown, the first PDS ACK includes a semantic response with the UET_NO_RESPONSE opcode.

This indicates that the packet has been received but that the semantic processing is not yet complete. It

is allowable for many packets to generate a UET_NO_RESPONSE opcode. In conformance with the

requirement that at least one semantic response be generated, a later packet – arriving after semantic

processing has completed – generates a UET_DEFAULT_RESPONSE. This is an expected message that has

found a buffer and will be delivered in its entirety. Note that every response in most sequence diagrams

carries a semantic header. Some arcs, such as the final arc in Figure 3-22, are not labeled with the

semantic response opcode to keep the diagram simple, since many options are possible.

3.4.4.2 Requests with Responses That Have Payloads

Read requests (UET_READ) generate payload data in the return direction. There are two mechanisms for

returning data – as illustrated in Figure 3-23 and Figure 3-24. (Note: Neither figure illustrates PDS

acknowledgements.) Both figures illustrate the multi-packet case. For a read request with a request

length that is larger than one Payload MTU, SES breaks the read request into one packet (UET_READ)

per Payload MTU worth of response data. Each read packet associated with one message contains the

same message ID, and each read packet requests one Payload MTU of data – except for the last read

request, which can request the final fragment. The sequence is the same for single-packet read

requests. The choice between the two sequences is based on the value of PDS_MAX_ACK_DATA. When

PDS_MAX_ACK_DATA is greater than the request length or PDS_MAX_ACK_DATA is greater than the

Payload MTU, then the sequence in Figure 3-24 is used. Otherwise, the sequence in Figure 3-23 is used.

When a fetching atomic request (UET_FETCHING_ATOMIC) is issued, the sequence in Figure 3-24 is

Figure 3-22 - Multi-Packet Request, Expected Message

 186

Copyright © 2025 Ultra Ethernet ConsortiumTM. All rights reserved.

always used. A broader discussion of these sequences can be found in the PDS specification 3.5.19. The

remainder of this section focuses on the semantic sublayer characteristics of these sequences.

When the data that can be carried in an acknowledgment is small, the target issues new messages

containing the read payload data. These messages are technically responses; thus, the

UET_RESPONSE_W_DATA opcode is used. Reads (optionally) complete at the target when all of the

response packets for the read have been acknowledged. Note that the response payload packets

contain the original message ID of the request and the original sequence number. The message ID from

target to initiator is only reflected to the target in the acknowledgements; thus, it is entirely within the

purview of the target how they are assigned. Specifically, all responses to a single request message are

not required to use a single-message ID.

As illustrated, Figure 3-23 allows for a semantic response to the UET_RESPONSE_W_DATA carrying the

read payload. This makes it possible to carry failure information from the initiator to the target;

however, Figure 3-24 does not have this ability to carry failure information. A careful review of Table

3-19 shows that very few error responses could possibly apply when a read response returns to the

initiator of the read. Implementations of the standard read sequence (Figure 3-23) MUST provide a

semantic response to the UET_RESPONSE_W_DATA; however, that semantic response MAY be

UET_DEFAULT_RESPONSE in all cases. Indeed, this is what is illustrated in the figure where there is a

single cumulative acknowledgement. Implementations of the target MUST be prepared to receive an

error response, which implies a guaranteed delivery response, and MUST clear packets that were

marked for guaranteed delivery. Target implementations SHOULD deliver any error response provided in

the read completion.

Figure 3-23 - Multipacket Read Request – Standard

 187

Copyright © 2025 Ultra Ethernet ConsortiumTM. All rights reserved.

Informative Text:

Errors related to a UET_RESPONSE_W_DATA can occur when the payload attempts to write memory

that does not have a valid translation available. This can occur due to a programming error or due to

the application terminating.

In Figure 3-24, payload data is carried in the acknowledgement. Read request formation is the same as

in the flow used in Figure 3-23, but response data is carried in the acknowledgements. Because of this,

the read completion is delivered after all of the response packets are cleared.

The choice of protocol for reads impacts the mapping of the flows onto TCs. Acknowledgements are

mapped to the response TC (as illustrated in Figure 3-24). This is the primary reason that bulk data reads

are expected to typically use the sequence in Figure 3-23. It should be noted, however, that lossless

networks map the bulk data onto a response TC in both cases. In addition, deadlock-free operation on a

lossless network may require additional care with resource management for the sequence shown in

Figure 3-23. In both sequences, the initiator MUST guarantee that all response data can be accepted

without generating any wire transactions from initiator to target.

In Figure 3-23, each UET_READ is acknowledged by a PDS acknowledgement. That PDS

acknowledgement carries a semantic response of either UET_NO_RESPONSE, UET_DEFAULT_RESPONSE,

or UET_RESPONSE. SES failures can be carried by the UET_RESPONSE opcode. Errors detected later in

semantic processing are returned with the data. Read request packets that receive a non-RC_OK return

Figure 3-24 - Multi-Packet Read Request – Large PDS_MAX_ACK_DATA

 188

Copyright © 2025 Ultra Ethernet ConsortiumTM. All rights reserved.

code as part of the PDS acknowledgement do not receive a UET_RESPONSE_W_DATA. In Figure 3-24,

the semantic response return code is returned as part of the UET_RESPONSE_W_DATA.

3.4.4.3 Rendezvous Transactions

Rendezvous transactions have two parts. The first part consists of the eager send (e.g.,

UET_RENDEZVOUS_SEND). The eager send has 0 or more bytes of payload as indicated by the eager size

in the rendezvous header. The second part is a rendezvous read message (UET_READ) that completes

the transfer by pulling the data. The rendezvous read is an ordinary read transaction using the fields

provided in the rendezvous header. Figure 3-25 illustrates how this works in the expected message case.

A rendezvous send message (i.e., UET_RENDEZVOUS_SEND) is initiated and consists of one or more send

packets carrying eager payload (illustrated with UET_RENDEZVOUS_SEND MID1, Message Offset (MO) 0

through N). Notionally, the eager size is set to cover the round-trip bandwidth delay product, so that the

first packet of the read request arrives just in time to start the read payload transfer7. There are two

completion points at the initiator of the transaction: the completion of the rendezvous send and the

completion of the read. These are delivered as one completion queue entry to software (i.e., through

the libfabric API). Similarly, completion at the target is based on both the arrival of the eager part and

the arrival of the read payload. Due to variations in network timing, the completion of the eager send

and the completion of the read can happen in any order; thus, both points are illustrated here.

Nonetheless, both completion points must be reached before the message completion (e.g., completion

queue entry) can be returned through the libfabric API.

Note the interaction with PDS for read completion at the initiator of the rendezvous transaction. The

PDS provides reliability for read responses; thus, the completion of the read at the initiator of the

rendezvous occurs when all of the read response packets have been acknowledged.

Figure 3-26 illustrates the unexpected message variation for the rendezvous transaction. The difference

between the two sequences is limited to two features. First, the modified length in the response is

intended to truncate the eager portion of the message to the part that is buffered at the target. In the

figure, it is assumed that the target buffer is matched to the size of the eager portion; however, a

modified length could be shorter (often 0 bytes). In that case, the UET_RENDEZVOUS_SEND can be

completed with a single additional packet – just like the deferrable send transaction. Second, the start

location of the read transaction differs from the expected case. When the message is unexpected, the

read starts from the point in the message that has been buffered at the target.

7 There are a variety of reasons why the eager size may be set smaller. For example, the initial rendezvous send
may be ordered while the read response payload may be unordered.

 189

Copyright © 2025 Ultra Ethernet ConsortiumTM. All rights reserved.

Figure 3-25 - Rendezvous Transaction, Expected Message Case

When implementing a rendezvous transaction, a target MAY read more data than is strictly necessary.

Any offset within the bounds of the original message is a legal starting point for the read that is part of

the overall rendezvous transaction.

Informative Text:

Reads of more data than strictly necessary can enable implementation optimizations (e.g., for

performance).

Implementation Note:

Rendezvous transactions have two completion points. One is when the eager

send(UET_RENDEZVOUS_SEND) has completed, and the other is when the read (UET_READ) has

completed. The eager send and read are two independent messages. As such, for a variety of reasons,

they may complete in either order at the initiator or the target. Implementation-specific mechanisms

are used to reconcile the two completion points and deliver one completion queue entry to the user

application.

Figure 3-25 illustrates a specific two completions at the initiator. In this example, an implementation

would use the fields of the read – the Resource Index and the Memory Key – to encode information

that would allow the read completion to be mapped to the original transaction. This is fully supported

in the Memory Key definition by using a provider defined key. Whatever bits are chosen for encoding

such information would need to be delivered in a read completion between the device and the

libfabric provider.

Initiator Target

SEND
REQUEST

Buffer Found

SES PDSPDS SES
Msgs + PacketsMessages Msgs + PacketsPackets Messages

Send MID 1, Offset 0

Send MID = 1, Off = 0

Send MID = 1, Off = N

Eager size
Read MID 7,
Off=N+MTU

Send MID 1, Offset N

Read MID 7, Off = N+M

Read
COMPLETION

MSG
COMPLETION

SEND
COMPLETION

Payload, Off=N+MTU

...

...

Payload, Off=N+M

 190

Copyright © 2025 Ultra Ethernet ConsortiumTM. All rights reserved.

Read completions can be implemented by delivering a completion after every read response has been

acknowledged. Unacknowledged read responses are retransmitted by PDS until they are

acknowledged.

Figure 3-26 - Rendezvous Transaction, Unexpected Message Case

3.4.4.4 Deferrable Send Transactions

Deferrable send transactions are a similar concept to rendezvous sends. Deferrable sends begin a

transfer of the message. The congestion management sublayer is expected to limit the outstanding

payload based on the current congestion state. This means that approximately one BDP of data at the

current achievable bandwidth should be outstanding when a response returns from the target. In Figure

3-27, the deferrable send (UET_DEFERRABLE_SEND) finds that the matching buffer is available at the

target. This causes a semantic response (UET_DEFAULT_RESPONSE) indicating RC_OK and a modified

length equal to the request length. The deferrable send proceeds as any normal send.

The goal for deferrable sends is that the expected cases (seen in Figure 3-27) will return the semantic

response just in time to keep the wire fully saturated. In conjunction with the congestion management

sublayer, this should be achievable. In this case, there is little difference for any of the processing from a

simple send transaction.

Initiator Target

SEND
REQUEST

Buffer Not
Found

SES PDSPDS SES
Msgs + PacketsMessages Msgs + PacketsPackets Messages

Send MID 1, Offset 0

Send MID = 1, Off = 0

Send MID = 1, Off = N

Eager size

Read MID 7, Off = J

Send MID 1, Offset N

Read MID 7, Off = J+M

Read
COMPLETION

MSG
COMPLETION

SEND
COMPLETION

Payload, Off=J

...

...

Payload, Off=J+M

J Bytes of
Payload Buffered
(0 <= J <= Eager)

Matching Buffer
Posted

 191

Copyright © 2025 Ultra Ethernet ConsortiumTM. All rights reserved.

Figure 3-27 - Deferrable Sends, Expected Message Case

In the transaction illustrated in Figure 3-28, the semantic ACK (UET_RESPONSE) indicates that the

message is to be deferred by setting the ses.return_code field to RC_OK and the modified length to 0.

This response is marked for guaranteed delivery, since it does not use the default set of response values.

Later, a restart token (8675309) is used to restart the message using UET_DEFERRABLE_RTR. In the

illustrated example, the target has chosen to buffer J bytes of the original message. Thus, the ready-to-

restart (RTR) message indicates that the restart should start at message offset J. The restarted message

MUST be delivered to the matching buffer that was provided. The target MUST remember J using some

mechanism (see Implementation Note), since it is not carried in the restarted message.

A second notable feature in Figure 3-28 is that the first message for the unexpected deferrable send

MUST be completed using a packet with ses.eom set. This allows the target to deallocate state

associated with that message.

Initiator Target

SEND
REQUEST

Buffer Found

SES PDSPDS SES
Msgs + PacketsMessages Msgs + PacketsPackets Messages

Send MID 1, Offset 0

Send MID = 1, Off = 0

Send MID = 1, Off = N

CC Window
Limited

Send MID 1, Offset N

MSG
COMPLETION

SEND
COMPLETION

...

Send MID = 1,
Off = N+MTU

Send MID = 1,
Off = M

... Send MID 1,
Offset N+MTU

Send MID 1, Offset M

All Packets Received
Final Packet ACK, MID 1

 192

Copyright © 2025 Ultra Ethernet ConsortiumTM. All rights reserved.

Figure 3-28 - Deferrable Sends, Unexpected Message Case

A final variation on deferrable sends is illustrated in Figure 3-29. In this scenario, the target does not

reserve the buffer when a matching buffer is posted. This means that a deferrable send can be started,

deferred, restarted, and redeferred. This sequence can occur an indefinite – even infinite – number of

times. The lack of a reserved buffer is indicated by the passing of a target restart token of 0. A target

restart token of 0 MUST NOT be used for a reserved target buffer. In Figure 3-29, message ID 1 is reused

for the third transmit of the deferrable send, since that message ID was no longer in use for an in-flight

message.

Initiator Target

SEND
REQUEST

Buffer Not Found

SES PDSPDS SES
Msgs + PacketsMessages Msgs + PacketsPackets Messages

Send MID 1, Offset 0,
Token=8,675,309

Send MID = 1, Off = 0

Send MID = 1, Off = N

CC Window
Limited

Send MID 1, Offset N

MSG
COMPLETION

SEND
COMPLETION

...

Send MID = 3,
Off = J

Send MID = 3,
Off = M

... Send MID 3, Offset J
Token=8,675,309

Send MID 3, Offset J+M

All Packets Received
Final Packet ACK, MID 3

J Bytes of
Payload Buffered

(J may be 0)

Matching Buffer
Posted

Restart
Init Token=8,675,309
Target Token=505

Target must
remember value
of J and add it to

offset

Send MID 1, EOM=1
Message Tracker

for MID 1
deallocated

 193

Copyright © 2025 Ultra Ethernet ConsortiumTM. All rights reserved.

Figure 3-29 - Deferrable Sends, Unexpected Message Case, No Reserved Buffer

Implementation Note:

Implementation of the expected message case for deferrable sends is relatively straightforward. The

unexpected message case – where the deferrable send is deferred – requires a little more care. While

there are many choices an implementation can make, this note provides guidance for an

implementation that could be used. It is necessary to achieve several things with an implementation:

1. The first packet of the deferrable send to arrive at the target must be identified as a new

message.

2. Subsequent packets of the deferrable send must be correlated with the first transmission of

the message.

3. It must be possible to identify the first packet of the restarted deferrable send as a restart at

the target.

Initiator Target

SEND
REQUEST

Buffer Not Found

SES PDSPDS SES
Msgs + PacketsMessages Msgs + PacketsPackets Messages

Send MID 1, Offset 0,
Token=8,675,309

Send MID = 1, Off = 0

Send MID = 1, Off = N

CC Window
Limited

Send MID 1, Offset N

...

Send MID = 3,
Off = J

Send MID = 3,
Off = M

... Send MID 3, Offset 0
Token=8,675,309

Send MID 3

0 Bytes of
Payload Buffered

Matching Buffer
Posted,
but not reserved

Restart
Init Token=8,675,309
Target Token=0

Send MID 1, EOM=1
Message Tracker

for MID 1
deallocated

Buffer Not Found

Send MID 3, EOM=1
Message Tracker

for MID 3
deallocated

MSG
COMPLETION

SEND
COMPLETION

Send MID = 1,
Off = J

Send MID = 1,
Off = M

... Send MID 1, Offset 0
Init Token=8,675,309

Target Token=0

Send MID 1, Offset M

All Packets Received
Final Packet ACK, MID 1

Matching Buffer
Posted

Restart
Init Token=8,675,309
Target Token=0

 194

Copyright © 2025 Ultra Ethernet ConsortiumTM. All rights reserved.

4. It must be possible to reconcile the restarted deferrable send to the original message

information.

5. Subsequent packets of the restarted deferrable send must be reconciled to the ongoing

message.

6. Because of inherent race conditions in the sequence, the original deferrable send and

multiple restarts of the deferrable send could hypothetically have packets in the network

concurrently.

These operations can be accomplished using various mechanisms. To establish (1), the FEP can

examine the target restart token and note that it is 0. This indicates this is not a restarted message,

or, if it is a restarted message, it does not have a reserved buffer at the target that it must select.

Because this is the first packet of a deferrable send that does not have a reserved buffer at the target,

the FEP can proceed with semantic processing. Semantic processing indicates that the message is to

be deferred, and a tracker is associated with the MID = 1. Packets associated with MID = 1 will be

discarded, and the tracker will be discarded when a packet for MID = 1 with ses.eom set is received.

Later, a restart is initiated. Before sending the restart, the target FEP can allocate a table entry

indexed by 505. 505 is then placed in the target restart token in the ready-to-restart message. The

restarted message would contain (505) with the initiator restart token 8675309. This table could

indicate where the restarted message would land in memory. For example, if the base address of the

matching buffer was 42, then the start address of the restarted transfer would be 42+J. Alternatively,

when the restart is initiated, the target FEP may not allocate a table entry. In this case, it populates

the target restart token with 0 so that the restarted message is handled like a new message.

When the restarted message arrives at the target FEP, if it finds that the target restart token was not

zero, it uses the target restart token to index the table. The restarted message always has a different

message ID (e.g., MID = 3) from prior in-flight iterations of this deferrable send. It would then find

that the restart token table contained 8675309 at entry 505. It would use this information to establish

a tracker for MID = 3 and start delivering payload into the target memory. Subsequent packets of MID

= 3 would find this MID tracking entry.

3.4.4.5 Additional Unexpected Message Sequences

Unexpected messages are common in both AI and HPC and are a requirement as part of the libfabric

provider. To achieve interoperability, various compatible unexpected message sequences are provided.

This includes mechanisms supporting the RUD and RUDI protocols that enable a simple back-off and

retry approach (Figure 3-30) (0) as well as mechanisms that can be used with the ROD protocol to

preserve ordering requirements (3.4.3.6.2.1 and 3.4.3.6.2.2). Further mechanisms are defined to

support recovering from resource exhaustion with the ROD protocol while preserving ordering (Figure

3-31) (3.4.3.6.3). The buffering schemes do not change the wire behavior, other than the insertion of the

list field; thus, they are not illustrated.

 195

Copyright © 2025 Ultra Ethernet ConsortiumTM. All rights reserved.

Figure 3-30 illustrates a few features of the RUD transport when implementing a back-off and retry

scheme. Single-packet messages are illustrated, and a message in the middle of the stream (message ID

3) does not find a match at the target. This returns a UET_RESPONSE with a ses.return_code of

RC_NO_MATCH. This indicates to the initiator that the message was dropped at the target because no

match was found. The initiator is then responsible for retrying the message at a later time. Note that

when the message associated with MID=3 and PSN=102 receives the RC_NO_MATCH response, it is

complete from the perspective of PDS and from the perspective of the message ID allocation. When this

message is retransmitted after the back-off time, it MUST allocate a new PSN and MAY allocate a

different message ID. Figure 3-30 also illustrates how semantic processing can have very different

processing times; thus, the response to PSN 101 is somewhat delayed.

Implementation Note:

SES does not specify the backoff time or the implementation mechanisms for the backoff and retry.

For example, the backoff and retry could be implemented as part of the libfabric provider

implementation.

While Figure 3-30 illustrates only single-packet messages, multi-packet messages have similar

characteristics. If the message associated with MID=3 and PSN=102 had been a multi-packet message,

then the diagram would look much the same. While it is expected that the initial send of a message

would complete before the back-off time expired, this is not a strict requirement. For example, a

Figure 3-30 - Single Packet Messages using Backoff and Retry

 196

Copyright © 2025 Ultra Ethernet ConsortiumTM. All rights reserved.

message using the RUD transport would be allowed to initiate an SES retransmit on a different PDC from

the initial transmission. This allows for the PDC to be torn down and re-established between the first

(unsuccessful) transmit of the message and the retransmit of the message. It also allows for both the

original message and the retransmit of the message to be in progress concurrently.

For simplicity, one additional feature of the back-off and retry sequence is not illustrated. In the figure, a

single back-off is shown with a successful retry. In practice, a back-off and retry sequence could have

many failed attempts with successive retries of the message.

Like Figure 3-30, Figure 3-31 uses single-packet messages to illustrate the mechanics of a different

unexpected message approach that applies specifically to ROD PDCs and uses the concept of a Resource

Index generation (0). Because ROD PDCs require that ordering be maintained, a message that

encounters resource exhaustion creates a challenge. If resources were replenished while subsequent

messages were in flight, ordering could be violated if care was not taken. To preserve the ephemeral

nature of PDCs, this resource exhaustion scenario is handled at the semantic sublayer rather than

injecting state into the PDC itself to recover.

Figure 3-31 - Messages using Resource Index Generation

 197

Copyright © 2025 Ultra Ethernet ConsortiumTM. All rights reserved.

Figure 3-31 illustrates several aspects of the resource exhaustion protocol. First, once a resource is

exhausted (e.g., an unexpected message buffer), the next message and all subsequent messages fail

with an RC_DISABLED_GEN return code – until resources are added. Second, when resources are

replenished, the generation number is atomically updated with the addition of resources. Third,

messages that were already in flight encounter a generation mismatch and are dropped with an

RC_BAD_GENERATION return code being generated. Fourth, to maintain ordering, the first dropped

message is retransmitted with an updated generation number, but subsequent messages are not

retransmitted until a successful return code is received. Once the first message is accepted by the target

semantic sublayer, subsequent messages may be retransmitted with the new generation number.

Some features of this protocol are not illustrated. For example, a third FEP could send a message and

encounter a generation mismatch. It would follow the same recovery procedure as illustrated. Note

that, with multi-packet messages, it is still necessary to wait until the entire message has completed

before starting the next message. This is because PDS can promote a UET_NO_RESPONSE to a

UET_DEFAULT_RESPONSE as part of acknowledgement coalescing. It is not until the entire message has

been acknowledged that the initiator can know for sure that the message was accepted at the target.

3.4.4.6 Errors Indicated by the Initiator

Two types of error sequences are illustrated in Figure 3-32 and Figure 3-33. Errors that are detected at

the target are delivered to the initiator using return codes in a response using guaranteed delivery.

Errors detected at the initiator can be signaled to the target in two different ways. An error can be

signaled by setting the initiator error (ses.ie) bit in the header as shown in Figure 3-32. This type of error

signaling only marks a packet as bad and results in a message completion in error at the target. The

Figure 3-32 - Multi-Packet Request, Expected Message, with Initiator Error

 198

Copyright © 2025 Ultra Ethernet ConsortiumTM. All rights reserved.

illustration shows an error being delivered to SES for the packet that is in error. It is expected that the

message completion at the initiator would also signal an error in this case.

In other cases, an error at the initiator may need to terminate the message that is in progress. In this

case, the sequence in Figure 3-33 is used. Here, a UET_MSG_ERROR with ses.eom set is sent using the

message ID of the message that is being terminated. As indicated in the figure, a message using this

mechanism may be terminated before delivering all of the packets in the message.

3.4.5 Error Handling

Errors in UET have three possible scopes: message level, PDS level, or device level. Error conditions fall

into three broad categories: recoverable errors, unrecoverable errors, and informational errors. Within

each category, errors are further subdivided into synchronous and asynchronous errors. The UET

Semantic specification covers only errors that are communicated by the semantic sublayer and have a

message-level scope. PDS level errors MAY have message-level scope; however, PDS-level errors are

documented in the PDS specification. Device-level errors are beyond the scope of this specification.

3.4.5.1 Error Precedence

In general, UET uses a first-error model of error precedence. That is, the first error encountered is the

error reported. If multiple errors are encountered for a message (i.e., different packets encounter

different errors), it is the return code (RC) associated with the first error that is returned in the semantic

response. If a single packet encounters multiple errors, the error contribution of that packet can be any

of the return codes associated with an error the packet encountered. The first error encountered may or

may not occur on the first packet (in packet sequence number order) of a message, since packets may

be received out of order.

Figure 3-33 - Multi-Packet Request, Expected Message, with Message Error

 199

Copyright © 2025 Ultra Ethernet ConsortiumTM. All rights reserved.

Informative Text:

A first-error model is used because errors can often propagate into more severe errors that are a

direct result of the first error.

3.4.5.2 Error Scopes

A message-level error scope impacts one message. It may be recoverable, unrecoverable, or

informational. If it is unrecoverable, a message-level error MUST impact only one message and its

associated transaction.

A PDS-level error scope impacts an entire PDC. Unrecoverable PDS-level errors MUST terminate the PDC.

All transactions in flight on a PDC that terminates MUST terminate in error to the application through

libfabric. In other words, an unrecoverable PDS-level error becomes an unrecoverable message error for

any transaction that has not already successfully completed.

Device-level and device-specific errors are beyond the scope of this document. Each vendor

implementation is responsible for mapping device errors to message-level, PDS-level, or local node-level

in scope. Only device-level errors and PDS-level errors may be asynchronous. That is, only device-level

errors and PDS-level errors are ever delivered in any way other than as part of a message completion.

Informative Text:

Many PDS-level errors also cause erroneous completion of a message; however, some PDS-level

errors may report only through out-of-band mechanisms (e.g., to a driver or to a management

system).

3.4.5.3 Recoverable Errors

Recoverable errors may be retried by an intermediate portion of the communication stack (e.g., the

libfabric provider). Retries of recoverable errors are expected to succeed eventually. The number of

retry attempts MAY be limited by implementation-specific controls. If the number of retry attempts is

limited, then messages that exceed the maximum number of retry attempts MUST terminate in error.

3.4.5.3.1 Handling of Recoverable Errors Detected at the Initiator

Recoverable errors detected at the initiator before a sequence number is allocated SHOULD be handled

by the initiating FEP without allocating a sequence number. Recoverable errors detected at the initiator

after allocating a sequence number MUST poison the FCS in the packet. An example of this type of error

is a parity error on an intermediate buffer that the packet passes through. Recoverable errors detected

at the initiator MUST NOT set the ses.ie bit.

3.4.5.3.2 Handling of Recoverable Errors Detected at the Target

Recoverable errors detected at the target all fall into the class of resource exhaustion errors. These

scenarios are generally recoverable. Handling of the recoverable resource exhaustion occurrences MUST

utilize the mechanisms described in section 3.4.3.5.1.

 200

Copyright © 2025 Ultra Ethernet ConsortiumTM. All rights reserved.

3.4.5.4 Unrecoverable Errors

Unrecoverable errors are reported as failed messages. Message-level failures are not fatal to the

connection and are not fatal to the device. Device-fatal errors are beyond the scope of this specification.

Errors that tear down a connection are defined as part of the PDS specification.

3.4.5.4.1 Handling of Unrecoverable Errors Detected at the Initiator

A variety of errors may be detected at the initiator that are fatal to the message. Such errors range from

hardware failures (e.g., a PCI Express read completion timeout) to programming errors (e.g., a user

process initiates a message with an address that cannot be translated) to other errors that make data

unavailable (e.g., a process terminates after starting a message). Each of these cases is unrecoverable

and may occur while a message is in flight. Two mechanisms are provided for signaling of uncorrectable

initiator errors to the target.

The initiator error (ses.ie) bit in the semantic header is used to indicate that the header was properly

constructed, but that the payload cannot be used. Implementations MAY use the ses.ie bit to indicate

errors encountered at the initiator, but implementations are not required to have any class of error that

causes the ses.ie bit to be set. Packets with the ses.ie bit set MUST NOT access memory at the target.

Messages containing packets with the ses.ie bit set MUST use a non-RC_OK ses.return_code. If the

initiator error is the first error, the return code MUST be RC_INITIATOR_ERROR. Messages containing

packets with the ses.ie bit set MUST indicate an error at the target if a completion queue entry is

provided or if a counter is used to indicate completion. Because the ses.ie bit indicates that the header

was properly constructed, any completion delivered at the target MUST include the completion queue

data (i.e., header data from the wire) if the ses.hd bit was set to indicate that such data is available.

The UET_MSG_ERROR opcode is used to terminate messages without transmitting all of the constituent

packets. The UET_MSG_ERROR opcode MAY be sent at any time – including the packet with ses.som set.

When using a RUD PDC, the initiator MAY wait for all outstanding packets of the message to complete,

then issue the final packet of the message with the UET_MSG_ERROR opcode; however, this is not

required, and target implementations MUST NOT depend on it. All header fields within a

UET_MSG_ERROR MUST be set to the value that the packet would have used if it had not been in error –

except for the payload length. The payload length MAY use any size between 0 and the size the original

packet would have taken. Only one packet per message may indicate UET_MSG_ERROR. A

UET_MSG_ERROR packet MUST set ses.eom. Packets with the UET_MSG_ERROR opcode MUST NOT

access memory at the target. Messages terminating with the UET_MSG_ERROR opcode MUST use a

non-RC_OK return code. If UET_MSG_ERROR is the first error indication, the return code MUST be

RC_INITIATOR_ERROR. Messages terminating with the UET_MSG_ERROR opcode MUST indicate an

error at the target if a completion queue entry is provided or if a counter is used to indicate completion.

Informative Text:

The PDS treats a packet using the UET_MSG_ERROR opcode just like any other packet.

UET_MSG_ERROR does not change any packet reliability guarantees.

 201

Copyright © 2025 Ultra Ethernet ConsortiumTM. All rights reserved.

3.4.5.4.2 Handling of Unrecoverable Errors Detected at the Target

A broad set of unrecoverable errors may be detected at the target of a message. These errors range

from programming exceptions (intentional or deliberate) such as permission violations

(RC_PERM_VIOLATION) to uncorrectable hardware errors of an unspecified type (RC_UNCOR).

Unrecoverable semantic errors are still limited in scope to a single transaction and do not impact the

state of a PDC, for example. Uncorrectable errors deliver an appropriate return code using a first error

model of error precedence, and that return code MUST be marked for guaranteed delivery.

Responses with data that return with an RC indicating an error MUST NOT write to memory at the

initiator.

3.4.5.4.3 Unrecoverable Errors and Rendezvous

Rendezvous transactions are relatively unique in their composition within UET. There is a eager portion

of the transaction originating from the initiator of the rendezvous using a UET_RENDEZVOUS_SEND (or

TSEND) message and a read portion of the transaction originating from the target of the rendezvous.

Unrecoverable errors in each sub-transaction are delivered with the completion notifications for those

sub-transactions. For example, the eager portion of a rendezvous transaction delivers errors as if it were

a send (or tagged send). The read portion of the rendezvous transaction delivers errors as if it were a

read transaction. These errors are aggregated through the provider to be delivered to software.

3.4.5.5 Informational Errors

A handful of return codes are marked as informational. These errors (e.g., a floating-point underflow)

may be safely ignored by some applications in some use cases. Like other errors, these errors MUST be

provided back to the application (if requested). Informational errors deliver an appropriate return code

using a first error model of error precedence among informational errors. Uncorrectable errors have a

higher error precedence. An implementation that encounters an informational error and then a

subsequent uncorrectable error MUST deliver the uncorrectable error. The return code MUST be

marked for guaranteed delivery.

3.4.5.6 Return Codes

Return codes are defined for a variety of recoverable, unrecoverable, and informational errors. These

codes are standardized for certain well-established error scenarios to provide additional information for

debugging purposes. In addition, portions of the return code space are available for vendor-specific

return codes. The return codes are enumerated in Table 3-19 along with a designation for their scope

and whether they are recoverable (R), unrecoverable (U), or informational (I).

3.4.6 Enumerated Types Used in Headers

This section enumerates field definitions for various header types. This includes opcodes, return codes,

and NACK types.

 202

Copyright © 2025 Ultra Ethernet ConsortiumTM. All rights reserved.

3.4.6.1 PDS Next Header Enumerations

The next header field used by the TSS header and the PDS header is enumerated in Table 3-16. The next

header field indicates the size and format of the semantic header following the PDS header (see section

3.5.11.2).

Informative Text:

Future iterations of the specification may include the ability to encapsulate and encrypt other types of

traffic in the UET Security Protocol. This would increase the usage of the next header enumeration

within the encryption header.

Table 3-16 - Next Header Enumeration

Mnemonic Constant Description

UET_HDR_NONE 0x0 No header follows this header.

UET_HDR_REQUEST_SMALL 0x1 The semantic header following the PDS header is the
one illustrated in Figure 3-13.

UET_HDR_REQUEST_MEDIUM 0x2 The semantic header following the PDS header is the
one illustrated in Figure 3-14.

UET_HDR_REQUEST_STD 0x3 The semantic header following the PDS header is the
one illustrated in Figure 3-9, Figure 3-10, Figure 3-11,
or Figure 3-12.

UET_HDR_RESPONSE 0x4 The semantic header following the PDS header is the
one illustrated in Figure 3-18.

UET_HDR_RESPONSE_DATA 0x5 The semantic header following the PDS header is the
one illustrated in Figure 3-19.

UET_HDR_RESPONSE_DATA_SMALL 0x6 The semantic header following the PDS header is the
one illustrated in Figure 3-20.

Reserved 0x7-0xF

3.4.6.2 Opcode Enumerations

The opcode field in the header is enumerated for requests in Table 3-17 and for responses in Table 3-18.

Each opcode space reserves encodings for vendor innovation.

Table 3-17 - Supported Request Messages (Opcode)

Mnemonic Constant Description

UET_NO_OP 0x00 SES message that performs no operation. MUST be a single-
packet message. A FEP is not required to identify a buffer or
completion queue at the target for a UET_NO_OP.

UET_WRITE 0x01 RMA write – used to support fi_write().

UET_READ 0x02 RMA read – used to support fi_read().

UET_ATOMIC 0x03

UET_FETCHING_ATOMIC 0x04 Includes compare and swap.

UET_SEND 0x05 (non-matching) send message.

UET_RENDEZVOUS_SEND 0x06 Incorporated to allow send over ROD (for ordering) with bulk
payload over RUD.

UET_DATAGRAM_SEND 0x07 Legal only when used with UUD PDS type.

 203

Copyright © 2025 Ultra Ethernet ConsortiumTM. All rights reserved.

Mnemonic Constant Description

UET_DEFERRABLE_SEND 0x08 A send message where the payload transfer may be deferred
by the target.

UET_TAGGED_SEND 0x09 A tagged send message using match bits for buffer selection.

UET_RENDEZVOUS_TSEND 0x0A A rendezvous version of the tagged send.

UET_DEFERRABLE_TSEND 0x0B A deferrable version of the tagged send.

UET_DEFERRABLE_RTR 0x0C A deferred send is ready to restart.

UET_TSEND_ATOMIC 0x0D Atomic operations with tagged send addressing semantics.

UET_TSEND_FETCH_ATOMIC 0x0E Fetching atomic operations (including compare and swap)
using tagged send addressing semantics.

UET_MSG_ERROR 0x0F Used to terminate an in-progress message ID. Can be sent as
an early final packet of a message for an in-flight message
that encounters an error.

Reserved 0x10-0x2F

UET_VENDOR_DEFINED[15] 0x30-0x3E An encoding space to allow vendor extensions for
experimentation and differentiation.

UET_OP_EXTENDED 0x3F This opcode is reserved as an opcode space escape to an
extended opcode location to be defined at a later time.

Table 3-18 - Supported Response Messages (Opcode)

Mnemonic Constant Description

UET_DEFAULT_RESPONSE 0x00 A default response, where the return code is RC_OK, the
modified length is the requested length, and the list is
UET_EXPECTED.

UET_RESPONSE 0x01 A response other than a default response.

UET_RESPONSE_W_DATA 0x02 A response carrying data.

UET_NO_RESPONSE 0x03 An indication that no semantic response is available at this
time.

Reserved 0x05-0x2F

UET_VENDOR_DEFINED[16] 0x30-0x3F An encoding space to allow vendor extensions for
experimentation and differentiation.

3.4.6.3 Return Codes

SES can encounter a variety of errors – ranging from errors that may be only informational (I) (e.g.,

RC_AMO_FP_UNDERFLOW) to recoverable errors (R) (e.g., RC_BAD_GENERATION) to errors that are

fatal to the message (U) (e.g., RC_AMO_UNSUPPORTED_OP) to errors that may require more drastic

actions to correct (U) (e.g., RC_UNCOR). SES return codes are listed in Table 3-19.

Table 3-19 - Defined Semantic Return Codes

Mnemonic Constant Scope/
Recover

Description

RC_NULL 0x00 NA/NA The RC status of this transaction is unknown.

RC_OK 0x01 Msg/NA The transaction completed successfully at the
target.

RC_BAD_GENERATION 0x02 Msg/R The generation in the request did not match the
generation at the target index.

 204

Copyright © 2025 Ultra Ethernet ConsortiumTM. All rights reserved.

Mnemonic Constant Scope/
Recover

Description

RC_DISABLED 0x03 Msg/R The targeted resource is disabled. Disabled
resource has precedence over RC_NO_MATCH.

RC_DISABLED_GEN 0x04 Msg/R The targeted resource is disabled and supports the
index generation. Disabled resource has
precedence over RC_NO_MATCH.

RC_NO_MATCH 0x05 Msg/R The message could not be matched at the target
and was dropped. This is returned for matching,
nonmatching, and RMA transactions that fail to
find a buffer.

RC_UNSUPPORTED_OP 0x06 Msg/U Unsupported network message type.

RC_UNSUPPORTED_SIZE 0x07 Msg/U The message was larger than the supported size.

RC_AT_INVALID 0x08 Msg/U Invalid address translation context.

RC_AT_PERM 0x09 Msg/U Address translation permission failure.

RC_AT_ATS_ERROR 0x0A Msg/U ATS translation request resulted in either
unsupported request or completer abort.

RC_AT_NO_TRANS 0x0B Msg/U Unable to obtain a translation.

RC_AT_OUT_OF_RANGE 0x0C Msg/U Virtual address is out of range and unable to
attempt translation.

RC_HOST_POISONED 0x0D Msg/U The host read (e.g. PCIe) indicated the access was
poisoned.

RC_HOST_UNSUCCESS_CMPL 0x0E Msg/U The host read (e.g. PCIe) indicated an unsuccessful
completion.

RC_AMO_UNSUPPORTED_OP 0x0F Msg/U Unsupported AMO message type.

RC_AMO_UNSUPPORTED_DT 0x10 Msg/U Invalid datatype at the target.

RC_AMO_UNSUPPORTED_SIZE 0x11 Msg/U The AMO operation was not an integral multiple of
the datatype size.

RC_AMO_UNALIGNED 0x12 Msg/U The AMO operation address was not natively
aligned to the datatype size.

RC_AMO_FP_NAN 0x13 Msg/I An AMO operation generated a NaN and signaling
is enabled.

RC_AMO_FP_UNDERFLOW 0x14 Msg/I An AMO operation generated an underflow and
signaling is enabled.

RC_AMO_FP_OVERFLOW 0x15 Msg/I An AMO operation generated an overflow and
signaling is enabled.

RC_AMO_FP_INEXACT 0x16 Msg/I An AMO operation generated an inexact exception
and signaling is enabled.

RC_PERM_VIOLATION 0x17 Msg/U Message processing encountered a permissions
violation (e.g., a mismatch in the JobID).

RC_OP_VIOLATION 0x18 Msg/U An operation violation occurred. This includes a
read attempting to access a buffered configured as
write only, a write attempting to access a buffered
configured as read only, or an atomic attempting
to access a buffer that does not have both read
and write permissions.

RC_BAD_INDEX 0x19 Msg/U An unconfigured index was encountered.

RC_BAD_PID 0x1A Msg/U PID was not found at the target node (within the
JobID for relative addressing, or at all for absolute
addressing).

RC_BAD_JOB_ID 0x1B Msg/U JobID was not found at the target node.

 205

Copyright © 2025 Ultra Ethernet ConsortiumTM. All rights reserved.

Mnemonic Constant Scope/
Recover

Description

RC_BAD_MKEY 0x1C Msg/U The specified memory key does not map to a
buffer.

RC_BAD_ADDR 0x1D Msg/U Invalid address (not covered elsewhere) (e.g., an
offset that extends beyond the length of the
configured memory region).

RC_CANCELLED 0x1E Msg/U Response indicating the target cancelled an in-
flight message.

RC_UNDELIVERABLE 0x1F Msg/U Message could not be delivered.

RC_UNCOR 0x20 Msg/U An uncorrectable error was detected. The error is
not likely to be rectified without corrective action.

RC_UNCOR_TRNSNT 0x21 Msg/R An uncorrectable error was detected. The error is
likely to be transient.

RC_TOO_LONG 0x22 Msg/U The message was longer than the buffer it
addressed. The target was configured to reject a
message that was too long rather than truncate it.

RC_INITIATOR_ERROR 0x23 Msg/U This RC echoes back the initiator error field from
the incoming packet.

RC_DROPPED 0x24 Msg/R Message dropped at the target for reasons other
than those enumerated elsewhere.

RC_RESERVED 0x25-0x2F

RC_VENDOR_DEFINED[0-7] 0x30-
0x37

Vendor/
Vendor

RC_RESERVED_WITH_DATA 0x38-
0x3D

 This opcode space is reserved for use with
response-with-data messages. Responses without
data MUST NOT infringe on this space, since they
can easily define an extended RC space using the
reserved bits in the header.

RC_EXTENDED 0x3E Used to extend the RC space. The format for this
extension will be defined when it is needed.

RC_RESERVED 0x3F

When buffered payload schemes are used for unexpected message handling, the initiator cannot

determine whether the message was expected or unexpected at the target. The libfabric provider –

often even the hardware – knows which of those things happened; thus, this information is returned in

the semantic response. By returning this information to the initiator, it significantly simplifies the

synchronous send implementation (MPI_Ssend()).

Table 3-20 - List Where the Message was Delivered

Mnemonic Constant Description

UET_EXPECTED 0x0 Message matched the expected list.

UET_OVERFLOW 0x1 An unexpected header was tracked for this message
(3.4.3.6.2.1 or 3.4.3.6.2.2). Message payload may have
been (3.4.3.6.2.2)

UET_VENDOR_DEFINED[0-1] 0x2-0x3

 206

Copyright © 2025 Ultra Ethernet ConsortiumTM. All rights reserved.

3.4.6.4 Atomic Memory Operations (AMO) Enumerations

Table 3-21 enumerates the atomic opcode encodings, while Table 3-22 enumerates the encodings for

datatypes. A broad set of operations and datatypes are defined based on the datatypes that are defined

in libfabric, which was in turn inherited from the MPI definition. Two types beyond the MPI definition

(two 16-bit floating-point types) are specifically included for AI. Space is reserved in both encodings to

allow for vendor innovation. The UET_AMO_INVAL operation can be used in conjunction with the

delivery complete bit to make the cached item globally observable.

Table 3-21 - Atomic Operation Opcodes

Mnemonic Constant Description

UET_AMO_MIN 0x00 Minimum: Target = MIN(Target, Initiator)

UET_AMO_MAX 0x01 Maximum: Target = MAX(Target, Initiator)

UET_AMO_SUM 0x02 Sum: Target = Target + Initiator

UET_AMO_DIFF 0x03 Diff: Target = Target – Initiator

UET_AMO_PROD 0x04 Product: Target = Target * Initiator

UET_AMO_LOR 0x05 Logical OR: Target = Target || Initiator

UET_AMO_LAND 0x06 Logical AND: Target = Target && Initiator

UET_AMO_BOR 0x07 Bitwise OR: Target = Target | Initiator

UET_AMO_BAND 0x08 Bitwise AND: Target = Target & Initiator

UET_AMO_LXOR 0x09 Logical XOR:

UET_AMO_BXOR 0x0A Bitwise XOR: Target = Target ^ Initiator

UET_AMO_READ 0x0B Atomic Read: Initiator = Target

UET_AMO_WRITE 0x0C Atomic Write: Target = Initiator

UET_AMO_CSWAP 0x0D Compare and swap if equal

UET_AMO_CSWAP_NE 0x0E Compare and swap if not equal

UET_AMO_CSWAP_LE 0x0F Compare and swap if less than or equal

UET_AMO_CSWAP_LT 0x10 Compare and swap if less than or equal

UET_AMO_CSWAP_GE 0x11 Compare and swap if greater than or equal

UET_AMO_CSWAP_GT 0x12 Compare and swap if greater than

UET_AMO_MSWAP 0x13 Swap masked bits:
Target = (Target & Mask) ^ Initiator

UET_AMO_INVAL 0x14 If the location at the target is cached, invalidate the
cache.

Reserved 0x15-0xDF

UET_AMO_VENDOR[0-30] 0xE0-0xFE Vendor defined AMO

Reserved 0xFF

Table 3-22 - Supported Atomic Datatypes

Mnemonic Constant Description

UET_TYPE_INT8 0x00 8-bit signed integer

UET_TYPE_UINT8 0x01 8-bit unsigned integer

 207

Copyright © 2025 Ultra Ethernet ConsortiumTM. All rights reserved.

Mnemonic Constant Description

UET_TYPE_INT16 0x02 16-bit signed integer

UET_TYPE_UINT16 0x03 16-bit unsigned integer

UET_TYPE_INT32 0x04 32-bit signed integer

UET_TYPE_UINT32 0x05 32-bit unsigned integer

UET_TYPE_INT64 0x06 64-bit signed integer

UET_TYPE_UINT64 0x07 64-bit unsigned integer

UET_TYPE_INT128 0x08 128-bit signed integer

UET_TYPE_UINT128 0x09 128-bit unsigned integer

UET_TYPE_FLOAT 0x0A Single-precision floating-point value

UET_TYPE_DOUBLE 0x0B Double-precision floating-point value

UET_TYPE_FLOAT_COMPLEX 0x0C Pair of floats (real, imaginary)

UET_TYPE_DOUBLE_COMPLEX 0x0D Pair of doubles (real, imaginary)

UET_TYPE_LONG_DOUBLE 0x0E Double-extended precision floating-point value

UET_TYPE_LONG_DOUBLE_COMPLEX 0x0F Pair of long doubles (real, imaginary)

UET_TYPE_BF16 0x10 16-bit floating-point value (bfloat 16)

UET_TYPE_FP16 0x11 16-bit floating-point value (FP16 format)

Reserved 0x12-0xDF

UET_TYPE_VENDOR[0-30] 0xE0-0xFE Vendor-defined types

Reserved 0xFF

Table 3-23 - AMO Semantic Control

Field Size Description

UET_AMO_CTRL_CACHEABLE 1 This AMO operation may be cached by the target device.

UET_AMO_CPU_COHERENT 1 This operation should be performed in a way that is coherent with
CPU accesses.

Reserved 3 Reserved

VENDOR_DEFINED[0-2] 3 Vendor-defined encoding space.

The matrix of supported operation types versus datatype is shown in Table 3-24. The tables use ⚫ to

denote a supported operation on a given datatype and  to indicate an optional operation. Blank cells

indicate an unsupported operation. Notable trends in the tables are that product is optional across all

datatypes, and “hard” operations (e.g., 128-bit integer sum) are left as optional. Similarly, only the most

basic operations are required on the complex floating-point formats. Nonsensical operations (e.g.,

logical operations on floating-point numbers) are excluded.

Informative Text:

Typical programming interfaces (e.g., MPI, SHMEM) are silent on the details of handling NaN in

floating-point arithmetic and define it as platform-specific.

 208

Copyright © 2025 Ultra Ethernet ConsortiumTM. All rights reserved.

Table 3-24 - Valid Combinations of Operations and Datatypes (Alternative)

M
in

M
ax

Su
m

D
if

f

P
ro

d

LO
R

LA
N

D

B
O

R

B
A

N
D

LX
O

R

B
X

O
R

R
EA

D

W
R

IT
E

C
SW

A
P

C
SW

A
P

_N
E

C
SW

A
P

_
LE

C
SW

A
P

_
LT

C
SW

A
P

_G
E

C
SW

A
P

_G
T

M
SW

A
P

UET_TYPE_INT8 ⚫ ⚫ ⚫ ⚫  ⚫ ⚫ ⚫ ⚫ ⚫ ⚫ ⚫ ⚫ ⚫ ⚫ ⚫ ⚫ ⚫ ⚫ ⚫

UET_TYPE_UINT8 ⚫ ⚫ ⚫ ⚫  ⚫ ⚫ ⚫ ⚫ ⚫ ⚫ ⚫ ⚫ ⚫ ⚫ ⚫ ⚫ ⚫ ⚫ ⚫

UET_TYPE_INT16 ⚫ ⚫ ⚫ ⚫  ⚫ ⚫ ⚫ ⚫ ⚫ ⚫ ⚫ ⚫ ⚫ ⚫ ⚫ ⚫ ⚫ ⚫ ⚫

UET_TYPE_UINT16 ⚫ ⚫ ⚫ ⚫  ⚫ ⚫ ⚫ ⚫ ⚫ ⚫ ⚫ ⚫ ⚫ ⚫ ⚫ ⚫ ⚫ ⚫ ⚫

UET_TYPE_INT32 ⚫ ⚫ ⚫ ⚫  ⚫ ⚫ ⚫ ⚫ ⚫ ⚫ ⚫ ⚫ ⚫ ⚫ ⚫ ⚫ ⚫ ⚫ ⚫

UET_TYPE_UINT32 ⚫ ⚫ ⚫ ⚫  ⚫ ⚫ ⚫ ⚫ ⚫ ⚫ ⚫ ⚫ ⚫ ⚫ ⚫ ⚫ ⚫ ⚫ ⚫

UET_TYPE_INT64 ⚫ ⚫ ⚫ ⚫  ⚫ ⚫ ⚫ ⚫ ⚫ ⚫ ⚫ ⚫ ⚫ ⚫ ⚫ ⚫ ⚫ ⚫ ⚫

UET_TYPE_UINT64 ⚫ ⚫ ⚫ ⚫  ⚫ ⚫ ⚫ ⚫ ⚫ ⚫ ⚫ ⚫ ⚫ ⚫ ⚫ ⚫ ⚫ ⚫ ⚫

UET_TYPE_INT128 

UET_TYPE_UINT128 

UET_TYPE_FLOAT             

UET_TYPE_DOUBLE             

UET_TYPE_FLOAT_CO
MPLEX

       

UET_TYPE_DOUBLE_
COMPLEX

       

UET_TYPE_LONG_DO
UBLE

            

UET_TYPE_LONG_DO
UBLE_COMPLEX

       

UET_TYPE_BF16             

UET_TYPE_FP16             

Informative Text:

Datatype use in AI applications is a rapidly evolving field. Many modern types (e.g., int4 and smaller,

FP4 and FP6, etc.) are not useful for summation across multiple nodes due to the limited range of the

representation. Similarly, some formats (e.g. MX formats) have variable definitions that are harder to

map well into meaningful network transactions.

3.4.7 Device Expectations

To help ensure high-performance interoperability and a consistent level of isolation between processes

and users, this section provides guidelines for device implementors.

3.4.7.1 Header Field Integrity Enforcement

The JobID MUST be protected within a privileged context that is at the highest level of privilege within

the reachable network. This MAY be achieved by having the privileged context insert the JobID or by

having the privileged context check the JobID at the initiator to confirm that the initiating process is

allowed to use that JobID. One initiating process MAY be part of more than one JobID, and the number

of JobIDs it is allowed to utilize is implementation-defined (a number greater than or equal to 1).

 209

Copyright © 2025 Ultra Ethernet ConsortiumTM. All rights reserved.

The source FA MUST be protected within a privileged context that is at the highest level of privilege

withing the reachable network. This MAY be achieved by having the privileged context insert the source

FA or by having the privileged context check the FA.

Implementation Note:

It may be difficult to achieve a high-performance implementation if the privileged context performing

JobID and FA validation for each message is privileged software running on the host.

In virtualized environments, the JobID and source FA MUST be protected within a configuration state

that is controllable only by the HyperVisor/VMM. In configurations that support out-of-band

provisioning systems, the JobID and source FA SHOULD be enforced by resources that are controlled by

only the provisioning system to protect against HV/VMM escalation attacks.

3.4.7.2 SDI Assignment to Applications

The secure domain identifier (SDI) is used as part of the selection of an encryption key. Devices MUST

limit how the SDI is utilized by applications. An application MUST NOT be allowed to use an SDI that is

not assigned to it. A device MUST support the pairing of SDI and JobID at the initiator. That is, the device

MUST provide a mechanism to guarantee that a specific SDI is used only with JobIDs that are allowed to

use that SDI.

One JobID MAY be allowed to use more than one SDI. The number of SDIs that are usable by a single

JobID is implementation-defined (a number greater than or equal to 1).

3.4.8 UE Transport Semantics: Memory Model

The UET Semantics provides a memory model that is consistent with options that are available through

the libfabric API. The memory model includes a set of minimal requirements that is expected for all

implementations as well as how that memory model is controlled to be stronger for implementations

that choose to do so.

3.4.8.1 Ordering

Ordering consists of two components: message ordering and data ordering. Both message ordering and

data ordering are tightly tied to the underlying transport layer.

3.4.8.1.1 Message Ordering

The RUD and RUDI protocols do not make any message ordering guarantees.

Implementations of the ROD protocol MUST provide message processing ordering for a given “flow”

between SES on an initiator FEP and SES on a target FEP. At minimum, a flow is defined as the traffic

from one PIDonFEP at the initiator to a specific Resource Index associated with a PIDonFEP at a target

FEP. One or more flows may be mapped onto a single PDC.

SES MUST process messages in the order presented to it at a target FEP for a specific {JobID, PIDonFEP,

Resource Index} tuple.

 210

Copyright © 2025 Ultra Ethernet ConsortiumTM. All rights reserved.

3.4.8.1.2 Completion Ordering

If requested, implementations MUST deliver completion notifications at the target after all data has

been placed. Messages marked with the delivery complete bit MUST NOT deliver the target completion

until the corresponding global observability has been achieved (3.4.8.3).

The wire protocol does not provide direct support for fully ordered completions at the target. For

example, rendezvous transactions do not use the same sequence number space for payload delivery as

they do for initial request processing. As another example, the fully ordered completion order for

deferrable sends are based on the order in which matching receives are provided to the

implementation. This is beyond the scope of the transport definition.

Implementation Note:

The transport definition does not preclude libfabric provider implementations that deliver stronger

completion ordering; however, such implementations are vendor-defined. One historical completion

model – where send-after-write ordering is guaranteed – delivers the completion for a send

transaction only after all preceding writes have completed. This requires leveraging the information

from the sequence number space to determine when all prior writes have completed.

3.4.8.1.3 Data Ordering

Data ordering refers to the order in which data for a given target location is placed. Specifically, if two

messages access a single memory address from a single source, data ordering describes the order in

which the accesses become globally observable. Ordering between bytes in a given message is not

defined. That is, the last byte of a message MAY become globally observable in host memory before the

first byte. Similarly, the last byte of a message MAY be the last byte of a message deposited in memory.

Implementations MAY provide stronger ordering semantics, but those are beyond the scope of this

specification and are not likely to be portable.

The RUD and RUDI protocols do not make any data ordering guarantees.

Implementations of the ROD protocol that support atomic operations MAY provide an option to achieve

data ordering (RAW, WAW, WAR) for ATOMIC and FETCHING_ATOMIC operations on data that is 16

bytes in size or less. The granularity of such ordering is limited to the size of a single element of the size

of the datatype. Implementations MAY combine atomic operations on the target FEP so that not every

update is globally observable at the target.

Informative Text:

The node and bus architecture that a FEP is attached to are beyond the scope of this specification;

however, the data ordering model is purposefully relaxed based on known limitations in

contemporary (ca. 2025) architectures and implementations.

 211

Copyright © 2025 Ultra Ethernet ConsortiumTM. All rights reserved.

3.4.8.2 Consistency and Atomicity

If atomic operations are supported, atomicity MUST be guaranteed at the granularity of a single element

of the size of the datatype.

If atomic operations are supported, concurrent atomic operations MUST be consistent at the target at

the granularity of a single element of the size of the datatype. Concurrent operations are defined as two

operations targeting the same {FA, JobID, PIDonFEP, Resource Index, Memory Key/Match Bits, Offset}

tuple where one or more operations start concurrently with or after one or more other operations that

have not completed. Concurrent operations can be initiated from the same FEP or from more than one

FEP. This includes consistency between ATOMIC and FETCHING_ATOMIC operations. This includes

consistency between UET_AMO_ WRITE, UET_AMO_ READ, and other atomic operations.

Implementation Note:

Concurrent access is scoped to a {FA, JobID, PIDonFEP, Resource Index, Memory Key/Match Bits,

Offset} basis because aliasing to a single physical memory location behind those constructs may not

be detectable by the FEP (e.g., when a host is using an IOMMU).

If atomic operations are supported, implementations MAY support consistency between concurrent

send, write, read, and atomic operations; however, it is not required. Users needing write or read

semantics that are consistent with atomic operations MUST use the atomic versions of those operations.

Concurrent operations are defined as two operations that have not completed back to the initiator.

Informative Text:

The classical definition of consistency is used. That is, consistency is defined as having the operations

appear as if they executed in some order. It is a common limitation in network APIs that consistency

between send and an atomic to the same memory location is not guaranteed. The UET atomic

operations include atomic read and atomic write operations to allow upper-level APIs to achieve

consistency, where needed.

Implementations MAY support stronger atomicity. The UET_AMO_CPU_COHERENT semantic control

allows peers to request atomic operations that are coherent with (and atomic relative to) CPU accesses.

If the requested semantics cannot be provided, the target FEP returns RC_AMO_UNSUPPORTED_OP.

Implementation Note:

There are many ways to provide coherent atomics relative to the CPU. As an example, an

implementation could utilize PCI Express atomic operations to implement the corresponding network

atomic operations.

3.4.8.3 Global Observability

The default for global observability is that global observability is not guaranteed. A FEP MUST NOT

indicate that a message has completed until all of the packets have been acknowledged by PDS. In

 212

Copyright © 2025 Ultra Ethernet ConsortiumTM. All rights reserved.

addition, the FEP MUST wait until a semantic response is received before indicating that the message is

complete. This is sufficient for implementing the “transmit complete” semantic in libfabric.

An implementation MAY support stronger global observability. If the DC (delivery complete) bit is set in

a message, an implementation MAY indicate with a semantic failure that the transaction is not

supported. If an implementation does not indicate that the transaction is not supported, then the

implementation MUST defer the semantic response until it can guarantee that the data is globally

observable at the target.

Informative Text:

Global observability can be implemented by issuing a flushing read on PCI Express after issuing a data

write.

While target completion delivery falls largely outside the scope of the semantic specification, libfabric

compliance suggests that target completions should consistently indicate global observability. For

example, in many PCI Express hierarchies, this can be accomplished merely by setting RO=0 for

completion notifications from the FEP.

3.4.8.4 Idempotency

Operations performed using the ROD or RUD protocol MUST appear in memory at the target and at the

initiator as if they were performed exactly once. This creates specific requirements for

FETCHING_ATOMIC operations, which return the “old” data value and then modify the memory at the

target. If a target implements FETCHING_ATOMIC operations, the target MUST buffer the old data to

handle the case where the response is lost. This is true for both the ROD and RUD protocols.

3.4.9 Mapping of *CCL Send/Receive to Proposed Semantics [Informative]

The text in this section is informative and not normative. The section describes two approaches for

mapping *CCL send/receive APIs to the proposed libfabric/UET semantics, where the notation *CCL is

used to denote a generic Collective Communication Library (CCL). Both approaches aim to maintain the

current *CCL buffer usage semantics in conjunction with UET’s reliable connectionless delivery modes.

Other approaches beyond those described in this section are also possible.

The section assumes *CCL APIs of the form shown below:

• *ccl_send: API to send a message with parameters that identify:

o The buffer containing the message and its size.

o The peer rank that the message is destined to.

o A communication context for the message.

• *ccl_recv: API to post a receive buffer with parameters that identify:

o The address and size of the buffer.

o The peer rank that the buffer is being posted for.

o A communication context for the message.

 213

Copyright © 2025 Ultra Ethernet ConsortiumTM. All rights reserved.

In one of the approaches described, the *CCL plugin that implements the *ccl_send/*ccl_recv APIs uses

the libfabric fi_tagged() APIs, while the other approach uses the libfabric fi_rma() APIs.

3.4.9.1 Tag-Based *CCL Mapping

The tag-based *CCL mapping leverages the libfabric fi_tagged() API beneath the untagged send and

receive operations within a typical *CCL API. The *CCL user API is unchanged, but the tagged API

implementation allows the ordered send/receive pair to use an unordered protocol underneath for

better network efficiency. To simplify the underlying implementation, libfabric will be extended to allow

the libfabric user to specify that only “exact match” operations will be supported for a given Resource

Index. In this model, libfabric is initialized with FI_ORDER_NONE. This allows the implementation to

choose a RUD PDC.

A *CCL send must match the corresponding *CCL receive based on the order in which they were issued.

To achieve this while using the RUD protocol, the *CCL implementation maintains the following state

per communication context:

1. A send message sequence number (MSN) per-peer rank

2. A receive MSN per-peer rank

The tag passed through the fi_tagged() API is a communication context identifier concatenated with the

appropriate MSN for that peer. For example, an fi_tsend() uses the send MSN combined with the

communication context identifier. The source rank is part of the local endpoint and is placed in the

initiator field of the packet by the provider. The dest_addr field of the fi_tsend() comes from the

destination in the *CCL send. Each time a *CCL send is called, the send message MSN for the

corresponding rank is incremented. Correspondingly, the fi_trecv() uses the receive MSN combined with

the communication context identifier. The source rank is used to populate the src_addr field. Each time

a *CCL receiver is called, the receive MSN for the corresponding rank is incremented.

The use of the MSN tables is illustrated in Figure 3-34.

Figure 3-34 - Use of MSN Tables

A sequence diagram for tag-based *CCL send and receive operations is shown in Figure 3-35 below.

 214

Copyright © 2025 Ultra Ethernet ConsortiumTM. All rights reserved.

Figure 3-35 - Tag-Based Sequence for *CCL Send and Receive

The sequence above illustrates the expected message sequence and does not distinguish the specific

type of tagged send message. The rendezvous tagged send (3.4.3.4) may also be used. Unexpected

messages can be particularly challenging in tagged environments; however, the use of an unordered

PDC (a RUD PDC) simplifies unexpected message handling. The implementation may use any of the

unexpected message handling mechanisms outlined in section 3.4.3.5.1.

3.4.9.2 RMA-Based *CCL Mapping

The RMA-based mapping requires RMA write and RMA write with immediate functionality, both of

which are provided by UET.

The RMA-based mapping uses a rendezvous queue data structure that is illustrated in Figure 3-36 below.

 215

Copyright © 2025 Ultra Ethernet ConsortiumTM. All rights reserved.

Figure 3-36 - Rendezvous Queue Data Structure

The rendezvous queue works as follows:

• The rendezvous queue is a set of N descriptor rings, one per rank.

o Each ring contains entries for sending to a particular rank.

o The entries are produced by receivers and read by senders in FIFO order.

o The sender maintains a tail index for each ring that is used for consuming entries.

o The receiver maintains a head index for each rank that is used for producing entries.

o The receiver is also responsible for managing the case where a ring is full.

• When a *CCL receiver of rank R posts a receive buffer for a given sender of rank S:

o The receiver writes a receive entry for the buffer to the rendezvous queue of rank S.

o The entry is written to the ring associated with rank R using the head index for rank S

that is maintained at rank R.

• When a *ccl_send API is called by rank S to send to rank R:

o The sender uses the ring associated with rank R.

o The sender accesses the ring entry at the tail index.

o If there is a valid receive entry at the tail index, thenthe sender uses the information in

the entry to write the message data to the receiver’s buffer.

o If there is not a valid receive entry at the tail index, then the sender waits for valid

receive entry to be written at the tail index.

A sequence diagram for write-based *CCL send and receive operations is shown in Figure 3-37 below.

Figure 3-37 - Write-Based Sequence for *CCL Send and Receive

The write-based sequence proceeds as follows:

• An application call is made to the *ccl_recv() API by rank R to post a receive buffer for rank S.

 216

Copyright © 2025 Ultra Ethernet ConsortiumTM. All rights reserved.

• The *CCL at rank R consults the rendezvous queue data structures and calls the libfabric

fi_writedata() API to generate an RMA write with immediate transaction for the purpose of

writing a receive entry for the posted buffer to rank S.

• The completion for the write immediate informs the *CCL at rank S that the receive entry is

available, which is useful when there is a pending send transaction for rank R.

• An application call is subsequently made to the *ccl_send() API by rank S to send a message to

rank R.

• The *CCL at rank S consults the rendezvous queue data structures and calls the libfabric

fi_write() API to generate an RMA write for the purpose of writing the message to the buffer

posted by rank R.

• The completion for the fi_write() is assumed to inform the *CCL at rank S that the message has

been delivered to the posted buffer and is globally observable.

• The *CCL at rank S then calls the libfabric fi_writedata() API to generate an RMA write with

immediate for the purpose of generating a completion to the *CCL at rank R.

• The *CCL then delivers completions to the application for the *ccl_recv() at rank R and the

*ccl_send() at rank S.

The above sequence is for the case when a valid receive entry is available at the time *ccl_send() is

called. If a valid receive entry is not available, the *CCL saves the request in a send pending queue.

When the completion of an RMA write immediate indicates that a receive entry has been posted for

rank R, the send pending queue is checked, and if there is a pending send request for rank R, that

request is removed from the queue and serviced using the posted receive entry. In this manner, the

proposal does not require receiver not ready (RNR) functionality from UET.

 217

Copyright © 2025 Ultra Ethernet ConsortiumTM. All rights reserved.

3.5 Packet Delivery Sublayer (PDS)

The packet delivery sublayer is the part of the Ultra Ethernet Transport (UET) protocol responsible for

delivering packets over IP/Ethernet networks. The packet delivery service offers reliability and ordering

capabilities. PDS exists as a sublayer in the UET, between the semantic sublayer (SES) and the transport

security sublayer (TSS), as illustrated in Figure 3-38.

3.5.1 PDS Terminology

Table 3-25 contains a summary of PDS terminology. The terms defined here are used in this section and

other Transport layer sections. Some of these terms are previously defined in the UE Specification

frontmatter, section 1.2.2, but are listed here again to provide additional context.

Table 3-25 - PDS Terminology

Term Description

ACK Acknowledgement

CC Congestion control (aka congestion management).

CCC Congestion control context

• Used to control traffic congestion in one direction for RUD/ROD.

Clear Use to acknowledge an acknowledgement (ACK) when the ACK requires guaranteed
delivery; that is, the ACK is carrying semantic state that must be delivered – such as error
information or return data.

CP A control packet type used for RUD and ROD delivery services.

Deferrable Send Send with option for the target to indicate the receive buffer is not yet available with a
NACK and later send a restart transmission request (RTR) packet when the receive buffer
is available.

Figure 3-38 - PDS High-Level Architecture Diagram

 218

Copyright © 2025 Ultra Ethernet ConsortiumTM. All rights reserved.

Term Description

DEF_RESP Default response, shorthand for UET_DEFAULT_RESPONSE; this SES Response format is
used for ACKs when multiple PSNs are coalesced into a single ACK and if PDS is re-
creating an SES Response that was not guaranteed delivery.

Destination FEP to which a transmitted packet is sent.

DPDCID Destination PDCID

• PDCID assigned by peer FEP that is the destination of packet (i.e., the FEP on the
other end of the PDC).

Duplicate packet Refers to a packet that is received at the destination a second time, e.g., if the source
retransmits a packet that was successfully received. For RUD/ROD, duplicate packets are
not passed to SES and may be acknowledged.

Entropy value (EV) The entropy used to load balance packets depending upon the encapsulation used. For
UE packets in native IP encapsulation the EV is taken from the pds.entropy header field.
For UE packets encapsulated in UDP the EV is taken from the udp.src_port field.

Forward Direction The direction used by PDS Request packets from initiator FEP to target FEP. ACKs for PDS
Requests packets in the forward direction flow from target FEP to initiator FEP. See
Figure 3-39.

Forward PSN PSN assigned to packets (initiator requests) on the forward direction; may be carried
with return data on return path.

GTD_DEL Guaranteed delivery; this identifies SES Responses that are guaranteed to be delivered
from target to initiator – that is, the response is stateful. Example stateful responses are
error events, use of unexpected list, and fetching atomic responses (data).

Initiator FEP that initiates establishment of a PDC by sending a packet to another FEP.

IPDCID Initiator PDCID

• Assigned by FEP that initiates PDC establishment.

MID Message identifier – assigned by SES, treated as opaque by PDS; this acronym is used to
clarify ordering implications in the packet sequences figures.

• A message is a group of one or more packets using the same message ID.

MO Message offset – packet number within an SES message; this acronym is used to clarify
ordering implications in the packet sequences figures.

MP_Range Maximum PSN range - defines the maximum number of packets (PSNs) at a destination
that can being tracked on the PDC based on available resources.
This value is carried in compressed format for in PDS ACKs using the pds.mpr field.

NACK Negative acknowledgement

Highest PSN Refers to the highest PSN value, noting that when the PSN space wraps, the highest PSN
may have a lower numerical value than older PSNs.

OOR Out of Resources

PDC Packet delivery context including both a forward direction and return direction. The PDC
is ephemeral with dynamic establishment and close.

PDS ACK Generated by PDS and transmitted over Ethernet fabric to a PDS on another FEP; these
carry SES Responses that are delivered to SES at destination.

PDCID Packet delivery context identifier.

PDS Packet delivery sublayer.

PDS Request Generated by PDS and transmitted over the Ethernet fabric to a PDS on another FEP;
these PDS Requests carry an SES Request or SES Response with data (in the return
direction) to be delivered to the destination SES.

PSN Packet sequence number.

 219

Copyright © 2025 Ultra Ethernet ConsortiumTM. All rights reserved.

Term Description

Return Data Data sent from the target to the initiator in response to an SES Request (i.e., read
response). This may be carried in a PDS ACK in the forward direction or in a PDS Request
in the return direction.
Generated by SES and passed to PDS to request delivery of a packet carrying read
response data on a specific ROD or RUD PDC in the return direction.

Return Direction The direction used by PDS Request packets from target FEP to initiator FEP. ACKs for PDS
Request packets in the return direction flow from initiator FEP to target FEP. See Figure
3-39.

Return PSN PSN assigned to packets (target return data) on the return direction.

RTR Restart transmission request – this SES Request is used to restart a deferrable send that
was deferred. It uses a separate PDC, as the target for the original deferrable send acts
as an initiator to send the RTR.

ROD Reliable ordered delivery.

RTO Retransmission time out – event when a timer expires before an ACK or NACK is received
for a transmitted PDS Request or CP

RUD Reliable unordered delivery.

RUDI Reliable unordered delivery of idempotent operations.

SACK Selective acknowledgement.

SES Semantic sublayer.

SES Request Generated by SES and passed to PDS to request delivery of a packet with specified
ordering and reliability service; only the initiator may issue these.
These are relayed to SES at the destination using a PDS Request.

SES Response Generated by SES at receiver and passed to PDS in response to receipt of an SES Request
– these may be carried in PDS ACKs or PDS Requests. Refer to the description following
Figure 3-39 for more information.

SES RTR Deferrable send ‘restart transmission request’; refer to semantic section.

Set / Clear When referring to fields, set means one, b’1, and clear means zero, b’ .

Source FEP that transmits the packet.

SPDCID Source PDCID

• PDCID assigned by FEP that transmitted the packet (i.e., the locally assigned
PDCID for the PDC)

Target FEP that is the destination for a packet from another FEP; establishes a PDC in response
to the initiator.

TC Traffic class.

TPDCID Target PDCID

• Assigned by FEP that is the target of a PDC establishment request.

UUD Unreliable unordered delivery

Note:

• Request – with a capital ‘R’ – is used to refer to refer to SES and PDS header types (SES Request).

• request – with a lower case ‘r’ – is used to refer to SES and PDS actions (SES request to send a packet).

3.5.2 Illustration of PDS Terms

Initiator and target terms are related to a specific PDC. All FEPs may operate simultaneously as both

initiator and as target.

Figure 3-39 uses the following basic sequence with numbers in the ovals matching the following:

1. SES Request generated by FEP-A SES.

 220

Copyright © 2025 Ultra Ethernet ConsortiumTM. All rights reserved.

2. Initiator generated PDS Request carries SES Request to target.

3. SES Request passed to FEP-B SES.

4. SES Response to this request generated by FEP-B SES.

5. Target generated PDS ACK carries SES Response to Initiator → this ACK is part of forward

direction.

6. SES Response passed to FEP-A SES.

The lower arrows depict the same sequence in the return direction for read responses. Congestion

control is not applied to PDS ACKs. The return direction is used to carry large read response packets –

this creates a path from target to initiator where congestion control is applied. Smaller read response

data may be carried in a PDS ACK as described in section 3.5.12.1.

Note that larger read response data is carried in a PDS Request in the return direction. These packets,

labeled ‘SES Return Data’ in Figure 3-39, are technically SES Responses and use a pds.next_hdr field of

UET_HDR_RESPONSE_DATA or UET_HDR_RESPONSE_DATA_SMALL. PDS Requests carry both SES

Requests (in forward direction) and SES Responses with data (in return direction). PDS ACKs carry only

Figure 3-39 - Illustrated PDS Terms

 221

Copyright © 2025 Ultra Ethernet ConsortiumTM. All rights reserved.

SES Responses. Throughout this section the term ‘SES re uest’ refers to a re uest by SES to transmit a

packet using a PDS Re uest. The term ‘SES response’ refers to a response from SES to be relayed using a

PDS ACK. The lower case is used to indicate the PDS function and not the SES next header type.

Informative Text:

PDCIDs are referred to using two different perspectives. Every PDC has an initiator FEP and a target

FEP. These are fixed during the life of the PDC. There is also a source FEP and destination FEP. These

are relative to the FEP that transmitted the packet. That is:

• IPDCID refers to the PDCID assigned by the initiating FEP

• TPDCID refers to the PDCID assigned by the target FEP

• SPDCID refers to the PDCID assigned by the FEP that generated and is transmitting a packet

• DPDCID refers to the PDCID assigned by the FEP that is the destination of a packet

• SPDCID and DPDCID are carried in the PDS headers as pds.spdcid and pds.dpdcid respectively

3.5.3 Packet Delivery Services

The packet delivery sublayer services include:

• Delivery of requests and responses sourced by the local SES to the destination SES.

o PDS processes SES packets – not messages.

▪ SES requests PDS to deliver a packet with specified ordering and reliability.

o PDS processes SES Responses.

 222

Copyright © 2025 Ultra Ethernet ConsortiumTM. All rights reserved.

▪ SES generates a response for each delivered packet, nominally ‘success’ or ‘fail’,

and optionally including a small amount of state (e.g., fail reason) and/or data.

▪ An SES Response may carry data (e.g., fetching atomic or read data).

▪ SES indicates which responses are guaranteed to be delivered.

▪ The SES Response is carried in a PDS ACK packet.

• Receiving and forwarding requests and responses from destination SES to local SES.

• Providing reliability and ordering guarantees for packets received from SES and transmitted on

the wire as well as packets received from the wire and passed to SES.

o PDS offers both reliable and unreliable packet delivery services.

o PDS offers both ordered and unordered packet delivery services.

• Setting up and tearing down dynamic connections between fabric endpoints (FEPs).

o PDS provides a connectionless interface to SES; using dynamically established

ephemeral connections, referred to as packet delivery contexts (PDCs), between FEPs on

an as-needed basis.

o PDS also provides connectionless reliable delivery for idempotent operations; a separate

delivery mode (RUDI – see section 3.5.7.3) is used for this that does not establish any

connection.

PDS defines packet delivery modes that provide varied ordering and reliability services. Each UET profile

defines which packet delivery modes are available within that profile and which congestion

management schemes are available. UET profiles are defined in the UET overview section. UET packet

delivery modes are defined in this PDS section – refer to section 3.5.6.

The UET PDS is designed in close conjunction with SES and CMS. SES is responsible for:

• Segmenting messages into packets provided to PDS for transmission

• Reassembling packets received from PDS into messages

• Generating a response for every request packet received

PDS is unaware of the SES transaction type. Data returned in response to a read request is called ‘return

data’. This is carried in a PDS ACK or in a PDS Request on the return direction as described in section

3.5.12.1.

CMS services include:

• Monitoring telemetry signals to detect network and endpoint congestion.

• Carrying congestion state between sources and destinations.

• Generating signals to control the transmission characteristics of PDS connections. The

transmission characteristics are referred to as transmit controls and are based on the following:

o The amount of data that can be outstanding on a connection or group of connections

(i.e., the window size and/or credit).

• Supporting multipath delivery with congestion aware path assignment.

 223

Copyright © 2025 Ultra Ethernet ConsortiumTM. All rights reserved.

UET breaks larger reads at the semantic sublayer into multiple read request packets where a single read

request packet MUST be limited to requesting a maximum of one MTU. This is done by the semantic

sublayer (SES). Refer to SES section 3.4.4.2 for details.

This specification provides a logical interface between PDS and SES that is used to define PDS behavior.

The actual interface between PDS and SES is implementation specific.

Informative Text:

Implementations may choose to merge PDS and SES.

3.5.4 PDS-SES Logical Interface

This section contains non-normative text that describes an example of the SES-PDS interface from a

logical perspective to illustrate the information that crosses the interface. The interface between PDS

and SES is implementation specific. Table 3-27 summarizes an example PDS-SES interface using C

function signatures. The example interface is depicted visually in Figure 3-40. This example is presented

to provide a framework for better understanding the overall architecture but does use some

terminology that is not introduced until subsequent sections.

The following defines logical structures and commands passed between SES and PDS. This is intended to

describe the concepts without establishing requirements for implementation. The interface includes

source FEP fields, which allows multiple FEPs; a single FEP instance would not necessarily pass the

source FEP fields with each call.

struct uet_ep *src_fep # ptr to struct with source address, etc.

struct uet_ep *dst_fep # ptr to struct with dest address, etc.

uint32_t jobid # SES passed through JobID

uint32_t tss_context # Transport Security Sublayer context (e.g., SDI),

 # used to limit pkts on PDC to a common SDI

uint8_t mode # delivery mode = {RUD, ROD, RUDI, UUD}

uint16_t rod_context # identifies a ROD send queue, used to keep packets

 # from a send queue on same PDC

boolean rsv_pdc # 1 = use reserved PDC, 0 = do not use resv’d PDC

uint16_t rsv_pdc_context # used to keep pkts in same reserved PDC

uint16_t rsv_ccc_context # used to keep pkts in same reserved CCC

uint16_t tx_pkt_handle # SES assigned packet handle at source

uint16_t msg_id # SES assigned message identifier at source

void *pkt # ptr to packet

uint16_t pkt_len # packet length in bytes

void *rsp # ptr to response

uint16_t rsp_len # response length in bytes

uint8_t tc # traffic class

unit8_t next_hdr # controlled by SES, used to determine the type of

 # header in the encapsulated UET payload

bool som # TRUE => start of message

bool eom # TRUE => end of message

bool lock_pdc # TRUE => do not close this PDC until SES indicates

 # the lock can be lifted (separate function)

bool return_data # TRUE => packet must use PDC in orig_pdcid,

 # set for read responses

 224

Copyright © 2025 Ultra Ethernet ConsortiumTM. All rights reserved.

unit16_t orig_pdcid # PDCID from Read request in fwd direction

 # [local ID identifying a specific PDC]

bool orig_psn_val # TRUE => include orig PSN field in PDS Request hdr

uint32_t orig_psn # PSN from Read req or Def Send in fwd direction

bool gtd_del # TRUE => SES Response needs guaranteed delivery

bool ses_nack # SES indication to send a PDS NACK

uint16_t eager_id # SES identifier for eager estimate request

uint32_t eager_size # size in bytes of eager data

uint16_t rx_pkt_handle # PDS assigned packet handle at destination

bool pdc_pause # TRUE => SES stops sending RUD/ROD packets to PDS

bool rudi_pause # TRUE => SES stops sending RUDI packets to PDS

enum pds_error # enum of reasons for PDC reset

Contexts are used to group or isolate packets for PDCs or CCCs. Contexts are assigned by SES and used

by PDS in assigning packets to PDCs and/or CCCs.

Table 3-26 - Packet Contexts

Context Usage

tss_context Used to limit all packets on a PDC to a common SDI; that is, all packets on a
PDC must have the same tss_context.
SDI, secure domain identifier, is defined in the TSS section 3.7.4.

rod_context Used to keep all packets with common rod_context on the same PDC. Multiple
rod_contexts may map to the same PDC. If used with security, this includes the
SDI, and tss_context is ignored.

rsv_pdc_context Used to limit all packets on a PDC to a common reserved group; that is, all
packets on a PDC must have the same rsv_pdc_context. If used with security,
this includes the SDI, and tss_context is ignored.

rsv_ccc_context Used to control which PDCs share a CCC. If this is non-zero, then used to
associate the PDC(s) with a CCC. Included to support a reserved service that
may want separate or shared CCC for multiple PDCs (e.g., multiple
rvs_pdc_contexts). tss_context is not relevant for CCCs.

 225

Copyright © 2025 Ultra Ethernet ConsortiumTM. All rights reserved.

Table 3-27 - Summary of Function-Based PDS-SES Interface Example

Function Name Direction Description and Parameters

ses_pds_tx_req()

SES to PDS
at initiator

SES request for PDS Transmission

src_fep, dst_fep, jobid, mode, rod_context, next_hdr, tc, som, eom,
lock_pdc, tx_pkt_handle, pkt, pkt_len, msg_id, tss_context,
rsv_pdc, rsv_pdc_context, rsv_ccc_context

• msg_id is used to keep all packets of a message on same
PDC, e.g., PDS maintains msg_id to pdcid mapping from som
to eom, or longer if lock_pdc = TRUE.

• lock_pdc prevents PDS from tearing down a PDC, see the
description in ses_pds_unlock() for more information.

• rsv_pdc allows reservation of a number of PDCs for a
dedicated service; rsv_pdc_context and rsv_ccc_context

Figure 3-40 - Illustration of Example PDS-SES Interface

 226

Copyright © 2025 Ultra Ethernet ConsortiumTM. All rights reserved.

Function Name Direction Description and Parameters

allows SES to put a set of packets on a common PDC and
CCC without managing PDCIDs.

pds_ses_rx_req() PDS to SES
at target

PDS reception of SES request

rx_pkt_handle, pkt, pkt_len, next_hdr,
orig_pdcid, orig_psn

• orig_psn is the PSN from the received packet that is used by
SES for some read responses; this is only valid for packets
received on the forward direction.

ses_pds_tx_ret()

SES to PDS
at target

SES return data for PDS Transmission

src_fep, dst_fep, jobid, mode, next_hdr, tc, som, eom,
tx_pkt_handle, pkt, pkt_len, msg_id, return_data, orig_pdcid,
rsv_pdc, rsv_pdc_context

• When return_data is TRUE, this packet is a read response and
the packet must use the same PDC as read request
(orig_pdcid).

• An implementation may integrate this into a single
ses_pds_tx_req() function.

pds_ses_rx_ret()

PDS to SES
at initiator

PDS reception of SES return data

rx_pkt_handle, pkt, pkt_len

• An implementation may integrate this into a single
pds_ses_rx_req() function.

ses_pds_tx_rsp()

SES to PDS

PDS transmission of SES Response

src_fep, dst_fep, rx_pkt_handle, gtd_del, ses_nack, rsp, rsp_len

pds_ses_rx_rsp() PDS to SES PDS reception of SES Response

tx_pkt_handle, rsp, rsp_len

ses_pds_unlock() SES to PDS SES unlocks the PDC, allowing the PDC to be torn down

msg_id

• The lock_pdc parameter to the ses_pds_tx_req() function
indicates that the PDC may not be closed until the return
data for the read request has been returned on the PDC.
The PDC maintains a counter that is incremented each time
a ses_pds_tx_req() function is invoked with the lock_pdc
parameter set. The ses_pds_unlock() function decrements
that counter. If the counter is non-zero, the PDC cannot be
closed.

ses_pds_eager_req() SES to PDS SES request for estimate of appropriate eager size at Initiator

src_fep, dst_fep, mode, tc, eager_id

• Eager data is used only for rendezvous.

• PDS reliability determines if a CCC exists for this dst_fep, tc,
and mode tuple. If yes then CMS calculates the eager size
for that CCC. Otherwise it returns the default eager value.

pds_ses_eager_size() PDS to SES PDS response with estimate of appropriate eager size at Initiator
(return for ses_pds_eager_req)

eager_id, eager_size

• Estimated the eager size value.

 227

Copyright © 2025 Ultra Ethernet ConsortiumTM. All rights reserved.

Function Name Direction Description and Parameters

pds_pause() PDS to SES PDS indication to SES that resources are temporarily not
available

pdc_pause, rudi_pause

• No RUD or ROD request packets are passed to PDS while
pds_pause is TRUE. No RUDI packets are passed to PDS
while rudi_pause is TRUE. PDS calls this with pdc_pause =
TRUE or rudi_pause = TRUE and later calls again with
pdc_pause = FALSE or rudi_pause = FALSE.

• An implementation MAY allow responses when pds_pause()
is invoked with pds_pause = TRUE or rudi_pause = TRUE.

pds_ses_error() PDS to SES PDS unrecoverable Error

 pds_error, tx_pkt_handle or rx_pkt_handle

• If a PDC has an unrecoverable error, PDS returns a
pds_ses_error for every outstanding, unacknowledged SES
request packet associated with the error event – this may be
all outstanding packets if PDS is torn down in error.

PDC processing at the initiator and target is largely symmetrical, accepting requests from SES to transmit

a packet and returning the corresponding SES Response. At the target, SES requests are limited to

responses to SES read requests (i.e., return data).

Only the initiator issues a query for an eager window size as only the initiator can transmit Send

messages. These sequences of related functions are shown in the high-level diagram in Figure 3-41 and

are described in more detail ahead.

Figure 3-41 shows how these example APIs would interact between the SES-PDS at both the initiator and

target. The thicker arrow around the (Request/ACK) and (Return Data/ACK) illustrates the independent

PSN spaces used on the forward and return direction. PSNs are described in section 3.5.8.

Figure 3-41 - Illustration of Example PDS-SES Interface between Initiator and Target

 228

Copyright © 2025 Ultra Ethernet ConsortiumTM. All rights reserved.

3.5.5 PDS Configuration Parameters

Table 3-28 contains a summary of the PDS configuration parameters. At least one set of these

parameters MUST be supported for each FEP. If reserved PDCs are supported, a second set of these

parameters MUST be supported for each FEP used for PDCs in the reserved pool. The reserved pool,

discussed in section 3.5.18, is used for special services.

The two pools are distinguished by adding a three-letter acronym to the start of the name. GEN refers to

the general pool. RSV refers to the reserved pool. For example, Gen_Max_ACK_Data_Size and

Rsv_Max_ACK_Data_Size.

These parameters MUST be configurable with the specified units. The required range MUST be

supported and larger ranges may be supported. The required quanta MUST be supported and finer-grain

quanta may be supported. The default values shown are for reference for a best-effort network using

UET-CC with packet trimming.

Table 3-28 - PDS Configuration Parameters

Name Required Range Description

UET_Over_UDP Boolean
Default: 1

This determines if UET runs over UDP (when
UET_Over_UDP is set) or directly over IP (when
UET_Over_UDP is cleared).

UDP_Dest_Port 0 – 216-1
Default: N/A1

When UET is running over UDP, this number in the
UDP destination port indicates the following protocol
is UET.

IP_Proto_Nxt_Hdr 0 – 255
Default: N/A2

This value is used when UET is run directly over IP.
Until an IP protocol number is assigned for UET, an
experimental number (253-254) can be used2.

UET_Data_Protect

0 - 3
Default: 1

Global configuration – across an entire fabric domain
0 = Neither CRC nor TSS enabled
1 = CRC enabled
2 = TSS enabled
3 = Reserved
Refer to section 3.5.25

Limit_PSN_Range Boolean
Default: TRUE

When set, a PDC will close when the PSN reaches
Start_PSN + 231. This is an optional security feature.
Refer to section 3.5.8.2.2.

Default_MPR 1 - 255
Default: 8

The default MPR assumed when creating a PDC.
Zero is not valid for the default setting; if set to 0, use
1. Refer to section 3.5.12.5.

Max_ACK_Data_Size 0 – 8 KB
Unit: bytes
Quanta: 16 B or less
Default: 16 B

Maximum amount of return data that can be carried
with a PDS ACK sent in response to a PDS Request sent
in the forward direction
(i.e., from target to initiator in response to a read
request from the initiator).
Refer to section 3.5.12.1

Trimmable_ACK_Size 0 – 10 KB
Units: bytes
Quanta: 16 B or less
Default: 10 KB

ACK packets carrying read response data which are
larger than this size use a trimmable DSCP.
Support for trimmed ACK packets is optional. If not
supported, set this to a value larger than the
maximum ACK MTU.

 229

Copyright © 2025 Ultra Ethernet ConsortiumTM. All rights reserved.

Name Required Range Description

ACK_On_ECN Boolean
Default: TRUE

TRUE: reception of a packet that is ECN marked
triggers an ACK generation.
FALSE: ACK generation is not based on whether a
received packet is ECN marked or not.

Enb_ACK_Per_Pkt
(optional – required if
coalesced ACKs is supported)

Boolean
Default: FALSE

FALSE: Use coalesced ACKs.
TRUE: Use ACK per packet.
When TRUE, sources set pds.flags.ar field in every PDS
request. Support for coalesced ACKs is optional.
Refer to section 3.5.12.2.

ACK_Gen_Trigger
(optional – required if ACK
coalescing is supported)

0 – 32 KB
Unit: bytes
Quanta: 256B
Default: 16KB

Configured value in bytes, when ACK_GEN_COUNT
reaches this threshold, an ACK is generated.
See section 3.5.12.4.1.

ACK_Gen_Min_Pkt_Add
(optional – required if ACK
coalescing is supported)

0 – 2 KB
Unit: bytes
Quanta: 64B
Default: 1 KB

Minimum number of bytes added to
ACK_GEN_COUNT when a packet is received at a PDC.
See section 3.5.12.4.1.

RTO_Init_Time 0 – 8 sec
Unit: 128 nsec
Quanta: 128ns or
less
Default: n/a

Retransmit packet after this amount of time if no ACK
or NACK is received within this configured time (timer
at source).
Default depends on CC mode, fabric scale, etc.

Max_RTO_Retx_Cnt 0 – 15
Unit: retry count
Default: 5

Max number of retransmissions for a single packet
before declaring a failure event; maximum setting
indicates infinite retry. Retransmissions based on time
out (RTO) events are counted and retransmission
based on NACKs may be included in the count.
Refer to section 3.5.12.7.

NACK_Retx_Time 0 – 8sec
Unit: 128 nsec
Quanta: 128ns or
less
Default: n/a

This set of configured times is used to determine how
long to delay the retransmission of a NACK’d packet.
At least one configurable value is required. A set of
four values should be provided, where the value is
selected based on the NACK code. That is, each NACK
code is mapped to one of these times or to no delay.
Refer to section 3.5.12.7.

Max_NACK_Retx_Cnt 0 – 31
Unit: retry count
Default: 5

Optional – This counter can be used to set a separate,
possibly higher, threshold for retransmissions based
on NACK packets. Maximum setting indicates infinite
retry.
Refer to section 3.5.12.7.

New_PDC_Timeout_Thresh 0 – 64K
Unit: timeout count
Default: 1024

This threshold defines when an error is reported
indicating a potential DoS attack. It is used with
NEW_PDC_TIMEOUT_CNT.
Refer to section 3.5.8.2.1.

New_PDC_Time 0 – 100msec
Unit: 100usec
Default: n/a

This defines the time allowed for a PDC initiator to
establish a PDC when TSS is enabled. When this
expires, the PDC is closed in error and
NEW_PDC_TIMEOUT_CNT is incremented.

PDS_Clear_Time 0 – 100msec
Unit: 128 nsec
Default: n/a

Optional – This configured time is used to trigger
generation of a Clear Command CP when an ACK is
received that advances CLEAR_PSN and there is no

 230

Copyright © 2025 Ultra Ethernet ConsortiumTM. All rights reserved.

Table 3-29 - PDS Status and Error Indications

Name Required Range Description

PDS Request pending to carry the updated
CLEAR_PSN.
Refer to section 3.5.11.4.4.

Close_REQ_Time 0 – 100msec
Unit: 128 nsec
Default: n/a

Optional – This configured time is used to constrain
the amount of time an initiator is allowed to take to
respond to a request to close with a Close Command
CP.
Refer to section 3.5.8.3.

Tail_Loss_Time 0 – 100msec
Unit: 128 nsec
Default: n/a

Optional – See section 3.5.15.

Max_Tail_Loss_Retx 0 – 15
Unit: retry count
Default: 5

Optional – See section 3.5.15.

Note:
1. As of this specification’s publication, IANA has not assigned a UDP destination port number or a native IP

protocol number. These fields remain configurable, allowing users to set experimental or locally
determined values.

2. The IETF does not allow experimental numbers to be set as default values. Implementations are required to
provide a means of configuring the IP_Proto_Nxt_Hdr parameter. Deployments may use an experimental
value (e.g. 253, 254) until the UEC obtains an IP protocol number.

Name Field Type Description

NEW_START_PSN_TO_ERR Boolean
FALSE: no error

This is set when the NEW_PDC_TIMEOUT_CNT crosses
the configured threshold, New_PDC_Timeout_Thresh

NEW_PDC_TIMEOUT_CNT Bit or counter This is used when TSS is enabled. Incremented when
New_PDC_Timer expires.

CC_TYPE_EVENT 16-bits Optional – Should be clearable.
Bit is set when an ACK_CC arrives with pds.cc_type
corresponding to the bit, e.g., if pds.cc_type = 3 then bit
3 in the field is set.

CCX_TYPE_EVENT 16-bits Optional – Should be clearable.
Bit is set when an ACK_CCX arrives with pds.ccx_type
corresponding to the bit, e.g., if pds.ccx_type = 4 then
bit 4 in the field is set.

NCCX_TYPE_EVENT 16-bits Optional – Should be clearable.
Bit is set when a NACK_CCX arrives with pds.nccx_type
corresponding to the bit, e.g., if pds.nccx_type = 0 then
bit 0 in the field is set.

UET_CRC_ERR_COUNT 32-bit Optional — Incremented when a packet with a CRC
error is received.

PDC_CLOSE_IN_ERR Bit or counter Optional — This is used to indicate (or count) when a
PDC is closed in error.

PDS_TYPE_INVALID 1 -bit to 16-bit
counter

This counter is incremented when a packet is received
with a pds.type field that is not recognized. 1-bit
counter is effectively an event flag.

PDS_CTL_TYPE_INVALID 16-bit counter This counter is incremented when a CP is received with a
pds.ctl_type field that is not recognized.

 231

Copyright © 2025 Ultra Ethernet ConsortiumTM. All rights reserved.

3.5.6 Reliability and Ordering

Four combinations of reliability and ordering define the packet delivery modes. Each combination is

referred to as a delivery mode:

• Reliable unordered delivery (RUD) (section 3.5.7.1)

• Reliable ordered delivery (ROD) (section 3.5.7.2)

• Reliable unordered delivery of idempotent operations (RUDI) (section 3.5.7.3)

• Unreliable unordered delivery (UUD) (section 3.5.7.4)

The reliable delivery modes RUD and ROD are defined in the context of a dynamically established PDC.

PDCs are described in section 3.5.8. The RUDI and UUD modes do not use PDCs.

When a PDC is established, the PDC delivery mode MUST remain the same for all packets on that PDC

until the PDC is closed. The delivery mode selected for a given SES request is determined by SES. How

packets are assigned to a PDC is described in section 3.5.8.1. More than one PDC between a pair of FEPs

MUST be supported. The criteria for deciding when to establish multiple PDCs between a pair of FEPs is

implementation specific. There is no ordering guarantee across packets associated with different PDCs.

Packets of a single SES message MUST be sent on the same PDC. Some SES transactions – such as

rendezvous and deferrable send – may use multiple messages that may be placed on separate PDCs.

Applications that wish to allow distribution of large data transfers across multiple PDCs must split data

transfers into multiple messages above SES, as multiple messages may be mapped across different PDCs.

When using rendezvous, the eager portion of the message may use a different PDC than the rest of the

message. When using deferrable send, the RTR will use a different PDC (initiated by the target of the

deferrable send) and data transfer may use a different PDC than the original deferrable send. Handling

of these two cases is implementation specific.

Implementation Note:

Because there may be multiple PDCs between two FEPs, PDS needs to track the PDC on which the first

packet of a message is sent. Additional packets for the same message are mapped to the same PDC.

PDS tracks the ses.som and ses.eom fields to assure packets of the same message use the same PDC

and to assure a PDC is not closed in the middle of a message.

Once a deferrable send is deferred and restarted via RTR, it is considered a new message and may use

a different PDC.

Name Field Type Description

PDC_REQ_ERR Bit Optional — This indicates a packet with pds.flags.req = 3
was received.

OUT_OF_WINDOW_PSN Bit or counter Optional — This indicates a packet with PSN outside of
the expected window was received.

UNEXPECTED_TRIM Bitmap
Counter

Optional — This counter is incremented every time a
trimmed packet that should not be trimmed arrives.
Bitmap indicates which packet types [ACK, NACK_CP]

 232

Copyright © 2025 Ultra Ethernet ConsortiumTM. All rights reserved.

Packets from different messages MUST NOT be interleaved on a single PDC. Specifically, all packets of a

message MUST be on the wire before a packet from another message is put on the wire. The entire

message is transmitted on a PDC and then the next message is transmitted. PDS may establish an

additional PDC between two FEPs to avoid delaying short messages.

PDS ACKs carrying SES Responses that are marked for guaranteed delivery MUST be delivered.

Specifically, when an SES Response on a RUD or ROD PDC is marked as requiring guaranteed delivery,

PDS is responsible for assuring that response is delivered and cleared. Refer to the Semantics section

3.4.3.3 for details on which responses are guaranteed. More details on guaranteed delivery and clear of

ACKs are provided in section 3.5.11.

There is no acknowledgement for the unreliable delivery mode.

3.5.7 Packet Delivery Modes Overview

3.5.7.1 Reliable Unordered Delivery (RUD)

The RUD delivery mode MUST guarantee that each packet is delivered to the target SES once and only

once. Packets are delivered to the semantic sublayer in the order they arrive from the network. This

mode uses selective retransmission capabilities and enables semantic processing and direct data

placement out of order. Direct data placement refers to writing of data arriving at the Ethernet network

port directly into system memory without CPU intervention. RUD relies on sequence numbering to

identify lost and duplicate packets.

3.5.7.2 Reliable Ordered Delivery (ROD)

The ROD delivery mode MUST guarantee that each packet is delivered to the target SES once and only

once in the order the packets are sent from SES to PDS at the initiator. A ROD PDC requires packets to be

transmitted in the same order in which SES sends the packets to PDS. The packets MUST be transmitted

in order over the network interface using a single network path (i.e., using a single entropy value) and

arrive at the target network port in the same order (excluding error scenarios).

ROD uses GoBackN loss recovery. GoBackN drops all packets that arrive out of order, requiring the

source to retransmit all packets starting from the first missing PSN. That is, the missing PSN is referred to

as ‘N’ and the source goes back to ‘N’ and retransmits.

ROD ACKs MUST be transmitted in the same order as the packets they ACK and read responses MUST be

transmitted on the wire in packet order. There are no ordering requirements between PDS ACKs on the

forward direction and read responses on the return direction. An ACK may be sent and arrive out of

order when that ACK is requested, e.g., based on receiving a duplicate packet or ACK request CP. Refer

to section 3.5.21.1.

3.5.7.3 Reliable Unordered Delivery for Idempotent Operations (RUDI)

Idempotent means a packet can be processed by the target SES multiple times and the result is the

same.For example, multiple RMA Writes to a memory address or multiple RMA Reads from a memory

address.

 233

Copyright © 2025 Ultra Ethernet ConsortiumTM. All rights reserved.

The RUDI delivery mode MUST guarantee that each packet is delivered to SES at least once. Packets are

delivered in the order they arrive from the network and every RUDI packet received from the network is

delivered to SES without attempting to remove duplicate packets. PDS assigns unique identifiers per

packet for RUDI. The RUDI packet identifiers for different packets need not be related to each other (i.e.,

the RUDI packet identifiers are not required to be based off an incrementing counter). RUDI is optimized

to enhance scalability and minimize endpoint state, relative to RUD, by exploiting the relaxed

requirements associated with being able to deliver a packet more than once. RUDI requires no PDS or

SES state at the target, uses a RUDI response per packet, and supports direct data placement out of

order; thus, RUDI is very efficient at the PDS and SES levels.

RUDI does not use ACKs. The response to each RUDI request is a RUDI response. RUDI uses NACK for

early detection of packet loss.

The intended use for RUDI is ‘do lots of RMA Writes/RMA Reads to multiple destinations and then

barrier’. For example, an application can use RUDI to exchange data among participating processes (e.g.,

send a series of write and read operations) and, after all of these are completed, perform another send

that generates a completion at the target(s) to indicate all data movement is done.

PDS has no knowledge of idempotency and relies on SES to identify when RUDI may be used. RUDI

MUST NOT be used for non-idempotent operations.

When using UET congestion control (UET-CC) on a FEP and assigning RUDI to the same traffic class as

RUD/ROD, it is the responsibility of the application to avoid creating congestion in the network. RUDI is

not controlled by UET CC. If RUDI is used for large data transfers then it SHOULD NOT use the same

traffic class as RUD/ROD traffic that is using UET-CC, as it may impact performance of the RUD/ROD

traffic.

3.5.7.4 Unreliable Unordered Delivery (UUD)

The UUD delivery mode is a basic datagram service. An unreliable datagram service enables best-effort

delivery. UUD avoids the need for applications to use a different semantic sublayer (and network API)

such as UDP to leverage unreliable datagrams.

When using UET-CC on a FEP and assigning UUD to the same traffic class as RUD/ROD, it is the

responsibility of the application to avoid creating congestion in the network. UUD is not controlled by

UET-CC. If UUD is used for large data transfers then it SHOULD NOT use the same traffic class as

RUD/ROD traffic that is using UET-CC, as it may impact performance of the RUD/ROD traffic.

Informative Text:

Unreliable ordered delivery is not specified. The four modes provided map to all common fielded use

cases.

 234

Copyright © 2025 Ultra Ethernet ConsortiumTM. All rights reserved.

3.5.7.5 Ordered Packets vs. Ordered Messages

PDS offers ordered and unordered packet delivery modes. PDS manages packet sequence number (PSN)

spaces for each PDC to provide ordered delivery. PDS has no knowledge of message ordering. SES is

responsible for message ordering.

3.5.8 Packet Delivery Contexts (PDC)

A packet delivery context (PDC) is a dynamically established FEP-to-FEP connection that provides the

context needed to implement reliability, ordering, duplicate packet elimination, and congestion

management.

A PDC is used to send requests from an initiator to a target with PSNs that are returned in ACK

responses by the target. Packets are transmitted in both directions. A PDC uses TX state on the initiator

(next sequence number, ACK bitmap, etc.) and RX state (received sequence number state, ACK state

including guaranteed delivery indication, etc.) at the target to provide the PDS service in the forward

direction. Each PDC requires a second set of TX and RX state for the return direction. The aggregate of all

this state is referred to as a PDC.

A single PDC MUST be limited to a single mode – RUD or ROD – and a single traffic class for PDS

Requests.

The PDC MUST manage two independent PSN spaces that are allocated when the PDC is established.

One PSN space is for the forward direction with requests transmitted by the initiator. The second PSN

space is used to carry return data messages from the target to the initiator. Return direction PDS

Requests are acknowledged in the same manner as forward direction PDS Requests.

The following sub-sections apply only to RUD and ROD. RUDI and UUD do not use a PDC.

3.5.8.1 PDC Selection and Sharing

This section defines how packets are mapped to RUD and ROD PDCs, and how a PDC can be shared

among packet flows between a pair of FEPs, where a packet flow is defined to be a group of related

packets between two processes (PIDonFEP). Once a PDC is established (i.e., the pds.flags.syn field is

cleared), the locally assigned PDCID can be used directly to identify the specific PDC. The same

pds.dpdcid is used for all packets arriving to this PDC over the network.

At the initiator, a packet flow is mapped to a PDC based on the mapping tuple described below. The

mapping tuple is built from network header fields and control information provided by SES. The initiator

mapping tuple need not be consistent across FEPs.

The mapping tuple determines which sets of packets can be assigned to a common PDC. All packets

sharing a PDC have the same value for all fields in the tuple. If a packet matches the mapping tuple, it

may use the designated PDC or may be mapped to another PDC between the same pair of FEPs.

However, all packets of a single message MUST use the same PDC.

ROD traffic has a restriction that packets from the same {JobID, source FA, destination FA, source

PIDonFEP, destination PIDonFEP, Resource Index, TC} MUST use the same PDC.

 235

Copyright © 2025 Ultra Ethernet ConsortiumTM. All rights reserved.

RUD and ROD traffic MUST NOT be mapped to the same PDC. The destination FA and TC MUST be

included in all tuples.

Two initiator tuples are defined as required – one each for when TSS is disabled or enabled. Optionally,

multiple tuples may be supported for RUD and/or ROD PDCs. It is beyond the scope of this specification

to define how the tuple is selected for each packet when multiple tuples are supported.

Initiator RUD/ROD PDC mapping tuples:

• {source FA, destination FA, TC, RUD/ROD} tuple MUST be supported.

• {SDI, source FA, destination FA, TC, RUD/ROD} tuple MUST be supported.

o tss_context is an example name used in the logical SES-PDS interface for a field passed

to PDS by SES which can be used to identify the security domain (SDI).

• The ability to include any combination of JobID, destination PIDonFEP, source PIDonFEP, and RI

in the tuples MUST be supported.

• Separate default tuples for ROD and RUD traffic MUST be supported.

• SDI MUST be included in the tuples when TSS is enabled.

• It may be beneficial to use multiple ROD PDCs between a pair of FEPs if there is substantial ROD

bandwidth, as ROD PDCs use a single network path.

Target mapping tuples:

• {ip.src_addr, ip.dest_addr, pds.spdcid} tuple MUST be used to identify the PDC.

o The pds.spdcid field is sufficient, as a FEP MUST use unique PDCIDs across traffic classes

and PDC modes; traffic class or PDC mode are not necessary.

o When pds.spdcid is used to associate received packets with a PDC, the ip.src_addr field

is verified to match the expected value.

o Note that the destination FA (ip.dest_addr) is a constant within a single FEP and may be

omitted in implementations instantiating a single FEP, i.e., {ip.src_addr, pds.spdcid} is

sufficient for a single FEP.

CCC_ID mapping tuples:

• {ip.dest_addr, ip.dscp} tuple MUST be supported

• ROD PDCs MUST be assigned unique CCC_IDs (cannot be mixed with RUD)

A target generating a return data packet in response to a read request MUST use the same PDC the

associated read request arrived on. That is, read response data must use the return direction of the

same PDC that carried the read request.

The initiator PDS MUST assign an initiator PDC Identifier (IPDCID) that is carried on the wire. When the

target accepts the PDC, it MUST assign a target PDC Identifier (TPDCID) that is also carried on the wire.

PDC Identifiers are described in section 3.5.11.5.

 236

Copyright © 2025 Ultra Ethernet ConsortiumTM. All rights reserved.

Establishment of multiple PDCs between two FEPs using the same tuple and traffic class MUST be

supported to enable both RUD and ROD. Establishing multiple RUD PDCs between two FEPs using the

same tuple and traffic class SHOULD be supported to reduce head-of-line blocking that may occur when

one or more large messages are posted to a PDC. A target MUST support as many PDCs as the initiator

attempts to create, up to an implementation-specific limit.

When UET-CC is used, all RUD PDCs between a pair of FEPs sharing a TC MUST be mapped to the same

CCC with the exception of RUD PDCs from the reserved pool, which may use independent CCCs.

When multiple PDCs are established between two FEPs, all packets from a single message MUST use the

same PDC. RUD mode allows different messages to be distributed across multiple PDCs. In ROD mode,

all messages between {JobID, source PIDonFEP, destination PIDonFEP, RI, TC} MUST use a single PDC.

3.5.8.2 PDC Establishment

A PDC is created dynamically on demand. The protocol is defined to allow PDC creation to occur without

incurring a round-trip delay (i.e., with zero startup time). The initiator assigns an IPDCID used as part of

PDC creation. When the target establishes the PDC, it assigns a TPDCID that is returned to the initiator.

PDCID = 0 is reserved and MUST not be used by a PDC. PDCID = 0 is used in NACK messages when a valid

PDCID is not available.

PDC creation refers to allocating PDC resources and transmitting packets. PDC establishment refers to

both initiator and target allocating and using PDCIDs. The target moves directly from created to

established, while the initiator waits until a response packet is received with the target’s PDCID.

Trimmed packets MUST NOT be used to establish a new PDC. A NOOP CP or Negotiation CP may

establish a new PDC.

PDCIDs are intended to be locally unique at the FEP level to enable efficient implementation. An

implementation MUST allocate PDCIDs such that {ip.src_addr, PDCID} is globally unique. For example,

the PDC mode (RUD, ROD) MUST NOT be used to uniquely identify a PDC. This MUST be done at the

initiator and target FEPs. When using UET-CC, a CCC_ID MUST be assigned when the PDC is created. A

RUD PDC SHOULD use an existing CCC_ID if one already exists to the same destination FA and same

traffic class.

An initiator requests PDC establishment by setting pds.flags.syn in a PDS Request packet. This PDS

Request packet may also contain an SES Request. The pds.flags.syn MUST be set in all packets sent on

the PDC until a packet is received for the PDC from the target. Before the first PDS packet is received,

the TPDCID is not known by the initiator, as it is assigned by the target. The PDS Request packet sent by

the initiator overloads the pds.dpdcid field to allow the target to determine the mode of the PDC and

the starting initiator PSN number:

• DPDCID = {pds.pdc_info, pds.psn_offset} when the initiator generates packet with pds.flags.syn

set to 1

 237

Copyright © 2025 Ultra Ethernet ConsortiumTM. All rights reserved.

The pds.pdc_info field is defined in section 3.5.11.6. The pds.psn_offset field is the offset of the PSN

from the starting PSN for the PDC, as illustrated in Table 3-30. The initiator starting PSN MUST be a

random or pseudo-random number at least 216 distance from the last PSN used on that PDC. This is done

to reduce the likelihood of accepting delayed and stale packets in the network. When UET encryption is

enabled, follow the requirements in section 3.5.8.2.1.

Informative Text:

PDC connections are ephemeral with all state cleared on close except the last PSN used, which is

saved for use in selecting a new starting PSN for unencrypted PDCs. That is, the random new

Start_PSN is independent from the destination – one ‘last used PSN’ is stored for each PDC.

Table 3-30 - PSN Offset Field

Packet # on PDC PSN PSN_OFFSET

First Starting PSN + 0 0

Second Starting PSN + 1 1

Third Starting PSN + 2 2

etc. Starting PSN + N N

Arriving PDS Request packets are processed as follows:

1. If a PDS Request is received and there is not sufficient packet buffer to accept the packet, the packet

is dropped and a NACK packet SHOULD be transmitted.

a. Set pds.nack_code = NO_PKT_BUF.

i. If PDC has not yet be established, pds.spdcid in the NACK is set to 0x0 indicating a

PDC was not allocated at the target.

b. Drop the packet and exit processing of the PDS Request packet.

2. Check if the packet is trimmed – if yes:

a. PDS MUST send NACK with pds.nack_code = UET_TRIMMED or UET_TRIMMED_LASTHOP

i. See section 3.5.15.1.

b. If the PDC has not yet be established, the pds.spdcid in the NACK is set to 0x0 if the NACK is

generated.

c. Drop the received trimmed packet and exit processing of the PDS Request packet.

3. If pds.flags.syn = 1:

a. pds.flags.syn is set until the ACK reaches the initiator; thus, many packets may arrive with

the pds.flags.syn bit set.

b. Determine if the PDC already exists using the {ip.src_addr, pds.spdcid} mapping tuple – if

yes:

i. Skip to the processing below for pds.flags.syn = 0.

c. Check if there are PDC resources available – if no:

 238

Copyright © 2025 Ultra Ethernet ConsortiumTM. All rights reserved.

i. Send NACK with pds.nack_code = UET_NO_PDC_AVAIL, UET_NO_CCC_AVAIL,

UET_NO_BITMAP, UET_NO_PKT_BUFFER, UET_NO_GTD_DEL_AVAIL,

UET_NO_SES_MSG_AVAIL, or UET_NO_RESOURCE

ii. Set pds.spdcid in the NACK to 0x0.

iii. Drop the received packet and exit processing of the PDS Request packet.

d. Verify the PDC meets establishment criteria — invalid starting PSN check:

i. When operating without encryption, there are no checks on the starting PSN.

ii. When operating with encryption, refer to section 3.5.8.2.1 – if this check fails,

allocate the resources, send a NACK packet as described in the next step, drop the

received packet and go to the PENDING state and exit processing of the PDS

Request packet.

• NACK packet uses pds.nack_code = UET_NEW_START_PSN,

pds.payload_start_psn = Start_PSN and pds.spdcid set to allocated SPDCID.

iii. Continue to establish the PDC.

e. Check if the PDC is ROD and if the received packet has the Start_PSN – if no:

i. Allocate the resources, send NACK, drop the received packet and exit processing of

the PDS Request packet.

• NACK uses pds.nack_code = UET_ROD_OOO and pds.spdcid set to allocated

PDCID.

f. If the establishment criteria is met based on the above checks:

i. Allocate the PDC resources and TPDCID.

ii. Set Start_PSN for return direction to same Start_PSN as the forward direction;

The PSNs in each direction are independent but start at the same value.

iii. Return TPDCID to initiator in ACK/NACK and exit processing of the PDS Request

packet. The TPDCID is returned as the pds.spdcid.

4. If pds.flags.syn = 0, perform the following checks

a. If pds.dpdcid does not match an active PDCID, send a NACK with pds.nack_code =

UET_INV_DPDCID.

b. Confirm the network header matches the expected source FA (ip.source address); if

ip.src_addr doesn’t match then send a NACK with pds.nack_code =

UET_PDC_HDR_MISMATCH

c. Confirm the delivery mode (RUD/ROD) matches; if not, drop the packet, record error event

and send a NACK with pds.nack_code = UET_PDC_MODE_MISMATCH.

d. Check the PSN (pds.psn) – if outside expected window (section 3.5.12.2), generate a NACK

with pds.nack_code = UET_PSN_OOR_WINDOW.

i. If the PDC type is ROD, check if the pds.psn matches the Expected_PSN – if the PSN

does not match, transmit a NACK with pds.nack_code = UET_ROD_OOO (See

section 3.5.21.1).

e. If the PSN was already received and the pds.flags.retx flag is not set, drop the packet

i. A NACK is not generated; this event is counted and reported if a configured

threshold is exceeded.

 239

Copyright © 2025 Ultra Ethernet ConsortiumTM. All rights reserved.

A NACK cannot be used to create a PDC except in the event when the target sends a NACK with

pds.nack_code = UET_NEW_ START_PSN or UET_ROD_OOO. A PDC MUST be created when a packet

arrives with pds.flags.syn set, the PDC has not yet been created, and either of these NACK codes are

generated.

The target either verifies the tuple on every received packet or relies on the pds.dpdcid once received

packets no longer have the pds.flags.syn set. The source FA (ip.src_addr) and pds.spdcid MUST be

verified on every packet. If the tuple {ip.src_addr, pds.spdcid} is checked and does not match the

expected fields, the packet MUST be dropped and an error recorded, UET_PDC_HDR_MISMATCH.

Figure 3-42 illustrates the startup sequence. The pds.spdcid is the source PDCID, unique at the FEP that

sent the packet. The pds.dpdcid is the destination PDCID. The initiator/target labels consistently refer to

specific FEPs based on how the PDC is created. The source/destination labels vary depending on the

specific task/packet being discussed. For example, in Figure 3-42 both FEP-A and FEP-B may be a source

or destination.

Once a PDC is established, packets with pds.flags.syn set are accepted for PSNs up to the Start_PSN plus

MP_RANGE (as defined in section 3.5.11.13). If a packet is received with a PSN higher than Start_PSN +

MP_RANGE and pds.flags.syn is set, the packet is NACK’d with pds.nack_code = UET_INVALID_SYN.

The source receives an ACK or NACK indicating whether the target established the PDC. If the pds.spdcid

field in the ACK/NACK is zero, then the PDC was not created. In this case, all traffic on the PDC is paused

until a NACK retransmit timer (section 3.5.12.7) expires or an ACK/NACK arrives with a non-zero

pds.spdcid.

If the pds.spdcid in the ACK/NACK is non-zero, then the PDC is established. The source uses that

pds.spdcid from the ACK/NACK as the pds.dpdcid for all subsequent PDS Requests and CPs sent on the

PDC, including any retransmissions that originally had pds.flags.syn = 1.

 240

Copyright © 2025 Ultra Ethernet ConsortiumTM. All rights reserved.

The simplified PDC Establishment State Machine is shown in Figure 3-43. Refer to section 3.5.9 for a

more detailed example of the processing sequence.

Figure 3-42 - PDC Startup using SYN Flag

Figure 3-43 - PDC Establishment State Machine

 241

Copyright © 2025 Ultra Ethernet ConsortiumTM. All rights reserved.

3.5.8.2.1 PDC Establishment with Encryption

When TSS is enabled, a policy is needed to remove the possibility of a replay attack on PDC

establishment packets. When using TSS, the Start_PSN MUST be validated before fully establishing an

encrypted PDC.

Two methods are defined to establish a secure Start_PSN.

1. RANDOM_1RTT_START – In this method a secure PSN takes an RTT to establish a PDC. The first

packet(s) sent from the initiator may be a NOOP CP used to query the Start_PSN, or normal

traffic may be transmitted using pds.psn = 0. The target creates the PDC in PENDING state and

returns a NACK with Start_PSN in the pds.payload.start_psn field, which is randomly generated.

This introduces an RTT of delay in establishing the PDC. When using this method, the closing

ACK does not carry the Expected_PSN.

2. EXPECTED_0RTT_START – In this method a secure PSN uses two fields that are stored with the

SDKDB8 entry, Start_PSN and Expected_PSN. These are initialized to zero when the key is

installed. The Start_PSN is used for new outgoing PDCs. The Expected_PSN is used to define the

minimum accepted Start_PSN for a new PDC. Keeping these separate allows flexibility in

defining when and how each is incremented.

When the PDC opens, the initiator uses the Start_PSN. At the target, if the Start_PSN is greater than or

equal to the local Expected_PSN for the associated SDI, the PDC is accepted. Otherwise, the target opens

a PDC in the PENDING state and transmits a NACK with pds.nack_code = UET_NEW_START_PSN code.

The transmitted NACK carries the Start_PSN in the pds.payload.start_psn field to be used for the PDC.

The transmitted NACK MUST NOT carry a valid pds.spdcid, as the PDC at the initiator MUST NOT move

to the ESTABLISHED state until the correct Start_PSN is used. All packets received on the PDC with the

incorrect Start_PSN are dropped. The PDC remains in the PENDING state at the target until packets with

the correct Start_PSN are received.

When a PDC closes, if the Start_PSN of the PDC is equal to or higher than the current Expected_PSN, the

target sets the associated SDI’s Expected_PSN to the Start_PSN of the closing PDC plus one. An

Expected_PSN is sent back to the initiator as part of the closing ACK. The value returned to the initiator

is not required to be the same as the local Expected_PSN. When using this mode, it SHOULD be chosen

from the new Expected_PSN value at the target or the highest Start_PSN across all open destination

PDCs. The target may incorporate additional heuristics to return any Expected_PSN value greater than or

equal to the new setting of the Expected_PSN at the target.

At the initiator, if the Expected_PSN received in the closing ACK is greater than the current Start_PSN,

the Start_PSN is set to the received Expected_PSN. The initiator may incorporate additional heuristics

for setting Start_PSN at the initiator to a value greater than or equal to the Expected_PSN returned in

the close acknowledgement.

8 SDKDB refers to a set of security properties and fields (e.g., keys) that are associated with an SDI. Refer to TSS
section 3.7.6.

 242

Copyright © 2025 Ultra Ethernet ConsortiumTM. All rights reserved.

The RANDOM_1RTT_START method and EXPECTED_0RTT_START method can interop with both falling

back to allowing the target to determine the Start_PSN, with the associated addition of an RTT delay

establishing the PDC. By using a Start_PSN=0, the EXPECTED_0RTT_START request looks to a

RANDOM_1RTT_START target like a node that is communicating for the first time. The

EXPECTED_0RTT_START request will (almost always) fail the RANDOM_1RTT_START check, and then

the RANDOM_1RTT_START target will send back its Expected_PSN. The EXPECTED_0RTT_START

initiator does not know (or need to know) how the Expected_PSN is generated. In turn, a

RANDOM_1RTT_START initiator will use its Start_PSN when initiating a PDC to an

EXPECTED_0RTT_START target. The EXPECTED_0RTT_START target rejects all initial PSNs and returns a

random starting value that MUST be used when the initiator tries again. The RANDOM_1RTT_START

initiators sees their attempt to start a PDC fail. This interoperability is likely to waste a BDP of traffic on

the network when a RANDOM_1RTT_START initiator starts a PDC to an EXPECTED_0RTT_START; thus,

implementations SHOULD either use a common method across all FEPs or provide a configuration

option to allow a slow start from RANDOM_1RTT_START initiators.

When using a secure Start_PSN, PDC resources may be reserved while the target waits for a valid

Start_PSN to arrive. A potential DoS attack is to replay packets such that PDC resources are exhausted,

all waiting for a Start_PSN. A timer MUST be used to limit how long the PDC waits for a valid Start_PSN.

This timer is set to New_PDC_Time when the first packet is sent. If the timer expires, the event MUST be

counted (NEW_PDC_TIMEOUT_CNT). If this counter crosses the configured threshold,

New_PDC_Timeout_Thresh, the error MUST be reported to the provider. The event is called

NEW_PDC_TIMEOUT_ERR.

Informative Text:

UET errors are reported to the libfabric provider or management interface. Details on these will be

provided in a future version.

3.5.8.2.2 PDS Lifecycle with Encryption

In order to avoid potential replay attacks, when the PSN of a PDC reaches Start_PSN + 231, the PDC

MUST close. This allows a single PDC to carry over 2 billion packets before closing. A new PDC may then

be established using one of the methods in section 3.5.8.2.1.

If Limit_PSN_Range is configured FALSE, the PDC is allowed to continue beyond Start_PSN + 231.

The close follows the same process of completing any in-process messages.

3.5.8.3 PDC Close

A PDC is closed for multiple reasons that include a resource shortage or remaining idle for a configured

amount of time. Closing a PDC is controlled by the initiator PDS but may be triggered by either the

initiator or the target. When the target PDS determines the PDC should be closed, the target sends

either a PDS ACK with the pds.flags.req field set or sends a Close Request CP. CPs are described in

section 3.5.16.

 243

Copyright © 2025 Ultra Ethernet ConsortiumTM. All rights reserved.

The following covers the normal scenario. If either an initiator or target FEP fails to respond or if a NACK

with a fatal error is received, the peer FEP may close the PDC in error. At the initiator, failure to respond

is determined when the maximum number of retry attempts is reached for any packet. At the target, the

max retry attempts reached on the return direction or a local timer on the close processing may lead to

PDC close in error.

Once a PDC begins the closing process, it MUST not accept new SES messages for that PDC. If additional

messages need to be sent between the same pair of FEPs, a new PDC is established. This enables

fairness when PDC resources are stressed. If the PDC being closed is a RUD PDC, the additional SES

requests can be sent on another PDC immediately (either existing or newly opened). If the PDC being

closed is a ROD PDC, the additional SES requests MUST be deferred until the original ROD PDC is fully

closed. This maintains the ordering of messages.

The PDC close procedure is described below. This is triggered by either the initiator deciding to close

(local FEP decision) and sending a Close Command CP or the target FEP sending a Close Request CP to

the initiator.

• If the initiator decides to close the PDC, the PDC close procedure at the initiator is:

o Stop accepting new message requests for this PDC.

▪ A clean closing point on an SES message boundary is identified – the initiator

MUST NOT send a Close Command CP in the middle of a message.

o Complete all SES messages that are in progress.

▪ An SES message remains in progress until all SES packets associated with the

message have been received, transmitted, and responded to, including all

necessary PDS acknowledgements, clears and recovery from any NACKs that

arrive.

▪ This includes receiving return data (or error) for all outstanding read requests.

o When all PDS ACKs for in-progress SES messages have arrived, the initiator transmits a

PDS Close Command CP.

o Wait for PDS ACK of the Close Command CP packet to arrive.

▪ Close the PDC and free resources when this ACK is received.

▪ If this does not arrive after Max_RTO_Retx_Cnt retransmit, close the PDC in

error.

• The PDC close procedure at the target is:

o Receive a Close Command CP.

▪ The Close Command CP implicitly clears all PSNs.

▪ There should be no active PSNs when this is received – no packets outstanding

on the return direction; if the PDC is not idle then a PDC_CLOSE_IN_ERR

SHOULD be recorded for diagnostic purposes.

o If a Close Command CP was already received and a packet with a higher PSN is received,

transmit a NACK with pds.nack_code = UET_CLOSING.

o Transmit a PDS ACK for the Close Command CP packet.

 244

Copyright © 2025 Ultra Ethernet ConsortiumTM. All rights reserved.

▪ If using UET encryption and the EXPECTED_0RTT_START method for Start_PSN,

return the Expected_PSN with the closing ACK (See section 3.5.8.2.1).

▪ Close the PDC and free resources.

The Close Command CP is allocated a unique PSN – the next PSN in the sequence – and the initiator

MUST retransmit the packet if an ACK is not received. If the target receives a Close Command CP for a

PDC that is already closed, the target MUST transmit a PDC NACK to the initiator.

If a target decides to close the PDC, it sends a Close Request CP. A timer – Close_REQ_Timer – may be

used to constrain the time the initiator takes to send a Close Command CP. If the initiator does not issue

a Close Command CP in response to the Close Request CP within the configured time (Close_REQ_Time),

the target may issue a NACK with pds.nack_code = UET_CLOSING_IN_ERR. The PSN is set to be one

larger than the highest PSN that was received, acknowledged, and cleared. The PDC is then closed.

The simplified state machine for closing a PDC is shown in Figure 3-44. At the initiator, once a PDC

moves to QUIESCE state, new messages are not started. If a new message is received it is either pushed

to another PDC or, if resources are stressed, it may be pushed to a pending queue (either in HW or SW)

that holds packets waiting for PDC resources. Handling this is implementation specific.

In the example above, ‘close events’ are determined locally within a FEP and include:

1. Receiving a Close Request CP from the target.

2. Identifying limited PDC resources at the initiator and deciding to free a PDC by closing it.

3. Expiring a PDC lifetime timer.

The initiator does not need to wait for a clear from the target for any read response unless the read

response is stateful. If a stateful response to a read response is sent, then the initiator MUST wait for

that PSN to be cleared before issuing a close.

The Close Command CP is an implicit clear of all PSNs on forward direction and ACK for all PSNs on the

return direction. If a Close Command CP arrives at a target and that target has any outstanding

operations, these are all terminated and the PDC is closed. If the target detects an error – such as an

incomplete message – then the PDC is closed in error and the event reported.

Refer to section 3.5.9 for a more detailed example state machine.

 245

Copyright © 2025 Ultra Ethernet ConsortiumTM. All rights reserved.

3.5.8.4 PDC Lifetime

The lifetime of a PDC depends on the use case of the network. An implementation may choose to

provide configuration parameters to control PDC lifetime, but these are not specified here. A PDC may

exist for a very brief time – as short as the time to send a single packet and receive the associated

acknowledgement plus one RTT. This could occur when there is pressure on the number of PDCs

supported by an implementation. Alternatively, a PDC may exist for an extended period, as long as the

life of an application (or more).

Figure 3-44 - Single PDC Close State Machine

 246

Copyright © 2025 Ultra Ethernet ConsortiumTM. All rights reserved.

An example sequence for PDC setup/teardown is shown in Figure 3-45. Note the Close Command CP is

sent directly after the ACK = 132, so these packets may arrive at the target in either order.

3.5.9 PDS Event State Machine

This section describes the function of PDS as a set of state machines. The RUD protocol is the focus of

these state machines. The implementation described is not required.

A state is represented as a block with associated processing within the block and arrows showing the

possible next steps. Arrows from IDLE or ESTABLISHED are labeled with the event that triggers the move

Figure 3-45 - Sequence for PDC Setup and Teardown

 247

Copyright © 2025 Ultra Ethernet ConsortiumTM. All rights reserved.

to the next functional block. Arrows from a functional blocks are labeled with the condition that

determines which path to take. Some arrows use an unconditional transition designated as UCT.

Following a state machine figure are descriptions of the notable processing within each block. The

abbreviations req and rsp are used for request and response, respectively. PDS behavior is described by

the following four state machines:

• Top Level - Shows how the state machines are connected

• Manager State Machine - Controls PDC allocation and closing, resource management, and

any errors that are not associated with an active PDC

• Initiator State Machine - PDC state machine when acting as an initiator

• Target State Machine - PDC state machine when acting as a target

The initiator and target state machines are illustrated primarily as processing sequences from the

ESTABLISHED state – the largest rectangle in the center of the diagram. From there, events occur that

lead to a series of processing steps and back to the ESTABLISHED state. Each line is labeled with the

event that triggers the processing.

The PDC establishment state machines in section 3.5.8 show the states through which a PDC moves. The

PDC event state machines in this section shows how events are handled. Most of these events occur in

all of the PDC establishment states shown in the PDC establishment state machines. Therefore, the PDC

state is reflected as a variable (State) in these event state machines.

3.5.9.1 PDS Top Level

Figure 3-46 illustrates the relationship between the PDS manager state machine and individual PDC

state machines, including the interface events to PDS from SES and TSS. The per-PDC state machines

shown in Figure 3-46 include the initiator and target state machines described in sections 3.5.9.3 and

3.5.9.4.

 248

Copyright © 2025 Ultra Ethernet ConsortiumTM. All rights reserved.

3.5.9.2 PDS Manager

Within PDS, some functions are general and others are specific to individual PDCs. Examples of general

functions include the allocation of PDCs, the handling of error events that are not associated with a

specific PDC, the assignment of SES packets to PDCs, etc. These services are provided by the PDS

manager state machine. Figure 3-47 illustrates the services within the PDS manager.

Figure 3-46 - PDS Top Level State Machines

 249

Copyright © 2025 Ultra Ethernet ConsortiumTM. All rights reserved.

Figure 3-47 - PDS Manager State Machine

IN
IT
IA
LI
 E

o
p
en
_c
n
t
=

p
en

d_
cn
t
=

cl
o
si
n
g
_c
n
t
=

ID
LE

R
ES

O
U
R
C
E
C
H
EC

K

if
(p
en
d
_
cn
t

 (o
p
en
_c
n
t

cl
os
in
g
_
cn
t

cl
o
se
_
th
re
sh
)

 s
el
ec
t_
p
d
c_
2
cl
os
e
()

 C
lo
se
_
re

→

 s
e
le
ct
e
d

 c
lo
se
_
cn
t

C
O
N
F
IG
U
R
A
T
IO
N
:

SE
S
TX

 R
EQ

a
ss
ig
n_
p
d
c(
)

if

p
d
c_
o
p
en

O
O
R

 a
ll
o
c_
p
d
c(
)

 o
p
en
_
cn
t

 if
 O
O
R

 fw

d_
p
kt
 =
 F
A
LS
E

el
se

 m
sg
m
a
p(
m
sg
id
,
sP
D
C
ID
)

 fw

d_
p
k
t
=
TR
U
E

R
X
 P
K
T

ch
k
_
p
d
c(
)

if
un
ex
pe
ct
ed

: f
w
d_
p
kt
 =
 F
A
LS
E

el
se

if
rx
_
re

p
d
c_
o
p
en

O
O
R

al
lo
c_
pd
c(
)

o
p
en
_c
n
t

if
O
O
R

fw

d
_
pk
t
=
 F
A
LS
E

el
se

 f
w
d_

p
k
t
=
TR
U
E

TX
 O
O
R

 P
EN

D
 Q

p
e
n
d_

pk
t(
)

 p
e
n
d_

p
e
n
d_

 m
e
=

p
e
n
d_

cn
t

if
p
e
n
d
_
 _

fu
ll

 p
a
u
se
_
se
s
=
 T
R
U
E

fw
d
_p
kt
 =
=

FA
LS
E

FW
D
 P
K
T
TO

 P
D
C

se
s_
tx
_
re

 r
x_
p
kt

se
s_
tx
_r
sp

→

(s
en

d
 p
ac
ke

t
to
 a
p
p
ro
p
ri
at
e
P
D
C

St
at
e
M
ac
hi
ne

)

fw
d
_p
kt
 =
=

TR
U
E

U
N
EX

P
EC

TE
D

 R
X
 O
O
R

if
O
O
R
 :
ge
n
N
A
CK

el
se
 u
n
ex
p
ec
te
d:

 c
hk
_
un
ex
p
_
ev

en
t(
)

 I
f e
na
bl
ed

,
ge
n
N
A
CK
 p
ac
ke
t
→

ev
en

t
cn
t

 (
u
p
d
at
e
ap

p
ro
p
ri
at
e
er
r
co
u
n
t)

d
ro
p
 p
ac
ke

t

C
LO

SE

 P
EN

D
 D
EQ

fr
ee

_
p
d
c(
)

cl
os
e
_
cn
t
=
 c
lo
se
_
cn
t
 1

if
pe
nd

_
cn
t

po
p
pa
ck
et

pe
nd

_

pe
nd

_c
n
t
=
 p
en

d_
cn
t

pk
t_
d
e

 =
 T
R
U
E

 p
au
se
_s
es
 =
 F
A
LS
E

 e
ls
e

op
en

_c
n
t
=
 o
p
e
n_

cn
t

pk
t_
d
e

 =
 F
A
LS
E

pe
nd

_

m
e
=
=
 E
XP
IR
ED

P
EN

D
 T
IM

EO
U
T

ev
en

t
cn
t

p
en

d_
cn
t
=
pe
nd

_
cn
t
 1

d
ro
p
 p
ac
ke

t

→

p
kt
_
de

=
=
 T
RU

E

K
EY

U
C
T:
 U
nc
on
di
 o
na
l T
ra
ns
i
on

fw
d
_p
kt
 =
=
 F
A
LS
E

U
C
T

p
kt
_
d
e

 =
=
 F
A
LS
E

U
C
T

U
C
T

U
C
TSE

S
TX

 R
SP

a
ss
ig
n_
p
d
c(
)

if
 i
n
va

li
d

 S
ES

 →
 e
rr
o
r
ev

en
t

 e
v
e
n
t
cn
t

 d
ro
p
 p
a
ck
e
t

el
se

 fw

d_
p
k
t
=
T
R
U
E

fw
d
_p
kt
 =
=
 F
A
LS
E

U
CT

fw
d
_
pk
t
=
=

TR
U
E

fw
d
_
pk
t
=
=
 T
R
U
E

 250

Copyright © 2025 Ultra Ethernet ConsortiumTM. All rights reserved.

The PDS manager pre-processes packets from SES and the network and assigns each to a PDC state

machine, or it handles the packet locally if the packet is not associated with a specific PDC. Its functions

include:

• assign_pdc()

o Checks the fields used to assign packets to PDCs (e.g., {JobID, destination FA, traffic

class, delivery mode}).

o If a PDC already exists, then forward the packet to that PDC.

o If a PDC does not exist, then if this is a tx_req then allocate a PDC or if this is a tx_rsp

then report the error to SES.

• alloc_pdc()

o Checks if a PDC is available, allocates a new PDC, and forwards the packet to that PDC

state machine for further processing.

o If no PDC is available because PDS is out of resources (OOR), pass SES-generated

packets to a pending queue or transmit a NACK for packets received over the network.

• free_pdc()

o When a PDC is closed, reset all state except PSN as follows:

▪ If not using UET security, save last PSN for use in calculating Start_PSN the next

time a PDC is allocated (i.e., to assure the next randomly assigned PSN is at least

216 distance from the last PSN as described in section 3.5.8.2).

▪ If using UET security and using EXPECTED_0RTT_START for new Start_PSNs,

then follow the procedure described in section 3.5.8.2.1.

▪ If using UET security and using RANDOM_1RTT_START for new Start_PSNs, no

need to save state, as a random new Start_PSN will be generated during the

next PDC creation.

• msgmap()

o Associates each message ID with a PDC on start of message (som).

o All packets in a message go to the same PDC; remove mapping on end of message (eom)

or, if locked (e.g., while waiting for read return data), when the unlock event is received.

• pend_pkt()

o Implements a pending queue that holds up to N packets waiting for PDC resources.

o When a packet is pushed to the pending queue, start closing a PDC to allow the PDC to

be reallocated; there are many ways this can be implemented.

• select_pdc_2close()

o Selects a PDC to be closed when there are packets in the pending queue, thus freeing

resources to transmit the pending packets.

o Ideally an idle PDC is closed, otherwise choose randomly or use an implementation

specific policy.

o When the number of unallocated PDCs reaches a configured threshold, this function is

called to begin closing PDCs. The recently closed PDCs create a pool of available PDCs for

packets arriving from SES to new destinations.

• chk_pdc()

 251

Copyright © 2025 Ultra Ethernet ConsortiumTM. All rights reserved.

o Verifies that packets received from the network are valid, checks for unexpected events

that are not associated with a specific PDC (e.g., NACK_NO_CONN or

NACK_INV_DPDCID).

o If invalid, then do not forward the packet to a PDC state machine.

• chk_unexp_event()

o Checks the type of unexpected event and determine whether to transmit a NACK.

3.5.9.3 PDC Initiator State Machine

Figure 3-48 provides an illustrative example skeleton of a PDS state machine that manages the initiator

side of a PDC. The states shown in the simplified PDC establishment and close state machines of Figure

3-43 and Figure 3-44 are represented by the State variable shown in Figure 3-48.

A PDC initiator state machine handles packets from SES to the target and packets arriving from the

target. Its functions include:

• chk_tx_bitmap()

o Checks the distance between the lowest unacknowledged PSN and the highest

acknowledged PSN.

o If the distance reaches the maximum PSN range (MP_RANGE), then pause the PDC until

the lower PSN(s) are acknowledged.

• update_ccc()

o Pass the received bytes, round-trip time, etc. to the CCC.

o The send_req() process is constrained by CC scheduling.

• update_tx_psn_tracker()

o Update the PSN bitmap to reflect which packets have been acknowledged.

o Determine if a Clear Request or ACK Request CP should be transmitted; or if a request

packet should be retransmitted (note that this is not called out in the state machine).

• process_rx_req()

o Process a read response at the initiator.

• update_rx_psn_tracker()

o Update the PSN bitmap to reflect which packets have been received.

o Determine if an ACK should be transmitted.

• gen_ack()

o Check the criteria for generating an ACK; if TRUE, then transmit an ACK packet.

• send_close()

o Send a Close Request CP to the target. This is done by sending a Close Command CP.

 252

Copyright © 2025 Ultra Ethernet ConsortiumTM. All rights reserved.

Figure 3-48 - PDC Initiator State Machine

C
LO

SE
D

O
P
EN

IN
G

u
n
a
ck
_
cn
t
=

o
p
e
n_
m
sg
 =

S
Y
N
 =
 1

 =
 C
RE
AT
IN
G

TX
 R
EQ

p
kt
.r
to
 =
 B
A
SE
_
R
TO

p
kt
.r
et
ry
_
cn
t
=

 u

n
a
ck
_
cn
t

p
k
t.
p
sn
 =
 s
et
PS
N
()

u
p
d
a
te
_p

sn
_t
ra
ck
e
r(
)

ch
k_

tx
_
b
it
m
a
p(
)

if(
M
P
R)
 p
au
se
_
P
D
C

if
so
m
:
op
en

_
m
sg

=1

if
e
o
m
: o

p
e
n_

m
sg

=
1

R
X
 A
C
K

if
S
Y
N
==

1

 d
P
D
C
ID
=
p
k
t.
sp
dc
id

 =
 E
ST
A
BL
IS
H
ED

 S
Y
N
=

u
p
d
a
te
_
tx
_
ps
n
_
tr
ac
ke
r(
)

if
n
e
e
d
 c
le
a
r:
 g
e
n
_c
m
()

if
n
e
e
d
 a
ck
:
g
e
n_

cm
()

u
p
d
a
te
 u
n
a
ck
_
cn
t

u
p
d
at
e
p
au

se
_
P
D
C

 u
p
d
at
e_
cc
c(
)

if
R
EQ

 =
 c
lo
se
 r
e

u
es
t

tr
ig
ge

r
cl
o
se
_
ev

en
t

N
A
C
K

 R
TO

if
(p
k
t.
re
tr
y
_c
n
t
<
 M

A
X_

RE
TX

_C
N
T)

 p

k
t.
re
tr
y
_c
n
t

p
k
t.
rt
o
 =
 B
A
S
E_

R
T
O
 *
 2

re
tr
y
_
cn
t

e
ls
e
 c
lo
se
_
e
rr
o
r
=
tr
ue

N
E
W
 P
SN

pk
t.
p
sn
 =
 s
ec
u
re
P
SN

()

R
X
 R
EQ

p
ro
ce
ss
_r
x_
re
 (
)

if
 (t
ri
m

rx
_
er
ro
r)

e
ls
e
 i
f
If
du
pl
ic
at
e
or
 o
ut
 o
f

v
a
li
d
 r
a
n
g
e
 p
sn
:
d
ro
p
 p
k
t

e
ls
e

 u

p
d
a
te
_
rx
_
ps
n
_
tr
ac
ke
r(
)

 i
f S

Y
N
==

1

 d
P
D
C
ID
=
p
k
t.
dp
cd
id

 =
 E
ST
A
BL
IS
H
ED

 S
Y
N
=

=
=
N
ew

PS
N

 S
YN

==
1

(

==
C
lo
se

cl
os
e
_r
e

 =
=
 T
RU

E

 c
lo
se
_
er
ro
r
=
=
 T
R
U
E
)

o
p
en
_
m
sg
 =
=

U
C
T

B
EG

IN
 C
LO

SE
cl
os
in
g
=
 T
R
U
E

=
 A
C
K
 W

A
IT

→

pd
c_
cl
o
se
_

m
e
r
=
 C
LO

S
E
_T

IM
E

TA
R
G
ET

 C
LO

SE

=
 C
LO

SE
 A
C
K
 W

A
IT

cl
o
si
n
g
 =
=
 T
R
U
E

 =
=
cl
o
se
 P
S
N

U
C
T

U
CT

R
X
 C
O
N
TR

O
L

pr
oc
es
s_
rx
_
ct
rl
()

O
P
EN

ED

U
CT

U
C
T

R
ET

X

cl
o
se
_
er
ro
r
=
=

F
A
LS
E

 =
=
(R
ET
X

N
ew

P
SN

)

 p
kt
.r
to

T
X
 C
O
N
TR

O
L

p
ro
ce
ss
_
tx
_c
tr
l()

cl
o
si
n
g
 =
=
 T
RU

E

 o
p
e
n_

m
sg
 =
=

K
EY

U
C
T
: U

n
co
n
d
i
o
n
a
l
T
ra
n
si

o
n

M
P
R:
 M

ax
 P
SN

 R
an
ge

cl
o
se
_e

rr
o
r
=
=

TR
U
E

TX
 A
C
K

up
da
te
_
ps
n_

tr
ac
ke

r(
)

ch
k
_
ac
k
(T
X
_
A
CK

)

if
TX

_
A
CK
 =
 T
R
U
E

U
C
T

U
C
T

ge
n_
cm

 =
=
TR

U
E

C
LO

SE
sa
ve
Ex
pe
ct
ed
PS
N
()

fr
ee
PD

C
()

=
 C
LO

SE

 →

U
C
T

U
CT

U
C
T

U
C
T

U
C
T

U
C
T

C
LO

SE
 R
EQ

cl
o
se
_
re

=
 T
R
U
E

 =
 Q
U
IE
SC
E

 (
P
D
S
 M

a
n
a
g
e
r
o
r
R
X
 A
C
K
 o
r
R
X
 C
M
)

U
C
T

 253

Copyright © 2025 Ultra Ethernet ConsortiumTM. All rights reserved.

3.5.9.4 PDC Target State Machine

Figure 3-49 illustrates example processing at the target on a per-PDC basis. Most state machine

processes are to the same as the initiator state machine processes with the following exception:

• chk_secure_psn()

o If secure PSN is enabled, this process checks if the Start_PSN from the initiator is

acceptable; if invalid, a NACK with the alternate Start_PSN is transmitted.

Figure 3-49 - PDS Target State Machine

CLOSED

closing = FALSE
re closing = FALSE

TX REQ

pkt.rto = BASE_RTO
pkt.retry_cnt =
 unack_cnt
pkt.psn = setPSN()
chk_bitmap()
 If(MPR) pause_PDC
If som: open_msg
If eom: open_msg 1

NACK RTO
If (pkt.retry_cnt < MAX_RETX_CNT)
 pkt.retry_cnt
 pkt.rto = BASE_RTO * 2 retry_cnt

 Else close_error = true

SECURE PSN 2

chk_secure_psn()
if invalid_psn:

 else
 bad_psn = FALSE

 bad_psn == TRUE

 bad_psn == FALSE

 == Close
 close_error == TRUE

bad_psn == FALSE

 bad_psn == FALSE
REQ CLOSE

pdc_close_ mer = CLOSE_TIME

BEGIN CLOSE
closing = TRUE
pdc_close_ mer = CLOSE_TIME
 = ACK_WAIT

closing == TRUE unack_cnt == allACK == TRUE

UCT

UCT

RX CONTROL
process_rx_ctrl()

 bad_psn == FALSE

ESTABLISHED

UCT UCT

 == (RETX pkt.RTO) bad_psn == FALSE

TX CONTROL
process_tx_ctrl()

 bad_psn == FALSE

 bad_psn == FALSE

KEY

UCT: Uncondi onal Transi on
MPR: Max PSN Range

RX REQ
process_rx_re ()
if (trim rx_error)

else
 update_psn_tracker()

chk_clear(): gen_cm

UCT

UCT

gen_cm == TRUE

CLOSE

saveExpectedPSN()
free_pdc()
 = CLOSED
 →

OPEN
If secure_psn:
 dPDCID=pkt.spdcid
 process_rx_re ()
 bad_psn = FALSE
 = ESTABLISHED
 else = PENDING
chk_rx_error()
If (error_chk = OPEN)
 update_psn_tracker()

 else

secure_psn trim = FALSE

SECURE PSN 1

dPDCID=pkt.spdcid
process_rx_re ()
chk_secure_psn()
if invalid_psn:

 bad_psn = TRUE
 = PENDING
 else bad_psn = FALSE

 secure_psn trim = FALSE

bad_psn == FALSE bad_psn == TRUE

bad_psn == TRUE

TX ACK

update_psn_tracker()

gen_ack()
 if TX_ACK = TRUE

RX ACK
update_psn_tracker()
 update unack_cnt
 update pause_PDC

update_ccc()

If close
 close_cmd = TRUE
 = QUIESCE

UCT

 == Close == Close

OPEN
if (trim)

 trim = TRUE
 else trim = FALSE

trim = TRUE

error_chk = OPEN

error_chk = OPEN

 254

Copyright © 2025 Ultra Ethernet ConsortiumTM. All rights reserved.

3.5.10 Header Formats

This section specifies the PDS header formats.

Formats are defined for the following headers:

• Entropy

• RUD/ROD Request

• RUD/ROD Acknowledgement

• RUD/ROD ACK with CC

• RUD/ROD ACK with extended CC

• RUD/ROD CP

• RUDI Request/Response

• Negative Acknowledgement

• UUD Request

In all PDS headers, reserved fields MUST be set to zero on transmission and ignored on reception.

section 3.5.10 presents the header fields in a compact tabular format with a brief description of each

field. section 3.5.11 provides more detailed descriptions of each field.

3.5.10.1 UET Entropy Header

The UET entropy header is used when running UET directly over IPv4 or IPv6, without UDP. It appears

directly after the IP header. The format of the UET entropy header is shown in Figure 3-50. The header

fields are described in Table 3-31.

Table 3-31 - Fields of UET Entropy Header

Field Name

Size
(in bits)

Field Description

entropy

16

Entropy value used — typically by fabric switches — for path selection

• Positioning at this location places the entropy value in the same
packet location as the UDP source port when UDP is not present

rsvd 16 Reserved

Native IPv4, native IPv6, and UDP encapsulations are specified. The PDS header formats are the same for

all encapsulations. UET FEPs MUST support generating and accepting UET packets using IPv4, IPv6, and

UDP encapsulation. Deployments may restrict which encapsulation type(s) are enabled.

Figure 3-50 - UET Entropy Header Format

 255

Copyright © 2025 Ultra Ethernet ConsortiumTM. All rights reserved.

When UDP encapsulation is used, the udp.src_port field is used as the entropy. The UET entropy header

MUST NOT be present when using UDP. When UDP is used, the udp.checksum MUST be set to 0 on send

and ignored on receive. Implementations MUST allow the udp.dest_port number field to be configured.

When native IPv4 or IPv6 encapsulation is used, the UET entropy header MUST be used.

Implementations MUST allow the ip.protocol field in the IP header to be configured.

IP fragmentation is not supported when using UET. FEPs MUST NOT fragment a packet. When using

IPv4, the ipv4.flags.df bit (don’t fragment) MUST be set, and the ipv4.flags.mf bit (more fragments) and

ipv4.fragment_offset field MUST be cleared to zero on send.

3.5.10.2 PDS Prologue

The first two bytes at the beginning of all PDS Headers uses the format shown in Figure 3-51. The header

fields are described in Table 3-32. The resulting bit ordering is type[0:4]|next_hdr[0:3]|flags[0:6].

Table 3-32 - Fields of PDS Prologue

Field Name Size (in bits) Field Description

type

5

Encodings are:

• 0 => Reserved

• 1 => UET Encryption Header (TSS)

• 2 => RUD Request (RUD_REQ)

• 3 => ROD Request (ROD_REQ)

• 4 => RUDI Request (RUDI_REQ)

• 5 => RUDI Response (RUDI_RESP)

• 6 => UUD Request (UUD_REQ)

• 7 => ACK

• 8 => ACK_CC

• 9 => ACK_CCX

• 10 => NACK

• 11 => CP (Subtype encoded in CTL_TYPE field)

• 12 => NACK_CCX

• 13 => RUD_CC_REQ

• 14 => ROD_CC_REQ

• 15-31 => Reserved

next_hdr or
ctl_type

4

Type-specific field

• When pds.type = CP, this field is ctl_type

Figure 3-51 - PDS Prologue Format

 256

Copyright © 2025 Ultra Ethernet ConsortiumTM. All rights reserved.

Field Name Size (in bits) Field Description

• When pds.type != CP, this field is next_hdr as passed in
from SES to PDS
(e.g., in the example ses_pds_tx_req() API in section 3.5.4)

flags 7 Type-specific flags

Encodings for the pds.next_hdr field are defined in the semantic sublayer section 3.4.2.6. One

codepoint, 0x00, is reserved for PDS packets that do not carry an SES header and UET payload.

Encodings of the pds.ctl_type field are defined in section 3.5.10.7.

3.5.10.3 RUD/ROD Request

The PDS header format for a RUD or ROD Request packet is shown in Figure 3-52. The header fields are

described in Table 3-33.

Table 3-33 - Header Fields for RUD/ROD Request

Field Name

Size
(in bits)

Field Description

type 5 Packet Type = ROD Request or RUD Request

next_hdr 4 Encoding identifying UET Semantic type (Refer to SES section
3.4.2.6)

flags (7 bits)

• rsvd

• retx

• ar

• syn

• rsvd

2
1
1

1
2

pds.flags[6:0] = [rsvd, retx, ar, syn, rsvd]

• Reserved

• 1 => This packet is a retransmit (Refer to section 3.5.11.8.4)

• 1 => ACK Request, when set an ACK is requested to be sent
for this packet (Refer to section 3.5.12.2)

• 1 => PDC establishment request

• Reserved

clear_psn_offset 16 Encoding of CLEAR_PSN relative to PSN
This field is a sequence number used to acknowledge reception of
PDS ACKs

psn 32 Packet sequence number assigned to the PDS Request

spdcid 16 Source PDCID; PDCID assigned by FEP that is source of the packet

{dpdcid}

16

This field is overloaded as specified in section 3.5.8.2

• When pds.flags.syn = 0:
o Destination PDCID assigned by FEP that is the

destination of the packet

• When pds.flags.syn = 1: {pds.pdc_info, pds.psn_offset}

Figure 3-52 - RUD/ROD Request Header Format

 257

Copyright © 2025 Ultra Ethernet ConsortiumTM. All rights reserved.

Field Name

Size
(in bits)

Field Description

or

{pdc_info,
psn_offset}

4
12

Encoding for pds.pdc_info bits 3:0

• Bit 0 => pds.pdc_info.use_rsv_pdc
 1 = use PDC from reserved pool
 0 = use PDC from global shared pool

• Bit 3:1 => Reserved

pds.psn_offset is the numerical difference between the PSN in
this packet and the Start_PSN on the PDC; refer to section 3.5.8.2

3.5.10.4 RUD/ROD Request with CC State

The PDS header format for a RUD or ROD Request packet with congestion control state is shown in

Figure 3-53. The header fields are described in Table 3-34.

Table 3-34 - Header Fields for RUD/ROD Request with CC State

Field Name

Size
(in bits)

Field Description

type 5 Packet Type = ROD Request or RUD Request with CC state

next_hdr 4 Same as RUD or ROD Request

flags (7 bits)

7 pds.flags[6:0] = [rsvd, retx, ar, syn, rsvd]

• Same as RUD or ROD Request

clear_psn_offset 16 Same as RUD or ROD Request

psn 32 Same as RUD or ROD Request

spdcid 16 Same as RUD or ROD Request

{dpdcid}
or
{pdc_info,psn_offset}

16

Same as RUD or ROD Request

req_cc_state 32 The contents of this field are defined in the section 3.6.9.1.

Figure 3-53 - RUD/ROD Request Header with CC State Format

 258

Copyright © 2025 Ultra Ethernet ConsortiumTM. All rights reserved.

3.5.10.5 RUD/ROD Acknowledgement

The PDS header format for a RUD/ROD ACK packet is shown in Figure 3-54. The header fields are

described in Table 3-35.

Table 3-35 - Header Fields for RUD/ROD ACK

Field Name

Size
(in bits)

Field Description

type 5 Packet Type = PDS ACK

next_hdr 4 Encoding identifying UET Semantic type (Refer to SES section 3.4.2.6)

flags (7 bits)

• rsvd

• m

• retx

• p

• req

• rsvd

1
1
1
1

2
1

pds.flags[6:0] = [rsvd, m, retx, p, req, rsvd]

• Reserved

• 1 => Associated request packet was ECN marked

• 1 => This is an ACK for a packet with pds.flags.retx = 1

• 1 => This ACK is for a Probe CP; pds.ack_psn_offset and
pds.cack_psn are ignored

• Requests a clear or close; see section 3.5.11.8.6

• Reserved

ack_psn_offset 16

Signed representation of the offset from CACK_PSN to ACK_PSN.
This field encodes the PSN of the packet that triggered the generation of
the ACK packet. Done to reduce the size of the field from 32 bits to 16
bits.

probe_opaque 16
Used when an ACK is generated for a Probe CP, copied from the Probe
CP into the ACK; see section 3.5.16.4.2.

cack_psn 32

Cumulative acknowledgement packet sequence number – all PDS
Requests with PSN prior and including this PSN are acknowledged. On
the forward direction, this includes all PSNs prior, and including this
PSN, that require a clear have been cleared.

spdcid 16 Source PDCID assigned by FEP that is the source of the packet

dpdcid 16 Destination PDCID assigned by FEP that is the destination of the packet

3.5.10.6 RUD/ROD ACK_CC

The ACK with congestion control format is used to carry information for the congestion management

sublayer. When NSCC is used, the ACK_CC and/or ACK_CCX MUST be used.

Figure 3-54 - RUD/ROD ACK Header Format

 259

Copyright © 2025 Ultra Ethernet ConsortiumTM. All rights reserved.

The ACK_CC format is shown in Figure 3-55. The ACK_CCX fields are described in Table 3-36.

Table 3-36 - Header Fields for ACK_CC

Field Name

Field Size
(in bits)

Field Description

First 12 bytes 96 Identical to PDS ACK header but with pds.type set to ACK_CC

cc_type 4 This field defines the contents of pds.ack_cc_state field that is
used to support CC algorithms; defined in CMS section 3.6.9

cc_flags

• rsvd

4

pds.cc_flags[3:0] = [rsvd]

• Reserved

mpr 8
Maximum PSN range – used to set a maximum window on source
PDC; defines the maximum number of outstanding (not yet
cleared) packets tracked at destination

sack_psn_offset 16
Signed representation of the offset from CACK_PSN to SACK_PSN.
Done to reduce the size of the field from 32 bits to 16 bits.
Base SACK_PSN defines the lowest PSN in the SACK bitmap.

sack_bitmap 64
Selective ACK Bitmap, 1 => ACK, each bit in the map represents
one PSN in the range: [SACK_PSN … SACK_PSN+63].

ack_cc_state (64b) 64
Congestion control state generated at the destination and carried
to the source; content defined by pds.cc_type field.

3.5.10.7 RUD/ROD ACK_CCX

The extended congestion control ACK format is one of the tools used to enable flexibility in the

congestion management schemes as those schemes evolve in the future. When NSCC is used, at least

one of ACK_CC or ACK_CCX MUST be used.

Figure 3-55 - ACK_CC Format

 260

Copyright © 2025 Ultra Ethernet ConsortiumTM. All rights reserved.

The ACK_CCX (congestion control eXtended) format is shown in Figure 3-56. The header fields are

described in Table 3-37.

Table 3-37 - Header Fields for ACK_CCX

Field Name

Field Size
(in bits)

Field Description

First 12 bytes 96 Identical to PDS ACK header but with pds.type set to ACK_CCX

ccx_type 4 This field defines the contents of pds.ack_ccx_state field used to
support multiple CC algorithms; defined in CMS section 3.6.9.

cc_flags

• rsvd

4

pds.cc_flags[3:0] = [rsvd]

• Reserved

mpr 8 Same as ACK_CC

sack_psn_offset 16 Same as ACK_CC

sack_bitmap 64 Same as ACK_CC

ack_ccx_state (128b)

128

Congestion control state generated at the destination and carried
to the source; content defined by the pds.ccx_type field.
The pds.ack_ccx_state field is defined for future extensibility.

3.5.10.8 RUD/ROD CP

The PDS header format for a RUD/ROD CP is shown in Figure 3-57. The header fields are described in

Table 3-38.

Figure 3-56 - ACK_CCX Format

 261

Copyright © 2025 Ultra Ethernet ConsortiumTM. All rights reserved.

Table 3-38 - Header Fields for RUD/ROD CP

Field Name

Size
(in bits)

Field Description

type 5 Packet Type = CP

ctl_type

4

Identifies type of CP: (See section 3.5.16)

• 0 => NOOP

• 1 => ACK Request
o Source requesting an ACK for a specific PSN

• 2 => Clear Command
o From initiator to target to clear guaranteed delivery PDS ACK

state at target

• 3 => Clear Request
o Target requests source to send clear

• 4 => Close Command
o Initiator indicating the PDC is being closed

• 5 => Close Request
o Target request to initiator to close the PDC

• 6 => Probe
o Source to destination to request PDS ACK

• 7 => Credit
o Destination to source carrying congestion control credit

• 8 => Credit Request
o Source to destination requesting credit

• 9 => Negotiation

• 10-15 => Reserved

flags (7 bits)

• rsvd

• rsvd/isrod

• retx

• ar

• syn

• rsvd

1
1

1
1
1
2

pds.flags[6:0] = [rsvd, rsvd/isrod, retx, ar, syn, rsvd]

• Reserved

• 1 => PDC is ROD
0 => PDC is RUD in NOOP and Negotiation only
rsvd for other delivery modes

• 1 => This CP is a retransmit

• 1 => ACK Request

• 1 => PDC establishment request

• Reserved

probe_opaque 16 Same as ACK

psn 32
Packet sequence number assigned to the PDS CP.
Some CPs consume a new PSN; refer to section 3.5.16 for specifics

Figure 3-57 - RUD/ROD Control Packet Header Format

 262

Copyright © 2025 Ultra Ethernet ConsortiumTM. All rights reserved.

Field Name

Size
(in bits)

Field Description

spdcid 16 Same as ACK

{dpdcid}
or
{pdc_info,
psn_offset}

16

4
12

Same as ACK

payload 32 Refer to section 3.5.16.8

3.5.10.9 RUDI Request/Response

The PDS header format for a RUDI Request/Response packet is shown in Figure 3-58. The header fields

are described in Table 3-39.

Table 3-39 - Header Fields for RUDI Request /Response

Field Name

Size
(in bits)

Field Description

type 5 Packet Type = RUDI Request/Response

next_hdr 4 Encoding identifying UET Semantic type

flags (7 bits)

• rsvd

• rsvd / m

• retx

• rsvd

1
1

1
4

pds.flags[6:0] = [rsvd, rsvd/m, retx, rsvd]

• Reserved

• 1 => Associated request packet was ECN marked
(Reserved for RUDI Requests, pds.flags.m for RUDI Responses)

• 1 => This is a request/response for a retransmitted packet

• Reserved

pkt_id 32 RUDI Packet Identifier – locally unique on source

• This is not a sequence number, see section 3.5.22

3.5.10.10 NACK

The header format for a NACK packet is shown in Figure 3-59. The header fields are described in Table

3-40.

Figure 3-58 - RUDI Request Header Format

 263

Copyright © 2025 Ultra Ethernet ConsortiumTM. All rights reserved.

Table 3-40 - Header Fields for NACK

Field Name

Size
(in bits)

Field Description

type 5 Packet Type = PDS NACK

next_hdr 4 Encoding identifying UET Semantic type (Refer to SES section 3.4.2.6)

• Always set to UET_HDR_NONE for NACKs

flags(7 bits)

• rsvd

• m

• retx

• nt

• rsvd

1
1
1

1
3

pds.flags[6:0] = [rsvd, m, retx, nt, rsvd]

• Reserved

• 1 => Associated request packet was ECN marked

• 1 = The NACK’d packet was a retransmit
 (Refer to section 3.5.11.8.4)

• 0 => RUD/ROD, 1 = RUDI [NACK TYPE]

• Reserved

nack_code 8 Field indicating why the NACK was transmitted
Enumerated in section 3.5.12.7

vendor_code 8 Vendor-specific field, no processing requirements and no interop required
– intended to allow vendors to collect statistics on event types, etc. This
field may be ignored.
Interpretation of this field is outside the scope of this document.

nack_psn

or

nack_pkt_id

32 Packet sequence number associated with the received packet that
triggered the generation of the NACK packet.

If pds.flags.nt is set, this field is pds.nack_pkt_id – the NACK’d packet was
a RUDI packet. The pds.spdcid and pds.dpdcid fields are not valid.

spdcid 16 Source PDCID assigned by FEP that is the source of the packet

• If pds.nack_code indicates PDC establishment failure (e.g., out of PDC
resources), this field is cleared to 0 and is not valid.

Cleared to 0x0 if pds.flags.nt is set.

dpdcid

16

Destination PDCID assigned by the FEP that is the destination of the
packet. Cleared to 0x0 if pds.flags.nt is set.

payload 32 Specific to pds.nack_code

Figure 3-59 - NACK Header Format

 264

Copyright © 2025 Ultra Ethernet ConsortiumTM. All rights reserved.

3.5.10.11 NACK_CCX

The header format for a NACK_CCX packet is shown in Figure 3-60. The header fields are described in

Table 3-41. Similar to ACK_CCX described in section 3.5.10.6, NACK_CCX provides flexibility to enable

evolution of congestion management schemes in the future.

Table 3-41 - Header Fields for NACK_CCX

Field Name

Size
(in bits)

Field Description

First 12 bytes 96 Identical to PDS NACK header but with pds.type set to NACK_CCX

nccx_type 4 Encoding identifying contents of pds.nack_ccx_state

• Refer to section 3.5.11.12.

nack_ccx_state 124 Congestion control state generated at the destination and carried to the
source; content defined by pds.type and pds.nccx_type fields. The
pds.nack_ccx_state field is defined for future extensibility.

3.5.10.12 UUD Request

The PDS UUD Request Header, shown in Figure 3-61, uses a compact 4-byte format. The header fields

are described in Table 3-42.

Figure 3-61 - UUD Header Format

Figure 3-60 - NACK_CCX Header Format

 265

Copyright © 2025 Ultra Ethernet ConsortiumTM. All rights reserved.

Table 3-42 - Header fields for UUD Request

Field Name

Size
(in bits)

Field Description

type 5 Packet Type = UUD Request

next_hdr 4 Encoding identifying UET Semantic type

flags 7 No flags are defined for UUD packets. Set to 0x0 on transmission and
ignored on reception.

rsvd 16 Reserved

3.5.10.13 RUD/ROD Default Response SES Header

The format of the default SES response is shown in Figure 3-62. This section describes how PDS formats

an SES default response. SES default response generation in general is discussed in section 3.4.3.3.

When a packet is received with a PSN that has already been received, and when an ACK Request CP is

received for a PSN that has already been received, an ACK is generated. If that PSN has a guaranteed

delivery SES response, that response is sent. If that PSN has a default SES response, the ACK is generated

with this SES header. The header fields are described in Table 3-43 with additional details in section

3.5.17.

Default SES headers alleviate the need to store the SES response for every packet until the associated

clear arrives.

Table 3-43 - Header Fields for RUD/ROD Default SES Header

Field Name

Field Size
(in bits)

Field Description

list 2 Set to 0 (State not known)

opcode 6 Set to: UET_DEFAULT_RESPONSE or UET_NO_RESPONSE

ver 2 Set to 0

return_code 6 Set to: RC_NULL or RC_OKAY

message_id 16 Taken from duplicate PDS Request packet (SES header) or from the
payload of ACK Request CP; set to 0x0 if message ID is not available

ri_generation 8 Set to 0 (generation mismatch is never a default SES response)

JobID 24 Copy from duplicate PDS Request packet (SES header) or set to 0x0.

modified_length Set to 0 (unknown)

Figure 3-62 - RUD/ROD Default SES Header Format

 266

Copyright © 2025 Ultra Ethernet ConsortiumTM. All rights reserved.

3.5.11 Header Fields

This section provides additional description of the header fields specified in section 3.5.10.

3.5.11.1 pds.type

The UET pds.type field indicates whether the following header is a TSS or a PDS header. If the header is

for PDS, the pds.type fields defines the reliability mode (RUD, ROD, RUDI, UUD) and PDS packet type

(Request, Response, ACK, NACK, CP) as defined in section 3.5.10.

If a packet arrives that uses a pds.type field that is not recognized, an error counter, PDS_TYPE_INVALID,

MUST be incremented. The packet MUST be dropped without generating a response packet.

3.5.11.2 pds.next_hdr

The pds.next_hdr field is reserved for use by SES. This field is passed to PDS by SES. When a PDC creates

a packet autonomously (i.e., not at the behest of SES, such as an ACK or CP), this field is set to

UET_HDR_NONE. There is no interaction with SES in this case.

3.5.11.3 pds.ctl_type

PDS CPs carry a control type, pds.ctl_type, indicating the type of CP. CPs are defined in section 3.5.16.

If a CP arrives that uses a pds.ctl_type field that is not recognized, an error counter,

PDS_CTL_TYPE_INVALID, MUST be incremented. The packet MUST be dropped without generating a

response packet. The PDC state is not affected.

Unknown types are dropped rather than NACK’d, because some CPs use PSN = and NACK relies on a

valid PSN.

3.5.11.4 Packet Sequence Numbers

RUD and ROD reliable delivery modes use PSNs – packet sequence numbers – to uniquely identify

packets, assure delivery, eliminate duplicate packets, and establish packet ordering. PDS uses multiple

PSNs to track packets, including a unique PSN per PDS Request, an acknowledgement PSN (ACK_PSN), a

cumulative acknowledgement PSN (CACK_PSN), and a clear PSN (CLEAR_PSN).

Informative Text:

The PSNs and associated offsets denoted in italic font (e.g., ACK_PSN, CACK_PSN, CLEAR_PSN) are

referencing the local working variable versions of the PSNs used by each PDC. When the PSN fields of

the packet are referenced, they are denoted in bold font (e.g., pds.psn, pds.clear_psn_offset)

The full 32-bit range of packet sequence numbers MUST be used. At 800 Gbps, a 4194 B Ethernet packet

with takes roughly 42 nsec to transmit. A 32-bit PSN will wrap around in 180 seconds. Minimum size

frames could lead to wrap in under 4 seconds. The 32-bit size enables future increases in link speed

beyond 800 Gbps without wrapping within a 100 millisecond RTT.

 267

Copyright © 2025 Ultra Ethernet ConsortiumTM. All rights reserved.

In the above example, the packet size is determined as follows: Ethernet (14 B) + IPv4 (20 B) + UDP (8 B)

+ PDS (12 B) + SES (44 B) + UET payload (4096 B) = 4194 B.

3.5.11.4.1 pds.psn

The pds.psn field refers to the packet sequence number assigned to RUD/ROD PDS Request packets and

certain CPs. The pds.psn field MUST monotonically increase by one for each packet on each PDC

direction with the exception of specific CPs (as described in section 3.5.16). The PSN increases

independently on the forward and reverse directions.

3.5.11.4.2 pds.psn_offset

The pds.psn_offset field is present during PDC creation, when the pds.flags.syn bit is set. This field

allows the destination to determine the Start_PSN of the PDC as described in section 3.5.8.2.

3.5.11.4.3 pds.pdc_info

The pds.pdc_info field is present during PDC creation, when the pds.flags.syn bit is set. The

pds.pdc_info.use_rsv_pdc bit indicates to the destination that this PDC uses reserved resources. The

remaining 3 bits are reserved for future use.

3.5.11.4.4 CLEAR_PSN

The clear sequence number, CLEAR_PSN, MUST be supported when using RUD/ROD. CLEAR_PSN

indicates that all PSNs up to and including this PSN have been cleared. Clearing a PSN involves

confirming the receipt of the PDS ACK for a packet. A CLEAR_PSN of X indicates that acknowledgements

for the packet with PSN = X and all packets with earlier PSNs have been received.

The purpose of CLEAR_PSN is to enable guaranteed delivery of certain SES Responses. When SES

indicates that an SES Response requires reliable delivery, PDS MUST store the response until a clear is

received. This is done to support retransmitting the associated ACK if necessary. When PDS receives a

clear, any SES Response state associated with a PSN equal to or lower than CLEAR_PSN is deleted.

CLEAR_PSN is indirectly carried in the RUD/ROD Request header using the pds.clear_psn_offset field.

The pds.clear_psn_offset field is a 16-bit signed integer in twos-complement format that is added to

pds.psn to determine CLEAR_PSN. The msb of pds.clear_psn_offset is extended to create the 32-bit

signed value added to pds.psn. See the examples below in the description for ACK_PSN. This offset is

used to reduce the size of the field from 32 bits to 16 bits.

CLEAR_PSN is directly carried in PDS CPs as part of the pds.payload field. Refer to section 3.5.16.3

CLEAR_PSN MUST be initialized to the Start_PSN minus 1 on the forward and return directions.

Informative Text:

The pds.clear_psn_offset field will never be a positive number, as CLEAR_PSN is never higher than

PSN. The 16-bit signed integer format is used to align the processing of this field with other sequence

numbers that are carried as offsets.

 268

Copyright © 2025 Ultra Ethernet ConsortiumTM. All rights reserved.

When an SES response includes data (e.g., a small read response carried in a PDS ACK), the data is not

stored. A lost PDS ACK that carried read response data MUST be handled by retransmitting the original

read request packet.

CLEAR_PSN is maintained as the highest clear sequence number received in each direction on a PDC.

The CLEAR_PSN will always monotonically increase. The CLEAR_PSN state on the forward and return

directions are independent.

When SES indicates that an SES Response requires guaranteed delivery, PDS MUST request a clear by

setting pds.flags.req to REQ_CLEAR in the associated PDC ACK.

PDS MUST provide a CLEAR_PSN in response to receiving an ACK with pds.flags.req set to REQ_CLEAR or

receiving a Clear Request CP. PDS provides the CLEAR_PSN either by carrying pds.clear_psn_offset in an

outgoing PDS Request or, if there are no requests pending, by sending a Clear Command CP.

When no requests are pending, the Clear Command CP MUST be sent either immediately or after a local

timer expires to allow CLEAR_PSN to progress at the destination. A timer SHOULD be used and initialized

to PDS_Clear_Time.

3.5.11.4.5 CACK_PSN

The cumulative ACK PSN (CACK_PSN) is carried in full 32-bit format in the PDS ACK header field

pds.cack_psn. CACK_PSN is required for RUD/ROD PDCs. CACK_PSN is defined such that all earlier PSNs

up to and including CACK_PSN have been successfully received and all corresponding guaranteed

delivery SES responses have been cleared by the peer PDS. The CACK_PSN MUST NOT advance beyond

the lowest PSN requiring guaranteed delivery that is lower than CLEAR_PSN. This is described in more

detail in section 3.5.12.5.

CACK_PSN MUST be initialized to the PDC’s Start_PSN minus 1 when a PDC is created.

3.5.11.4.6 ACK_PSN

The acknowledgement PSN, ACK_PSN, identifies the packet that triggered the generation of an ACK.

ACK_PSN is indirectly carried in the RUD/ROD ACK header using the pds.ack_psn_offset field. The

pds.ack_psn_offset field is a 16-bit signed integer in twos-complement format that is added to

CACK_PSN to determine ACK_PSN. The msb of pds.ack_psn_offset is extended to create the 32-bit value

added to pds.psn. See the examples in Table 3-44.

Table 3-44 - Example PSN OFFSET Calculation

ACK_PSN_OFFSET CACK_PSN ACK_PSN

0x0024 0x62231120 0x62231144

0xFFDC (-36) 0x62231120 0x622310FC

0x0010 0xFFFFFFF3 0x00000003

 269

Copyright © 2025 Ultra Ethernet ConsortiumTM. All rights reserved.

ACK_PSN_OFFSET CACK_PSN ACK_PSN

0xFEE2 (-286) 0x00000079 0xFFFFFF5B

3.5.11.4.7 SACK_PSN

SACK_PSN is the base or lowest PSN in the pds.sack_bitmap field of a RUD/ROD ACK_CC and ACK_CCX

header, as described in section 3.5.12.

SACK_PSN is indirectly carried in the RUD/ROD ACK_CC and ACK_CCX headers using the

pds.sack_psn_offset field. The pds.sack_psn_offset field is a 16-bit signed integer in twos-complement

format that is added to CACK_PSN to determine SACK_PSN. See the examples in the ACK_PSN

description in Table 3-44.

3.5.11.4.8 New_Start_PSN

New_Start_PSN is used by the target to send the initiator a valid starting PSN (Start_PSN). It is used with

encryption to negotiate a Start_PSN during creation of a new PDC. Refer to section 3.5.8.2.

3.5.11.4.9 pds.pkt_id

The RUDI delivery mode uses a unique identifier in the PDS header called pds.pkd_id that is not required

to be monotonically increasing and may be assigned in any order. This field is assigned to each RUDI

request by the source and is reflected back in the RUDI response.

3.5.11.5 PDC Identifiers

Both the initiator and target allocate PDC Identifiers. Refer to the PDS terminology in section 3.5.2 and

the informative text box at the end of that section for additional information on PDCIDs.

• Initiator PDC Identifier (IPDCID) – allocated by initiator

• Target PDC Identifier (TPDCID) – allocated by target

• Source PDC Identifier (SPDCID) – carried in the pds.spdcid field. This is IPDCID or TPDCID

depending on which FEP was source and which is destination for the packet

• Destination PDC Identifier (DPDCID) – carried in the pds.dpdcid field. This is IPDCID or TPDCID

depending on which FEP was source and which is destination for the packet

A PDCID is intended to be locally unique for each FEP. A source FEP can reuse the same PDCID for

different destination FEPs. A source FEP MUST NOT simultaneously use the same PDCID to the same

destination FEP even if the delivery mode or traffic class is different.

3.5.11.6 pds.pdc_info

When a PDC is first created and until it reaches the ESTABLISHED state (see section 3.5.8.2), the

pds.dpdcid field is overloaded with {pds.pdc_info, pds.psn_offset}. The pds.pdc_info field is used to

allow the target to determine the properties of the PDC. This 4-bit field is defined as follows:

• [3:1] = Reserved

• [0] = use_rsv_pdc when this bit is set, the PDC resources are taken from the reserved pool;

 when this bit is zero, the PDC resources are taken from the general pool

 270

Copyright © 2025 Ultra Ethernet ConsortiumTM. All rights reserved.

The reserved pool is described in section 3.5.18.

3.5.11.7 pds.req_cc_state

Refer to the CMS section 3.6.9.1 for a description of the pds.req_cc_state field.

3.5.11.8 pds.flags

This field is pds.type specific and includes control bits that indicate the start of a PDC, the presence of

optional fields such as congestion control information, etc. All UET-compliant implementations MUST

support parsing all flags and associated header fields based on the state of these flag bits.

3.5.11.8.1 pds.flags.isrod

This flag is used in the NOOP CP and Negotiation CPs to indicate if the associated PDC is ROD or RUD.

When the flag is set, the PDC is ROD. This flag is ignored in all other CPs.

3.5.11.8.2 pds.flags.syn

This flag in the RUD/ROD Request header is set during PDC establishment. Refer to section 3.5.8.2. Once

a PDC is established and the target PDCID is learned by the initiator. This flag is cleared once the PDC is

established and remains in operation.

3.5.11.8.3 pds.flags.ar

If the ACK Request CP field (pds.flags.ar) is set in the RUD/ROD Request header, the source requests the

destination to transmit a PDS ACK. Upon receiving a PDS header with the pds.flags.ar bit set, the

destination MUST transmit a PDS ACK with the pds.ack_psn field set to the pds.psn field in the received

packet.

The pds.flags.ar bit SHOULD be set on the last packet transmitted when the PDC has no additional work

(i.e., no packets pending for transmission). The congestion control algorithm determines other

conditions for setting the pds.flags.ar bit.

3.5.11.8.4 pds.flags.retx

The pds.flags.retx flag MUST be set in the RUD/ROD Request header of a retransmitted packet This flag

triggers the generation of a PDS ACK. A destination should prioritize accepting retransmitted packets.

The pds.flags.retx flag is used by congestion control algorithms. Refer to the CMS sections 3.6.12.3 and

3.6.13.5 for more information.

3.5.11.8.5 pds.flags.m

The pds.flags.m flag is used in ACK, NACK, and RUDI responses. It MUST be set only when the packet

that triggered the ACK, NACK, or RUDI response was ECN marked, indicating the packet experienced

network congestion. Refer to the CMS sections 3.6.10.3 and 3.6.16.4 for details on how the M flag is

used at a source for congestion control and path-aware multipath spraying.

 271

Copyright © 2025 Ultra Ethernet ConsortiumTM. All rights reserved.

When enabled by setting ACK_On_ECN, ECN marked packets always trigger an ACK or NACK. In the case

of an ACK, the ACK packet cannot be coalesced. This configuration parameter, ACK_On_ECN, MUST be

supported.

3.5.11.8.6 pds.flags.req

This 2-bit pds.flags.req field in the RUD/ROD ACK is used to indicate the target has a request for the

initiator. An initiator MUST always set the pds.flags.req field to zero. The field is defined as:

Table 3-45 - REQ Field Definition

REQ State Mnemonic Description

0b00 NO_REQUEST No request

0b01 REQ_CLEAR Target requires a clear for this PSN

• Set when ACK carries a guaranteed delivery SES Response

0b10 REQ_CLOSE Target requests the initiator to close the PDC

0b11 Reserved Invalid, drop this packet and report event, PDC_REQ_ERR

3.5.11.8.7 pds.flags.p

The probe (pds.flags.p) flag is used in an ACK message to indicate the ACK was triggered by a Probe CP.

The ACK_PSN value is not valid when the pds.flags.p flag is set.

3.5.11.8.8 pds.flags.nt

The NACK type (pds.flags.nt) flag in the NACK header indicates the type of packet being NACK’d. If

pds.flags.nt is cleared, the NACK is for RUD or ROD. If pds.flags.nt is set, the NACK is for a RUDI packet.

3.5.11.8.9 Reserved Flags

Reserved flags are reserved for future use. Reserved flags MUST be set to zero on transmission and

MUST be ignored on receipt.

3.5.11.8.10 Mapping pds.flags Fields to pds.type

Table 3-46 shows the definition of sub-fields of the pds.flags field in the UET headers dependent upon

the setting of the pds.type field. A dash indicates the bit is reserved (i.e., not used).

Table 3-46 - pds.flags by pds.type

Type PDS Type Bit 6
0x40

Bit 5
0x20

Bit 4
0x10

Bit 3
0x08

Bit 2
0x04

Bit 1
0x02

Bit 0
0x01

0 Reserved - - - - - - -

1 TSS encryption - Refer to TSS section 3.7.11

2-3 RUD/ROD Request - - RETX AR SYN - -

4 RUDI Request - - RETX - - - -

5 RUDI Response - M RETX - - - -

6 UUD Request - - - - - - -

7-9 RUD/ROD ACK - M RETX P REQ[1:0] -

10 NACK M RETX NT - - -

 272

Copyright © 2025 Ultra Ethernet ConsortiumTM. All rights reserved.

Type PDS Type Bit 6
0x40

Bit 5
0x20

Bit 4
0x10

Bit 3
0x08

Bit 2
0x04

Bit 1
0x02

Bit 0
0x01

11 CP ISROD RETX AR SYN - -

3.5.11.9 pds.entropy

The pds.entropy field is used by network switches to select a path through the network. UET provides

two methods for carrying the entropy field depending on the encapsulation:

• udp.src_port when UDP encapsulation is used.

• A UE entropy header (pds.entropy) immediately following an IPv4 or IPv6 header when native

IPv4 or IPv6 encapsulation is used.

The congestion management function assigns the pds.entropy field used in each request packet. ACK

packets use the pds.entropy field from the packet that triggered the ACK generation. Refer to the CMS

section 3.6.16 for more information on how entropy is selected.

3.5.11.10 NACK pds.payload

The NACK pds.payload field carries NACK specific information. The contents are dependent on the

pds.nack_code field.

Table 3-47 - NACK Payload Contents

NACK_CODE NACK Payload

UET_NEW_START_PSN pds.payload.start_psn
This carries the new Start_PSN as described in section 3.5.8.2.1.

All other NACK_CODEs
 on ROD PDC

pds.payload.expected_psn – the next Expected_PSN on this ROD PDC

All others 0x0

3.5.11.11 pds.cc_type and pds.ccx_type

The pds.cc_type and pds.ccx_type fields are used to determine the contents of the pds.ack_cc_state

and pds.ack_ccx_state fields in the ACK_CC and ACK_CCX packets, respectively. The two defined

formats are shown in Table 3-48 and Table 3-49.

Table 3-48 - CC_TYPE Format

ACK Type CC_TYPE MNEMONIC Usage

ACK_CC 0 CC_NSCC NSCC

ACK_CC 1 CC_CREDIT TFC, RCCC

ACK_CC 2 – 13 - Reserved for future use

ACK_CC 14 – 15 - Reserved for proprietary extensions

 273

Copyright © 2025 Ultra Ethernet ConsortiumTM. All rights reserved.

Table 3-49 - CCX_TYPE Format

ACK Type CCX_TYPE MNEMONIC Usage

ACK_CCX 0 – 13 - Reserved for future use

ACK_CCX 14 – 15 - Reserved for proprietary extensions

Refer to the CMS section 3.6.9 for details on the defined formats.

3.5.11.12 NCCX_TYPE

The NCCX_TYPE field is used to define the contents of the pds.nack_ccx_state field in the NACK_CCX

packet.

Table 3-50 - NCCX_TYPE Contents

NACK Type NCCX_TYPE MNEMONIC Usage

NACK_CCX 0 – 13 - Reserved for future use

NACK_CCX 14 – 15 - Reserved for proprietary extensions

3.5.11.13 pds.mpr (Maximum PSN Range)

The pds.mpr field specifies the available PSN tracking state at a destination given its currently available

resources. It is set to a default value of Default_MPR when a PDC is created. The maximum PSN range

supported is 255, which specifies the maximum MP_Range of 32640 (see Table 3-51). The destination

may update this value via the ACK_CCX pds.ack_ccx_state field based on locally available resources.

The pds.mpr field specifies the MP_Range by using the following formula:

MP_RANGE = pds.mpr * 128 packets

Table 3-51 - PSN Tracking Resources per PSN Range

pds.mpr Maximum PSN tracking resources
(MP_Range in packets)

0 Ignore MP_Range

1 128

2 256

3 384

…

255 32640

When pds.mpr is zero, the MP_Range is ignored. When pds.mpr is non-zero, the source accepts the

received pds.mpr and MUST limit the range of outstanding PSNs such that packets with a PSN greater

than CACK_PSN + MP_Range are not transmitted. If the current outstanding PSN range exceeds this, the

PDC does not transmit packets outside of the new range. For example, if MP_Range = 1024 and a new

pds.mpr = 512 arrives:

 274

Copyright © 2025 Ultra Ethernet ConsortiumTM. All rights reserved.

• If CACK_PSN = 1000 and highest PSN sent = 1600, when MP_Range gets changed to 512, the

PDC stops sending new PSNs until CACK_PSN reaches 1089; at this point PSN = 1601 can be sent.

• If a packet with PSN greater than 1512 (CACK_PSN 512) is NACK’d or times out, the

retransmission should wait until the PSN is within CACK_PSN + MP_Range.

The source MUST NOT accept a pds.mpr from a packet with a CACK_PSN that is lower than or equal to

the CACK_PSN of the packet that last updated the MPR, to account for ACK packets arriving out of order.

Once a destination sets pds.mpr on a PDC using, it MUST set the pds.mpr value in the headers for all

following packets (i.e., it may not then set pds.mpr = 0). There are no restrictions on how often MPR is

updated; however, an implementation should constrain the rate of change.

3.5.11.14 pds.sack_bitmap

The ACK Extension header contains a 64-bit selective ACK bitmap field (pds.sack_bitmap). Each bit in

this bitmap indicates reception state about the packet with the corresponding PSN. When a bit is

cleared (i.e., zero), it MUST NOT be interpreted that the corresponding PSN has not been received at the

destination.

For example, if one pds.sack_bitmap has the bit for PSN 729 set to one (indicating PSN 729 has been

received and an SES response has been generated) and the next pds.sack_bitmap sets the bit for PSN

729 to zero, the resulting state indicates that PSN 729 was received. In this case the newly received

SACK bitmap uses an ‘or’ function to update the existing PSN bitmap state.

A received pds.sack_bitmap of all zeros is valid and indicates no update in received PSN state. Refer to

section 3.5.12.3.1 for more information on the SACK bitmap.

3.5.11.15 pds.ack_cc_state and pds.ack_ccx_state

The PDS ACK_CC and ACK_CCX packets carry congestion control state in the form of the

pds.ack_cc_state and pds.ack_ccx_state fields respectively. The format of the pds.ack_cc_state or

pds.ack_ccx_state fields is dependent on pds.cc_type or pds.ccx_type field, respectively. The formats

are described in the CMS section 3.6.9.2.

3.5.11.16 pds.nack_ccx_state

The PDS NACK_CCX packet carries congestion control state in the pds.nack_ccx_state field. The

pds.nack_ccx_state format is dependent on the pds.nccx_type field. This field is currently undefined

and left for future use.

3.5.12 Requests and Acknowledgements

This section documents various forms of the Request, ACK, and NACK packets.

3.5.12.1 PDS Requests

PDS Requests carry SES Requests and SES Responses with data (in the return direction). PDS Requests

use PSNs or PKT_IDs assigned by the source to enable detection of packet loss and selective packet

retransmission. PDS Requests are sent on both the forward and return directions.

 275

Copyright © 2025 Ultra Ethernet ConsortiumTM. All rights reserved.

PDS Requests in the return direction are limited to return data in response to SES reads. The return

direction MUST use an independent sequence number space from the forward direction. A FEP MUST

NOT use the return direction of a PDC to support SES Requests such as send, write, or read. An SES

Request carrying an RTR MUST use the forward direction of another, independent PDC.

SES read responses are handled in one of two ways based on the configuration parameter

Max_ACK_Data_Size. Max_ACK_Data_Size refers to the size of the return data and does not include the

size of the SES Response header. This is configured to be the same value in each FEP across a fabric

domain.

• Read responses with data size  Max_ACK_Data_Size

o Read return data MUST be included in the ACK

• Read responses with data size > Max_ACK_Data_Size

o Read return data MUST be included in a PDS Request

o Read return data MUST use the target-to-initiator PSN space on the return direction

When Max_ACK_Data_Size is set to MTU or higher, all return direction read data is included in ACKs.

This configuration may be used for lossless networks or for applications that have few large read

transactions. Reads are limited to 1 MTU regardless of Max_ACK_Data_Size.

For best-effort networks, the recommended value of Max_ACK_Data_Size is 16 B. This allows atomics

and small software messages to be carried in ACKs, while preventing ACKs – which are not CC-controlled

– from interfering with the ability of CMS to properly manage congestion. The associated traffic class

mapping is specified in section 3.5.9.

3.5.12.2 PDS Acknowledgements

Acknowledgements (ACKs) are used to indicate the successful receipt of a packet by the destination PDS,

to carry SES Responses, and to carry congestion control and load balancing state. ACKs are transmitted

only in response to a received packet. This can be a delayed response while PDS waits for SES processing

before generating an ACK. ACKs MUST set pds.ack_psn to the pds.psn of the request packet or the CP

that triggered the generation of the ACK unless the ACK is triggered by a Probe CP. Refer to section

3.5.16.4.2 for information on building ACKs for Probe CPs.

Load balancing and congestion control algorithms expect quick ACK responses. A potential issue is that

SES processing may take a significant amount of time compared to an RTT. Therefore, SES supports the

opcode UET_NO_RESPONSE which allows SES to respond to PDS quickly when processing multi-packet

messages. The ‘no response’ concept, described in the SES section 3.4.3.3, is based on the following:

• Most packets are processed successfully, and the initiator needs to know only ‘success’ for

these.

• If an error occurs on a multi-packet message, it is necessary to report that error to the source

on only one of the packets. That is, sending the error response for every packet is not strictly

required.

• Clear functionality is used to guarantee an error response is received.

 276

Copyright © 2025 Ultra Ethernet ConsortiumTM. All rights reserved.

When SES gets a packet that is part of a multi-packet message and that packet is not the last packet in

the message to arrive, and the packet is not marked for delivery complete (ses.dc), then SES can

immediately generate a UET_NO_RESPONSE, allowing PDS to transmit an ACK sooner, before SES

completes its processing. Note, if SES later determines there is an error related to the packet or

message, that stateful SES response is carried in the ACK for the packets in the message arriving after

the error is detected.

The general structure of an ACK packet is illustrated in Figure 3-63. The ACK type used is determined by

the congestion mechanisms in use. Typically, this should be consistent across the set of FEPs in a fabric.

An implementation may provide a configuration option to enable/disable each type, e.g.,

ACK_TYPE_ENB.

The ACK, ACK_CC, and ACK_CCX contents can be split into three sections, as illustrated in Figure 3-64.

The base state is the same for all ACK types and MUST be processed when a valid ACK, ACK_CC, or

ACK_CCX is received. The pds.mpr field SHOULD be supported. On RUD PDCs, the pds.sack_bitmap field

MUST be processed when Enb_ACK_Per_Pkt is not set and SHOULD be processed when

Enb_ACK_Per_Pkt is set. On ROD PDCs, use of the pds.sack_bitmap field is optional except for Probe

CPs. The pds.sack_bitmap field MUST be populated in all Probe CPs.

The pds.ack_cc_state or pds.ack_ccx_state fields SHOULD be processed if the corresponding

pds.cc_type or pds.ccx_type field is supported. Setting pds.cc_type to 0 is required for NSCC. An

implementation may provide a configuration option to enable/disable each type (e.g., CC_TYPE_ENB

and CCX_TYPE_ENB).

Figure 3-63 - Example ACK Packet

 277

Copyright © 2025 Ultra Ethernet ConsortiumTM. All rights reserved.

For diagnostic purposes, the arrival of an ACK_CC or ACK_CCX packet should be reported based on

pds.cc_type or pds.ccx_type, respectively. This state, provided as CC_TYPE_EVENT and

CCX_TYPE_EVENT, includes a 16-bit field where a set bit indicates a packet with that pds.cc_type or

pds.ccx_type arrived. For example, if pds.cc_type = 0 then bit 0 in the CC_TYPE_EVENT field is set.

PDS ACKs MUST use the entropy from the packet that triggered the ACK generation. If UET is running

over UDP, the udp.src_port field of the packet that triggered the ACK is used as the udp.src_port for the

ACK. If UET is running directly over IP, the 16-bit pds.entropy field in the UET entropy header from the

packet that triggered the ACK MUST be copied to the pds.entropy field for an ACK of the associated

PSN.

ACKs may be transmitted for every packet or using coalescing based on the configuration parameter,

Enb_ACK_Per_Pkt. The following two sections describe each of these two modes. ACK per packet MUST

be supported.

Destinations receiving PDS Requests with pds.flags.ar set MUST transmit an ACK regardless of the

configuration of Enb_ACK_Per_Pkt. Destinations may transmit an ACK when pds.flags.ar is cleared.

The pds.next_hdr field MUST be set to UET_HDR_NONE when acknowledging CPs.

CACK and ACK processing is the same regardless of whether ACK per packet or ACK coalescing is in use.

If an ACK arrives with a PSN that is out of range, e.g., lower than CACK_PSN or higher than the highest

PSN sent, the ACK MUST NOT be used to update PDC state.

If an ACK Request CP or duplicate packet is received while PDS is still processing a packet with the same

PSN as the ACK Re uest CP or duplicate packet, the packet is NACK’d with pds.nack_code =

UET_RCVD_SES_PROCG.

Figure 3-64 - ACK State Sections

 278

Copyright © 2025 Ultra Ethernet ConsortiumTM. All rights reserved.

Informative Text:
When running with RCCC or TFC congestion control, the base ACK may be used rather than ACK_CC or
ACK_CCX. This requires the use of credit CPs and ACK per packet.

3.5.12.3 ACK per Packet

When Enb_ACK_Per_Pkt is set, the pds.flags.ar MUST be set in every PDS request.

When an ACK is lost, the corresponding SES Response MUST be inferred to be the

UET_DEFAULT_RESPONSE if CACK_PSN is higher than the PSN that triggered the missing ACK.

3.5.12.3.1 SACK bitmap – ACK per Packet

The SACK bitmap is transmitted in the pds.sack_bitmap field and MUST be supported as follows. The

pds.sack_bitmap field is 64 bits in length. When a bit is set, it indicates the corresponding PSN was

received, passed to SES for processing, and SES provided a response. When a bit is not set (zero), there

is no information about the PSN. The purpose of the pds.sack_bitmap field is to provide a redundant

indication that packets have been received. A bit in the pds.sack_bitmap field MUST NOT be set until

the corresponding PSN is received at the destination and SES generates a response for that packet.

If an ACK is lost, the SACK bitmap and CACK_PSN allow the source to determine if the lost ACK was a

default response or guaranteed delivery response, as described in section 3.5.12.5. The

pds.sack_bitmap field alone MUST NOT be used to determine default responses.

Because an ACK is transmitted for every packet in the ACK per packet mode, the pds.sack_bitmap is

anchored using the PSN that triggered the ACK. The pds.sack_psn_offset field is then calculated relative

to CACK_PSN. See an example in Figure 3-65.

3.5.12.4 Coalesced ACKs

Support for coalesced ACKs is optional. If supported and Enb_ACK_Per_Pkt is not set, the source MUST

set the pds.flags.ar field based on the criteria list in Table 3-52.

Table 3-52 - Triggers for Setting pds.flags.ar in PDS Requests when Using Coalesced ACKs

Trigger Event Definition

CMS control CMS indicates AR is to be set on a packet

Retransmission If the packet is a retransmission

Last packet If the packet is the last packet on the PDC such that there is no additional
pending work on the PDC

When using coalesced ACKs, ACKs MUST be generated based on the criteria list in Table 3-53, and the

ACK_CC or ACK_CCX type MUST be used. Coalesced ACKs may acknowledge multiple packets. The

ACK_PSN indicates which PSN triggered the ACK. The SES Response carried in the packet MUST be the

SES Response for the ACK_PSN. All other PSNs acknowledged by the ACK are determined to have a

UET_DEFAULT_RESPONSE indicating success.

 279

Copyright © 2025 Ultra Ethernet ConsortiumTM. All rights reserved.

PDS infers that an SES default response has occurred when CACK_PSN is higher than the PSN of a packet

waiting for an SES response. The pds.sack_bitmap field may indicate a packet was received at the

destination. The pds.sack_bitmap MUST NOT be used to determine an SES default response.

Informative Text:
Inferred responses indicate success when all packets in a message have SES Responses. PDS must not
pass SES an inferred response for a packet until CACK_PSN is higher than the packet’s PSN. Any PSN
higher than CACK may have an associated guaranteed response, and that guaranteed response must
be evaluated by SES before the message is considered completed.

Table 3-53 - Triggers for Generating an ACK

Trigger Event Description

First packet is received that
creates/allocates a new PDC

New PDC so let the initiator know and provide CC state as soon as
possible.

ECN marked packet is received Send EV congestion state to load balancing function as quickly as
possible; see the pds.flags.m flag in section 3.5.11.8.5.
This trigger is enabled when ACK_On_ECN is set and disabled when
ACK_On_ECN is cleared. See section 3.5.11.8.5.

Byte/packet threshold is reached
(ACK_Gen_Trigger)

Cumulative trigger indicating a number of packets/bytes have arrived
so an ACK will be transmitted, see section 3.5.12.4.1.

AR flag is set in the arriving request
packet

The pds.flags.ar flag is set based on CC control.
Certain CPs set this flag – see section 3.5.16.8.

SES generates a guaranteed delivery
response

Send the SES Response.

Last packet before the source goes idle The packet may be the last packet sent for a while; see section
3.5.12.4.2.

3.5.12.4.1 Packet/Byte Threshold ACK Trigger – Coalesced ACKs

When using coalesced ACKs, this packet/byte threshold is used to trigger an ACK every several packets.

A counter is maintained such that when a configured number of packets or bytes is received, an ACK is

transmitted. The following configuration parameters and local variables are used:

Table 3-54 - ACK Configuration Parameters

Name Type Definition

ACK_GEN_COUNT Local variable (counter) Counter that is incremented when
packets arrive and cleared when an ACK
is generated

ACK_Gen_Min_Pkt_Add Configuration parameter Defines the smallest value added to
ACK_GEN_COUNT when a packet is
received

ACK_Gen_Trigger Configuration parameter Defines the threshold at which
ACK_GEN_COUNT triggers an ACK
generation

 280

Copyright © 2025 Ultra Ethernet ConsortiumTM. All rights reserved.

It operates as follows:

if pkt arrives {

 length = uet_payload_length(pkt)

 if length < ACK_GEN_MIN_PKT_ADD

 length = ACK_GEN_MIN_PKT_ADD

 ACK_GEN_COUNT += length

}

if (ACK_GEN_COUNT >= ACK_Gen_Trigger) {

 Transmit ACK

}

if (ACK is transmitted) {

 ACK_GEN_COUNT = 0

}

Informative Text:
ACK_Gen_Min_Pkt_Add defaults to 1 KB and ACK_Gen_Trigger defaults to 16 KB. This will trigger an
ACK at least every 16 KB or 16 packets. If 4 KB packets are used, an ACK is transmitted every 4 packets
(16 KB/4 KB = 4).
This is not required to be particularly accurate. The UET payload may be truncated to a convenient
precision to minimize processing requirements.

3.5.12.4.2 Last Packet ACK Trigger – Coalesced ACKs

When coalesced ACKs are used, it is important to trigger an acknowledgment of the last packet received

once the PDC goes idle. Therefore, the last packet in the message that leaves the sending PDC empty

MUST set the pds.flags.ar field to request an acknowledgement of the packet.

Because there are out-of-order arrivals, packets may arrive after the packet with pds.flags.ar set. This

may lead to spurious retransmissions, as there may be no trigger to transmit an ACK. Generation of an

ACK for this scenario is implementation specific. An example method is provided in section 3.5.12.4.2.1.

3.5.12.4.2.1 Example Method for Last Packet ACK Trigger

The variables in Table 3-55 may be used to identify this scenario and transmit an ACK.

Table 3-55 - Local Variables for Last Packet ACK Trigger - Coalesced ACKs

Local Variables (per PDC) Definition

Prev_AR_PSN Highest PSN that arrived with pds.flags.ar set

Max_Rcvd_PSN Highest PSN that arrived (also used in SACK bitmap processing)

Last Packet ACK Trigger Method:

if (pds.flags.ar is set) {

 Prev_AR_PSN = max(Prev_AR_PSN, rcvd_pkt.pds.psn)

}

 281

Copyright © 2025 Ultra Ethernet ConsortiumTM. All rights reserved.

if (Prev_AR_PSN == Max_Rcvd_PSN) {

 Transmit an ACK

}

Alternatively, an implementation may generate an ACK whenever a packet arrives and updates the

received PSN state such that there are no missing packets. Another option is to use a GEN_ACK_TIMER

timer. This timer is reset every time an ACK is transmitted and triggers ACK generation if it expires.

3.5.12.4.3 SACK Bitmap – Coalesced ACKs

The SACK bitmap is transmitted in the pds.sack_bitmap field and MUST be supported in all profiles. The

pds.sack_bitmap field is 64 bits in length. When a bit is set, it indicates the PSN was received and passed

to SES for processing. When a bit is not set (zero), there is no information about the PSN. Zero does not

indicate the packet was not received. The intent of the pds.sack_bitmap field is to efficiently indicate

which packets have been received with redundancy. If an ACK is lost, the SACK bitmap and CACK_PSN

will allow the source to infer if the lost ACK was a default response or guaranteed delivery response.

On ROD PDCs, the pds.sack_bitmap field may be set to all zeros as ACK_PSN and CACK_PSN provide the

required information.

On RUD PDCs, multiple PSNs may arrive between transmissions of an ACK such that it is not possible to

represent all of the received PSNs in a single pds.sack_bitmap. The goal is to efficiently represent as

many PSNs as possible while biasing toward sending acknowledgements for lower PSNs, to allow older

resources to be freed. The following pseudo-code provides an example of the state maintained to assign

the SACK bitmap to cover the newly received low PSN while iterating over the Expected_PSN range. For

clarity, the case of the PSN wrapping at 0xFFFFFFFF is not described.

Table 3-56 - Local Variables for SACK Bitmap – Coalesced ACKs

Local Variables Definition

Max_Rcv_PSN Highest PSN to arrive on PDC (wraps at 0xFFFFFFFF)

CACK_PSN Cumulative ACK PSN – all PSN lower than this PSN are received, processed,
and cleared

SACK_Base Defines PSN to be used as the lowest bit in SACK bitmap when generating an
ACK.

SACK_Base_Track Used to track SACK_Base to be used when generating an ACK in response to
PDS Requests. This variable is updated based on the PSNs that arrive between
ACKs.

Processing upon PDS Request or ACK Request CP acceptance

// If lowest PSN not yet received & cleared is advanced, advance CACK_PSN

update CACK_PSN

if (SACK_Base_Track < CACK_PSN) {

 // CACK_PSN will ACK all packets up to CACK_PSN, update SACK_BASE

 SACK_Base_Track = CACK_PSN} else {

 282

Copyright © 2025 Ultra Ethernet ConsortiumTM. All rights reserved.

 If (CACK_PSN < rcvd_pkt.pds.psn) && (rcvd_pkt.pds.psn < SACK_Base_Track)

{

 // Lower PSN arrives, favor ACK’ing these so update SACK_BASE

 SACK_Base_Track = rcvd_pkt.pds.psn

 }

}

Processing for ACK transmission

if (ACK is triggered by Probe CP) {

 SACK_Base = max{probe.payload, CACK_PSN}

 generate_ack()

}

if (ACK is triggered by PDS Request or ACK Request CP) {

 SACK_Base = SACK_Base_Track

 generate_ack()

 // shift the tracker up 64 to iterate over PSNs if no low PSNs arrive,

 // unless it would go past Max_Rcv_PSN

 if ((SACK_Base_Track + 63) < Max_Rcv_PSN) {

 SACK_Base_Track = SACK_Base_Track + 64

 }

}

In general, this logic is intended to prioritize acknowledging lower PSNs when they arrive. If a lower PSN

is received, update SACK_Base to that PSN. If a higher PSN arrives, rather than jumping to it directly,

constrain SACK_Base so it increases by 64 — so that the SACK bitmap gradually covers all PSNs from

CACK_PSN up to Max_Rcv_PSN.

SACK_Base represents the PSN of the least significant bit in the SACK bitmap. The bitmap is always

started from a PSN that has the three least significant bits equal to zero. This is done to reduce the shift

logic needed to generate the pds.sack_bitmap field.

The pds.sack_psn_offset field is calculated as:

pds.sack_psn_offset = SACK_Base - CACK_PSN

Figure 3-65 provides an example SACK bitmap:

Figure 3-65 - Illustration of SACK Bitmap

 8
1
6

2
4

3
1

5
6

3
2

4

4
8

6
3

Example:
 = 1 21 (x 6B)
 = 1842 (x 32)
 = 121

PSN = 1842

PSN = 1 5

 283

Copyright © 2025 Ultra Ethernet ConsortiumTM. All rights reserved.

3.5.12.5 Cumulative ACK (CACK) Rules

CACK_PSN is defined such that:

1. All earlier PSNs up to and including CACK_PSN have been successfully received.

2. All corresponding guaranteed delivery SES Response results have been sent and cleared by the

peer PDC.

When a guaranteed delivery SES Response is transmitted, the CACK_PSN MUST NOT advance up to or

past the PSN associated with the guaranteed delivery SES Response until that response is cleared. To

enable efficient PDS implementations, specifically in the per-PDC state, two optimizations are used:

• Default SES Responses are defined, allowing the destination PSN to not store/hold the common

SES Response of RC_OKAY.

• The SACK bitmap acknowledges that a PSN has arrived successfully at the destination (i.e., the

packet was not trimmed and was accepted, passed to the SES, and SES generated a response),

allowing the source PDC to discard state required to retransmit a packet (except in the case of a

read request of size  Max_ACK_Data_Size – see section 3.5.16.2).

CACK_PSN plays a role in enabling these optimizations. When an ACK is received, CACK_PSN is used to

determine which PSNs have been delivered and successfully processed. The processing order is

important.

• If the pds.next_hdr field is not set to UET_HDR_NONE, the ACK is carrying an SES Response for

PSN = ACK_PSN. This is processed by passing the SES Response to the local SES and marking the

PSN as done.

• Then, all PSN  CACK_PSN that have not previously been marked as done MUST be processed

by passing an ‘SES default response’ to SES and marking the PSN as done. The ACK_PSN MUST

be processed first, as it may carry a non-default response.

• Done indicates that all required processing for that PSN is complete

Informative Text:
PSN state is implementation specific. The following example intends to clarify PSN tracking state and
is not optimized.

Example PSN tracking states at the source: {pkt_sent, pkt_rtx, pkt_rcvd_at_dest, done}

• pkt_sent: packet was sent at least once

• pkt_rtx: the packet is pending retransmission

• pkt_rcvd_at_dest: destination received the packet (i.e. bit set in SACK bitmap or based on
CACK), source can delete retransmit state

• done: SES response provided to local SES

Example PSN tracking states at the destination: {not_rcvd, rcvd_at_ses, gtd_del, done}

• not_rcvd: packet not received yet

• rcvd_at_ses: packet received waiting on SES

 284

Copyright © 2025 Ultra Ethernet ConsortiumTM. All rights reserved.

3.5.12.6 ACK Window

The destination MUST NOT transmit an ACK for any packet with a PSN outside the maximum PSN

window of (CACK_PSN – MP_RANGE to CACK_PSN + MP_RANGE) with the exception of packets with

PSNs between CLEAR_PSN and CACK_PSN. It is possible that CLEAR_PSN is lower than CACK_PSN –

MP_RANGE during the transition to a smaller MPR. Any packet arriving with pds.psn less than or equal

to CLEAR_PSN MUST NOT be acknowledged. This constrains the range over which responses to duplicate

PSNs are generated as a security feature.

MP_RANGE defines the maximum range of PSNs that can be outstanding on a particular PDC based on

resource limitations at the destination, as described in section 3.5.11.13.

The source MUST NOT transmit packets with a pds.psn greater than CACK_PSN + MP_RANGE. When the

destination reduces MP_RANGE via the ACK_CC pds.ack_cc_state field, the source may temporarily

exceed CACK_PSN + MP_RANGE until the CACK_PSN advances. No new packets are transmitted on that

PDC during that time (retransmissions are sent).

At the destination, acknowledgements for packets older than CACK_PSN – MP_RANGE MUST NOT be

transmitted except for PSNs between CLEAR_PSN and CACK_PSN. The PDS_MPR concept is illustrated in

Figure 3-66 and captured in example code below. When a packet is received outside of the

Expected_PSN range, the OUT_OF_WINDOW_PSN event counter SHOULD be incremented. This

indicates a potential security attack.

if ((PSN  CLEAR_PSN) || (PSN > CACK_PSN + MP_RANGE))
 // drop the packet with no ACK and increment OUT_OF_WINDOW_PSN counter

else if PSN was already received

 // transmit ACK – either guaranteed or default SES Response

else pass to SES for processing

• gtd_del: SES processing done and ACK needs guaranteed delivery (SACK bitmap bit is set)

• done: done with this PSN, if gtd_del then cleared (SACK bitmap bit is set)

Refer to example PSN states in section 3.5.13. This is not an exhaustive list of all state maintained per
PSN.

 285

Copyright © 2025 Ultra Ethernet ConsortiumTM. All rights reserved.

3.5.12.7 PDS Negative Acknowledgements

NACK packets are used to provide explicit indications that a packet was dropped. The format is

illustrated in Figure 3-67. Table 3-57 specifies the events and requirements for generating a NACK. If a

PDS Request with the pds.flags.retx flag set is received and a NACK is transmitted in response, the NACK

MUST set the pds.flags.retx flag. NACKs MUST use the EV from the packet that triggered the NACK.

Figure 3-66 - Illustration of PDS_MPR Concept

Source must not transmit
beyond this PSN

In ight packets ACKs

ACK duplicate packetsDrop duplicate packets without ACK

Expected PSN Range

 may be lower than

temporarily when MPR is reduced

Figure 3-67 - Illustration of PDS NACK Format

 286

Copyright © 2025 Ultra Ethernet ConsortiumTM. All rights reserved.

Table 3-57 - Triggers for Generating a NACK

Event Requirement Description

Local packet drop MUST Valid packet is received and is dropped due to local
resource limitations, e.g., lack of receive packet buffer

Trimmed packet is received MUST Trimmed packet is received

ACK Request CP is received MUST CP is received and the requested PSN has not been
received

Invalid UET header or unexpected
event

MUST If a UET header check or PSN state usage or other
unexpected event results in an error; see list in Table
3-59

Packet is received outside
Expected_PSN window

MUST NOT If a PSN is received outside the valid ACK window
described in section 3.5.12.6, the packet MUST be
dropped and the event recorded

Invalid packet is received MUST NOT If any network header check fails (outside of UET
headers), the packet MUST NOT result in a NACK – e.g.,
invalid IP header checksum

Informative Text:
An implementation may support a limited NACK packet generation rate, in which case it may not be
possible to transmit NACKs at the same rate as received events shown in Table 3-57. In this scenario,
the packet may be dropped without generating a NACK.

When a valid NACK or NACK_CCX is received, the base NACK state (as illustrated in Figure 3-68) MUST be

processed. The pds.nack_ccx_state field SHOULD be processed if the NCCX_TYPE is supported.

For diagnostic purposes, the arrival of a NACK_CCX packet should be reported based on pds.nccx_type.

This state, provided in NCC_TYPE_EVENT, is a 16-bit field where a set bit indicates the arrival of a packet

with that pds.nccx_type. For example, if pds.nccx_type = 0 then bit 0 in the NCC_TYPE_EVENT field is

set.

PDS NACKs carry negative acknowledgement NACK codes (pds.nack_code). There are two categories of

NACK codes indicating either retransmit events or error events. The NACK codes are enumerated in

Figure 3-68 - NACK Sections

 287

Copyright © 2025 Ultra Ethernet ConsortiumTM. All rights reserved.

Table 3-59. The NACK code is carried in the pds.nack_code field to indicate the specific type of NACK

event, which may be useful for diagnostics, and to enable the source to determine if it should wait an

appropriate time before retrying.

Events leading to NACK generation can be split into the following NACK error types:

• NORMAL: This indicates normal operation, an expected event. Typically, these NACKs occur

when a packet cannot be processed when it is received but should be processed in the future.

This results in a packet being retransmitted on the same PDC. When the packet would have

created a PDC, but it does not, the retransmit may be done using a different PDC (i.e., different

SPDCID).

• PDC_ERR: This indicates an unexpected event occurred, but the PDC remains active; for

example, if a packet is received with pds.flags.syn set and the PDC is no longer accepting SYN

packets (pds.nack_code = UET_INVALID_SYN).

• PDC_FATAL: This indicates the error is unrecoverable; for example, the associated PDCID could

not be found, or the IP address does not match. The associated PDC MUST be closed. The FEP

sends a NACK and closes the PDC. When a FEP receives a NACK with a PDC_FATAL code, it closes

the PDC.

The NACK codes in Table 3-59 use the following terms to clarify the expected behavior at the source

when a NACK is received:

• RETX: This indicates a transient scenario where the packet SHOULD be retransmitted on the

same PDC using the same PSN. (e.g., resource exhaustion or restart with new Start_PSN).

• RETRY: This indicates a scenario where the packet is not associated with an established PDC and

the semantic message that is carried should be retransmitted using a different PDC and/or PSN.

• FAIL: This indicates the packet delivery may be failed to SES.

Some PDC_ERR or PDC_FATAL events are marked as RETRY; an implementation may fail these to SES.

The local variables shown in Table 3-58 are used by the source when handling NACK processing.

Table 3-58 - Configuration Parameters for Handling NACK and RTO

Local Variables Requirement Definition

RTO_Init_Time Required Initial time to wait before retransmitting a packet due to
timeout at the sender.
May be global across all PDCs or unique for RUD, ROD and
reserved PDCs.

NACK_Retx_Time Required Set of one to four configured times used to delay the
retransmission of a packet that was NACK’d. If more than
one configured value, select based on NACK code. Should
provide an option for no delay.

Max_RTO_Retx_Cnt

Required Threshold for number of retransmissions declaring failure
for PSN. If Max_NACK_Retx_Cnt is provided, this only
counts RTO retransmissions. If Max_NACK_Retx_Cnt is not
provided, this counts RTO and NACK retransmissions

 288

Copyright © 2025 Ultra Ethernet ConsortiumTM. All rights reserved.

Local Variables Requirement Definition

Max_NACK_Retx_Cnt

Optional Threshold for number of retransmissions performed due to
receiving NACKs before declaring failure on the PSN.

Packets are retransmitted when an RTO occurs, or a NACK packet is received. The number of times a

packet is retransmitted due to RTO is limited to a configured value, Max_RTO_Retx_Cnt, before

declaring failure. The number of times a packet is retransmitted due to receiving a NACK may be limited

to a configured value, Max_NACK_Retx_Cnt, before declaring failure. Implementing

Max_NACK_Retx_Cnt is optional. If omitted, NACK retransmissions are included in the RTO counter.

The requirements for retransmission are:

• Retransmit any packet that has not been acknowledged or NACK’d in the RTO time period

• Each time a packet is retransmitted because of an RTO, the RTO time period is exponentially

increased as follows:

o RTO_TIMER = RTO_INIT_TIME * 2retry_count

o Where retry_count is the number of times a packet has been retransmitted due to RTO

• If a NACK is received:

o Retransmit the packet after waiting NACK_Retx_Time, based on pds.nack_code

o Reset the RTO_TIMER and, optionally, set retry_count to zero

• If a Probe CP is sent, the RTO_TIMER may be paused until the ACK for the Probe CP is received.

For example, if the base time period is 30 µsec and zero retries have previously occurred, then the timer

is set to 30 µsec. If this times out, then retry_cnt = 1 and the timer is set to 30* 2retry_cnt = 60 µsec. If this

times out again, then retry_cnt = 2 and the timer is set to 120 µsec, and so on.

Refer to section 3.5.21 for NACK processing specific to ROD.

The processing based on error type is defined in the error model in section 3.5.23. The events leading to

the NACK generation are described in section 3.5.8.2, unless otherwise indicated in the description. The

description ‘fail to SES’ means the source PDS will indicate to SES that the packet was not successfully

delivered. SES will generally complete the associated operation in error.

Note that when pdc.spdcid is set to zero, the PDC is not allocated. Multiple codes are provided to enable

tracking the more details as to what triggered the NACK. For example, an implementation may send

pds.nack_code = UET_NO_PDC_AVAIL whenever a PDC is not created. Or it may set pds.nack_code to

UET_NOCCC_AVAIL, UET_NO_BITMAP, etc.

Table 3-59 - PDS NACK Codes

Name Value Error Type Source Action Description

UET_TRIMMED
(section 3.5.15.1)

0x01 NORMAL Retransmit
(RETX)

Packet was trimmed

UET_TRIMMED_LASTHOP
(section 3.5.15.1)

0x02 NORMAL Retransmit
(RETX)

Packet was trimmed at the last
hop switch

 289

Copyright © 2025 Ultra Ethernet ConsortiumTM. All rights reserved.

Name Value Error Type Source Action Description

UET_TRIMMED_ACK
(section 3.5.15.1)

0x03 NORMAL Retransmit
original read
request (RETX)

An ACK carrying read response
data was trimmed

UET_NO_PDC_AVAIL
(section 3.5.8.2)

0x04 NORMAL Retransmit
(RETRY -
no PDC created)

No PDC resource available; set
pds.spdcid = 0

UET_NO_CCC_AVAIL
(section 3.5.8.2)

0x05 NORMAL Retransmit
(RETRY-
no PDC created)

No CCC resource available; set
pds.spdcid = 0

UET_NO_BITMAP
(section 3.5.8.2)

0x06 NORMAL Retransmit
(RETRY -
no PDC created)

No bitmap or other PSN tracking
resource available
(e.g., if bitmaps are dynamically
allocated and none are
available);
set pds.spdcid = 0

UET_NO_PKT_BUFFER
(section 3.5.8.2)

0x07 NORMAL Retransmit
(RETX)

No packet buffer resource
available

UET_NO_GTD_DEL_AVAIL
(section 3.5.8.2)

0x08 NORMAL Retransmit
(RETX)

No SES guaranteed delivery
response resource available
(i.e., can’t save guaranteed
delivery response if needed so
packet was dropped before
passing to SES)

UET_NO_SES_MSG_AVAIL
(section 3.5.8.2)

0x09 NORMAL Retransmit
(RETX)

No message tracking state
available

UET_NO_RESOURCE
(section 3.5.8.2)

0x0A NORMAL Retransmit
(RETX)

General resource not available –
implementation-specific
resource not listed in NACKs
0x03 – 0x08; set pds.spdcid = 0
if there is no associated PDC

UET_PSN_OOR_WINDOW
(section 3.5.8.2)

0x0B NORMAL Retransmit
(RETX if PSN
>CACK)

PSN outside tracking window
(e.g., beyond end of available
bitmap)

reserved 0x0C - - -

UET_ROD_OOO
(section 3.5.21.1)

0x0D NORMAL Retransmit
(RETX)

A PSN arrived out of order on a
ROD PDC

UET_INV_DPDCID
(section 3.5.8.2)

0x0E PDC_FATAL Close PDC
(RETRY)

pds.dpdcid is not recognized
and pds.flags.syn not set; set
pds.spdcid = 0

UET_PDC_HDR_
MISMATCH
section 3.5.8.2)

0x0F PDC_FATAL Close PDC
(RETRY)

The packet does not have
pds.flags.syn set but did not
match connection state (e.g.,
ip.src_addr or other field
doesn’t match PDC state)
(This is an optional check –
separate from required check
for a valid pds.dpdcid);
set pds.spdcid = 0

 290

Copyright © 2025 Ultra Ethernet ConsortiumTM. All rights reserved.

Name Value Error Type Source Action Description

UET_CLOSING
(section 3.5.8.3)

0x10 PDC_FATAL
(drop

packet)

Report error
(RETRY)

The target PDCID is in a closed
state or is in the process of
being closed and a new PDS
Request is received that
advances the PSN

UET_CLOSING_IN_ERR
(section 3.5.8.3)

0x11 PDC_FATAL Close PDC
(no retransmit)

Timeout at target during close
process – e.g., no response to
Close Request CP.
(Max_RTO_Retx_Cnt exceeded –
NACK the Close Command CP)

UET_PKT_NOT_RCVD
(section 3.5.16.2)

0x12 PDC_ERR Retransmit
(RETX)

CP arrived with ‘ACK Re uest’
but packet with requested PSN
was not received (section
3.5.16)

UET_GTD_RESP_UNAVAIL
(section 3.5.16.2)

0x13 PDC_FATAL

Close PDC
(FAIL)
(no retransmit)

Duplicate PSN is received, state
indicates there is a guaranteed
delivery SES Response but that
response cannot be found, and
this PSN was not cleared
(implementation error)

UET_ACK_WITH_DATA
(section 3.5.16.2)

0x14 PDC_ERR Retransmit
(RETX
original pkt)

ACK Request CP for PSN with
associated read response data

UET_INVALID_SYN
(section 3.5.8.2)

0x15 PDC_FATAL Close PDC
(RETRY)

Packet is received with
pds.flags.syn set with pds.psn
outside the expected range of
PSNs with pds.flags.syn

UET_PDC_MODE_
MISMATCH
(section 3.5.8.2)

0x16 PDC_FATAL Close PDC
(RETRY)

Packet is received and delivery
mode does not match
(RUD/ROD)

UET_NEW_START_PSN
(section 3.5.8.2.1)

0x17 NORMAL Retransmit
(RETX)

Resend all packets with new
Start_PSN

UET_RCVD_SES_PROCG
(section 3.5.13)

0x18 NORMAL Retransmit
(ACK may arrive
before RETX)

This can occur, e.g., if a delayed
packet and a retransmission
arrive at destination close in
time

UET_UNEXP_EVENT
(generic event –
implementation specific)

0x19 PDC_FATAL Close PDC
(RETRY)

This is unexpected – processing
requires an unsupported
feature; use this if an event
occurs that is unexpected – e.g.,
something indicating an
implementation error – from
which the PDC cannot be
recovered

UET_RCVR_INFER_LOSS
(section 3.5.15)

0x1A NORMAL Retransmit
(RETX)

Destination infers a PSN was lost
and effectively requests
retransmission; application
specific

Reserved for UET 0x1B -
0xFC

 For future use

 291

Copyright © 2025 Ultra Ethernet ConsortiumTM. All rights reserved.

Name Value Error Type Source Action Description

UET_EXP_NACK_NORMAL 0xFD NORMAL Retransmit
(RETX)

Experimental code

UET_EXP_NACK_ERR 0xFE PDC_ERR Retransmit
(RETRY)

Experimental code

UET_EXP_NACK_FATAL 0xFF PDC_FATAL Close PDC
(FAIL)

Experimental code

Note:

• For NACK codes indicating RETX, the source action on a RUD PDC is to retransmit the original packet
associated with the PSN (pds.nack_psn). The source action on a ROD PDC is to support GoBackN
retransmission as described in section 3.5.21.1. If an ACK arrives for a packet before it is retransmitted,
retransmission is not done.

Informative Text:

SES may indicate to PDS that the packet is to be dropped and NACK’d. When this occurs, typically for

some resource exhaustion event, PDS does not mark the PSN as received. Similar to a trim event, the

source will retransmit the packet with the original PSN.

PDCs SHOULD map each NACK-based retransmit to a timer based on the NACK code, where the timer

controls whether to delay the transmission, and, if so, by how much time. For example, a trimmed

packet may be retransmitted immediately (within the constraints of the window/credit of the

congestion control algorithm). Alternatively, when no PDC resource is available, it may be desirable to

delay retransmission for a couple of RTTs.

NACK events, including the NACK code, are reported to CMS.

NACKs MUST NOT be marked as trimmable. Trimmed NACKs are dropped. The event SHOULD be

counted for diagnostics. NACKs that arrive with a pds.nack_psn field that is out of range MUST NOT be

used to update PDC state except for event counters — for example, if the pds.nack_psn field is lower

than CACK_PSN or higher than the highest PSN sent on the PDC.

3.5.13 Default SES Responses

As described in the previous section, guaranteed delivery SES Responses are used to reduce the required

state stored by a RUD/ROD PDC. When SES indicates its response does not require guaranteed delivery,

PDS sends the response and then deletes it. If a duplicate packet or an ACK Request CP is received for a

PSN that has no stored SES Response state, PDS generates an ‘inferred’ SES Response.

PDS MUST generate a UET_DEFAULT_RESPONSE when inferring an SES Response. Generating a

UET_NO_RESPONSE may be supported. This requires maintaining state to differentiate between that

and a successful default response.

 292

Copyright © 2025 Ultra Ethernet ConsortiumTM. All rights reserved.

Implementation Note:

The RTO_TIMER should be started when the packet being transmitted is as close to being on the

network as practical. For example, as the packet reaches the Ethernet MAC or when the packet is

enqueued in the transmit packet buffer.

Informative Text:
Tracking of PSN state varies by implementation. Two example implementations are shown within this
information note.

The ACK state including SACK bitmap should not be updated until SES has provided a response. In
implementation #1, the PSN state is not updated until SES returns a response – in this case duplicate
packets are filtered using another mechanism until the SES response is provided. This allows
distinguishing between UET_NO_RESPONSE and UET_DEFAULT_RESPONSE when a duplicate packet
or ACK Request CP is received.

Alternatively, an implementation may choose to use a model closer to implementation #2. This option
cannot distinguish UET_DEFAULT_RESPONSE versus UET_NO_RESPONSE when creating an ACK for
duplicate packets and ACK Request CPs. It always generates UET_DEFAULT_RESPONSE in those cases.

The scenario when a duplicate packet or ACK Request CP is received while #2 is still in ‘Received – SES
processing state’ may happen. If it does, the received packet is NACK’d with pds.nack_code =
UET_RCVD_SES_PROCG.

Packets marked as UET_NO_RESPONSE may be acknowledged using a cumulative ACK in which case
the source of the request will assume success for the packet. The source of the request MUST NOT
assume success for the message.

SES may NACK a packet (e.g., if out of message tracking state, in which case the packet is treated as
not received).

 293

Copyright © 2025 Ultra Ethernet ConsortiumTM. All rights reserved.

PDS MUST build an SES default response when a duplicate PSN or ACK Request CP is received – or send a

NACK if SES is still processing the packet. An SES default response is constructed as described in Table

3-60.

Table 3-60 - Rules for Constructing SES Default Response

Field Name

Size
(in bits)

PDS Processing

list 2 Set to: UET_EXPECTED

opcode 6 Set to: UET_DEF_RESPONSE or UET_NO_RESPONSE

ver 2 Clear to zero

return_code 6 Set to: RC_OKAY or RC_NULL

message_id 16
If duplicate PSN and SES header includes ses.message_id, copy that field.
If CP, copy from pds.payload (section 3.5.16).

ri_generation 8
If present in the packet that triggered the ACK, then use that value
otherwise set to zero

JobID 24
If duplicate PSN, copy ses.JobID.
If CP, set to zero.

modified_length 32
If duplicate PSN, copy ses.request_length.
If CP, set to zero.

3.5.14 Transmit Scheduling

PDS should avoid starving any PDCs sharing a traffic class for an extended period of time while servicing

other PDCs. PDS may provide hierarchical scheduling where some PDCs are given higher priority than

other PDCs in the same traffic class. This applies to PDS Requests, CPs, and acknowledgements.

Higher priority SHOULD be done as weighted fair queuing (WFQ) rather than strict priority (SP), as SP

scheduling may lead to blocking or starvation.

Figure 3-69 illustrates a potential transmit scheduling architecture that is well aligned with UET.

 294

Copyright © 2025 Ultra Ethernet ConsortiumTM. All rights reserved.

3.5.15 Loss Detection and Recovery

PDS detects the loss of packets using the methods listed in Table 3-61. The following subsections

provide additional information on each method.

Table 3-61 - Loss Detection

Method Requirement Summary Description

Trimming MUST Trim indicates packet was lost – generate a NACK when trim arrives

NACK MUST NACK indicates a packet was lost – accept NACK and process
associated PSN as lost

RTO MUST Timer at source that is sent on transmit and cleared on ACK

Early Loss Detection
for Requests

SHOULD Provide one or more methods to determine if a packet was lost
sooner than RTO

Loss Detection for
ACKs

SHOULD Provide one or more methods to determine if an ACK was lost sooner
than RTO

3.5.15.1 Trimming

Packet trimming is used by UET to provide an explicit indication of packet loss and to enhance

congestion control performance. If the packet is validated using the UET CRC or authenticated using TSS

and the packet was not actually trimmed because it is shorter than MIN_TRIM_SIZE, the packet can be

accepted for normal processing.

The PDS requirements are summarized below. Refer to the UE packet trimming section 4.1 for more

information.

Figure 3-69 - Example Transmit Scheduler

PDC → JobID, dest IP address, TC

PDC → JobID, dest IP address, TC, Rank, INC_GroupID

Port Scheduler,
MAC/PHY,

etc.

PID

Send Queue RSV Context B

Send Queue RSV Context

...

Shared RX Target

Comple on Queue

Send Queue RSV Context A

SES

RSV_PDC

Conges on Control

TFC CCC
NSCC/RCCC

CCC

RSV_PDC 1

RSV_PDC y

RX Q Tagged MR

PDC → JobID, dest IP address, TC, RUD/ROD

...

...

...
TRAFFIC CLASS y

TRAFFIC CLASS x

TRAFFIC CLASS z

Transmit
Packet

ACK

REQ

Send Queue

PID n

Shared RX Target

Comple on Queue

RX Q Tagged MR

...

RR
Scheduler

RR
Scheduler

WFQ
Scheduler

ACK
Processing

PDC m n

PDC m

PDC m 1

Example send ueue con gura on actual con gura on is speci c to the
libfabric provider implementa on

Send Queue

...

 295

Copyright © 2025 Ultra Ethernet ConsortiumTM. All rights reserved.

• Trimmed packet MUST be recognized based on the ip.dscp field

• The IP length of a trimmed packet MUST NOT be verified

• The UDP length of a trimmed packet MUST NOT be verified

• The UET CRC may be validated if present

• The packet may be decrypted and authenticated when the ip.dscp field indicates the packet was

trimmed but the packet is fully intact (e.g., ICV is present).

• The packet may be partially decrypted (i.e., the portion of the packet that is received can be

decrypted) and not authenticated (when the ICV is not present). In this case use of the packet is

limited as described in the next paragraph.

If a packet is received which cannot be validated or authenticated, the processing described in Table

3-62 is used or the packet may be dropped. The PDS header fields in trimmed packets MUST NOT be

used for any purpose beyond generating a NACK or, in the specific case of a RUDI request, the original

packet is retransmitted. The NACK code depends on the PDS packet type. Trimmed CPs are dropped.

Table 3-62 - Rules for NACK Generation with Trimmed Packets

Trimmed
PDS Packet Type

Generate a NACK NACK code / Description

RUD Request Yes UET_TRIMMED or UET_TRIMMED_LASTHOP

RUD ACK Yes UET_TRIMMED_ACK

ROD Request Yes UET_TRIMMED or UET_TRIMMED_LASTHOP

ROD ACK Yes UET_TRIMMED_ACK

RUDI Request Yes UET_TRIMMED or UET_TRIMMED_LASTHOP

RUDI Response No Retransmit the original RUDI Request

CP No All CP are small and SHOULD NOT use a DSCP that allows
trimming. CPs that are assigned unique PSNs and are
trimmed require retransmission and would need loss
detection mechanism (e.g., RTO) to be recovered.

3.5.15.2 NACK Loss Detection

A destination PDC may generate a NACK for the reasons listed in section 3.5.12.7. When a NACK is

received at a source, the associated packet MUST be considered lost.

3.5.15.3 RTO Loss Detection

A PDC MUST maintain a timer, RTO_TIMER, and retransmit all associated packets that have not been

acknowledged when the timer expires (i.e., one timer per PDC). This timer is set to RTO_INIT_TIME

when the packet is transmitted. See RTO_INIT_TIME in the PDS configuration parameters section 3.5.5.

A PDC SHOULD maintain a timer or timestamp per outstanding packet and retransmit an

unacknowledged packet when its associated timer/timestamp expires (i.e., one timer per

outstanding/unacknowledged packet). Alternatively, a per PDC timer may be used.

The time period for declaring a packet as lost MUST be programmable, RTO_INIT_TIME, in the range of

0 µsec to 8 sec. Exponential backoff (multiplicative increase) in time between retry attempts SHOULD be

 296

Copyright © 2025 Ultra Ethernet ConsortiumTM. All rights reserved.

provided each time the packet is retransmitted until Max_RTO_Retx_Cnt is reached. A packet’s

RTO_TIMER is restarted without exponential increase when a NACK is received for that packet. The

timer may be suspended during a Probe CP transmission. How retransmission and exponential backoff

coexist with RTO and the reception of NACKs is described in section 3.5.12.7.

3.5.15.4 Early Loss Detection — Requests

Early loss detection for PDS Requests refers to determining if a packet was lost before the RTO_TIMER

expires. This may occur if trimming is not used or if a link failure occurs. Some capability for early loss

detection of PDS Requests SHOULD be supported. The method(s) used are implementation specific. This

section provides several example methods.

3.5.15.4.1 OOO-based Loss Detection

The OOO-based method for early loss detection involves monitoring the out-of-order count

(pds.ack_cc_state.ooo_count) that the destination received. Table 3-63 lists the local variables used in

the OOO-based loss detection method. No attempt is made to compress the fields in this example. Some

fields could be reduced in size based on the maximum number of outstanding packets supported or

because the field uses units of 256 bytes, or other criteria, etc. Some detection fields are required for

every PDC and some are per CCC or global, as indicated in the field size column of Table 3-63.

Two variations of the approach are described. One relies on pds.ack_cc_state.ooo_count from the

destination as carried in ACK_CC or ACK_CCX headers. Because this field is optional, the alternative is to

calculate OOO_COUNT at the source. The pds.ack_cc_state.rcvd_bytes field, a count of all bytes

received on a CCC, is described in the CMS section 3.6.9.2.1.

Table 3-63 - Early Loss Detection Fields per CCC – OOO Example

Field Name Field Size Description

FIELDS FROM CMS Used in NSCC algorithm
cwnd 32 bits

(per CCC)
Number of bytes, calculated by the CC algorithm

prev_rcvd_pdc_bytes

32 bits

(per PDC)

Highest pds.ack_cc_state.rcvd_bytes received on
the PDC over previously received ACKs, multiplied
by 256 for units = bytes. This can be a 24-bit count
since the least significant 8 bits are always 0.
Monotonically increasing count of the number of
bytes received on a PDC incremented when a
packet is received and wraps at max.

inflight_ccc_bytes 32 bits
(per CCC)

Counter of bytes transmitted on the CCC but not
yet acknowledged, across all PDCs in CCC

RECEIVED PACKET FIELDS Fields from the received packet @source
ack.rcvd_bytes 24 bits

(per PDC)
ack.rcvd_bytes refers to the
pds.ack_cc_state.rcvd_bytes field in an ACK packet,
multiplied by 256 for units = bytes

ack.ooo_count 16 bits
(per PDC)

See OOO_COUNT in this table

LOCAL CONFIGURATION Configuration for OOO loss detection

 297

Copyright © 2025 Ultra Ethernet ConsortiumTM. All rights reserved.

Field Name Field Size Description
loss_retx_factor 8 bits

(global)
Configured value used to approximate a number of
RTTs

min_retx_factor 32 bits
(global)

Minimum threshold in bytes

LOSS DETECTION STATE State for OOO_COUNT loss detection
OOO_COUNT (@destination) 16 bits

(per PDC)
Number of PSNs received at destination beyond the
first missing PSN (i.e., past the first hole in the
bitmap)

Dest_Lowest_Not_Rcvd_PSN

(@destination)

32 bits
(per PDC)

Lowest PSN not yet received

avg_tx_pkt_size (@source) 16 bits
(per CCC)

Calculated average size of packet in bytes –
implementation-specific calculation – or may be set
to a constant if the workload is known

Src_Lowest_Not_Rcvd_PSN

(@source)

32 bits
(per PDC)

Lowest PSN not yet ACK’d by SACK bitmap, distinct
from CACK_PSN in that clear is not considered

inflight_pdc_bytes

(for each PDC in the CCC)

32 bits
(per PDC)

Count of bytes transmitted on the PDC but not yet
acknowledged – used to scale cwnd per PDC in
these calculations

last_rtx_psn (@source) 32 bits
(per PDC)

Snapshot of Src_Lowest_Not_Rcvd_PSN when
entering loss recovery mode

recovery_psn (@source) 32 bits
(per PDC)

Snapshot of highest sent PSN when entering loss
recovery mode

highest_sent_psn (@source)

(aka HPSN)

32 bits
(per PDC)

Highest PSN that was already sent into the network

DYNAMIC FIELDS Temporary fields – used during calculations
loss_threshold_bytes 32 bits

(per CCC)
Calculated value (dynamic threshold) used to
determine if a packet is likely lost per this method

loss_threshold_pkts 16 bits
(per CCC)

Calculated using avg_tx_packet_size

cwnd_pkts 16 bits
(per CCC)

Calculated using avg_tx_packet_size

newly_rcvd_bytes 24 bits
(per PDC)

Number of bytes newly acknowledged in the ACK
just received – i.e., the difference between the
previous pds.ack_cc_state.rcvd_bytes and just
arrived pds.ack_cc_state.rcvd_bytes, adjusted to
units = bytes

loss_recovery_mode Boolean
(per PDC)

Indicates if PDC is currently in loss recovery mode.

Because a CCC may include more than one PDC, stats are maintained at both the PDC and CCC level. The

algorithm proportionally allocates cwnd to each PDC in the calculation based on the ratio of PDC bytes

to CCC bytes inflight.

The OOO-based loss detection calculations track the number of bytes that have been transmitted but

not yet received at the destination on each PDC and on each CCC, as well as tracking the lowest PSN that

has not been received at the destination per the SACK bitmap. The threshold used to determine if OOO-

based loss detection could be triggered is calculated using:

 loss_threshold_bytes = max(loss_retx_factor * cwnd * inflight_pdc_bytes /

 inflight_ccc_bytes, min_retx_config)

 298

Copyright © 2025 Ultra Ethernet ConsortiumTM. All rights reserved.

where loss_retx_factor is roughly a number of loaded RTTs, and min_retx_config sets a minimum to

reduce spurious retransmission. This is based, roughly, on the following concept: cwnd reflects how

many bytes may be inflight on the CCC. This is adjusted for what percentage of those bytes are on this

PDC (cwnd * PDC bytes/CCC bytes). Then allow for a few RTTs (loss_retx_factor) due to various delays.

However, this can trigger when there are low rates of traffic, so include a minimum threshold

(min_retx_config). If there are more out-of-order bytes than the calculated threshold, some packets may

have been lost.

This calculated threshold is in units of bytes. It must be translated to packets, which can be done by

dividing the number of bytes in flight by the number of packets in flight, or using a configured number

(e.g., MTU) if the workload is known. The result is loss_threshold_pkts. Similarly, cwnd needs to be

translated from bytes to packets – cwnd_pkts.

 loss_threshold_pkts = loss_threshold_bytes / avg_tx_pkt_size

 cwnd_pkts = cwnd_bytes / avg_tx_pkt_size

When loss is detected, the PDS source enters the loss recovery mode and takes a snapshot of the lowest

PSN not yet received at the destination based on SACK bitmap and the highest sent PSN (HPSN). Any

unacknowledged packets between Src_Lowest_Not_Rcvd_PSN and HPSN are considered lost. PDS ACKs

continue to arrive with SACK bitmaps and these may update some of these PSNs to ‘received’ state.

As each ACK is received, the OOO_COUNT loss recovery mechanism updates the state that was snapshot

on entering loss recovery mode; the update is based on Src_Lowest_Not_Rcvd_PSN and the SACK

bitmap. It then retransmits the packets considered lost while obeying the window limit. After all

retransmissions are completed, new packets are transmitted if the window allows. While in loss

recovery mode, OOO_COUNT is ignored.

At the destination, OOO_COUNT is generated. The following pseudo-code describes how OOO_COUNT

may be calculated. The term ‘received’ here means the packet was accepted and passed to SES. The

function find_next_lowest_psn_not_received() is similar to calculating CACK_PSN except CACK_PSN

advances only when a PSN is cleared, while Dest_Lowest_Not_Rcvd_PSN advances as soon as a PSN is

received.

init OOO_COUNT = 0;

if packet received {

 if PSN == Dest_Lowest_Not_Rcvd_PSN { # advance ‘lowest PSN not rcvd’

 PREV_LOW = Dest_Lowest_Not_Rcvd_PSN;

 Dest_Lowest_Not_Rcvd_PSN = determine_new_lowest_not_rcvd_psn();

 OOO_COUNT = OOO_COUNT – (Dest_Lowest_Not_Rcvd_PSN – PREV_LOW);

 } else {

 OOO_COUNT = OOO_COUNT + 1;

 }

}

Alternatively, OOO_COUNT can be calculated at the source using:

OOO_COUNT * avg_tx_pkt_size = ooo_rcvd_bytes =

 299

Copyright © 2025 Ultra Ethernet ConsortiumTM. All rights reserved.

 ((HPSN – Src_Lowest_Not_Rcvd_PSN) * avg_tx_pkt_size) – inflight_pdc_bytes

Refer to the informative text box at the end of this section for information on this calculation.

The count of inflight bytes per PDC and per CCC can be determined using the received

pds.ack_cc_state.rcvd_bytes field provided in the ACKs as shown in the ‘On packet transmission’ section

of pseudo-code below. The inflight_ccc_bytes is required by NSCC; inflight_pdc_bytes and

avg_tx_pkt_size are added for this OOO loss detection method.

On packet transmission { // Increment in flight by #bytes transmitted

 inflight_ccc_bytes = inflight_ccc_bytes + (tx_packet_size)

 inflight_pdc_bytes = inflight_pdc_bytes + (tx_packet_size)

 avg_tx_pkt_size = avg_tx_pkt_size * weight + tx_packet_size * (1-weight)

}

On PDS ACK received { // ACKs out-of-order, confirm Rcvd_Bytes increased

 if (ack.rcvd_bytes > prev_rcvd_pdc_bytes){

 Calculate how many bytes destination received since last ACK,

 newly_rcvd_bytes = (ack.rcvd_bytes – prev_rcvd_pdc_bytes) * 256;

 // Reduce number of bytes inflight by amount the destination received

 // Since there may be multiple PDCs per CCC, track each independently

 inflight_pdc_bytes = inflight_pdc_bytes – newly_rcvd_bytes

 inflight_ccc_bytes = inflight_ccc_bytes – newly_rcvd_bytes

 // Update tracker of how many bytes have been received at destination

 prev_rcvd_pdc_bytes = ack.rcvd_bytes

 }

 if (SACK_bitmap.Src_Lowest_Not_Rcvd_PSN = 1) {

 // Track lowest not rcvd PSN based on SACK bitmap

 Src_Lowest_Not_Rcvd_PSN = determine_new_lowest_not_rcvd_psn()

 }

On PDS ACK arrival {

 if (loss_recovery_mode = FALSE) {

 // Update fields to latest state from ACK

 loss_threshold_bytes = max(loss_retx_factor * cwnd *

 inflight_pdc_bytes / inflight_ccc_bytes, min_retx_config)

 // if using OOO_COUNT from destination via ACK:

 loss_threshold_pkts = loss_threshold_bytes / avg_tx_pkt_size

 // if calculating OOO_COUNT at source:

 ooo_rcvd_bytes = ((HPSN – Src_Lowest_Not_Rcvd_PSN) * avg_tx_pkt_size) -

 inflight_pdc_bytes

 cwnd_pkts = cwnd_bytes / avg_tx_pkt_size

 }

 // Check if criteria indicates loss recovery mode should be enabled

 // if using OOO_COUNT from destination via ACK:

 if (OOO_COUNT > loss_threshold_pkts) && loss_recovery_mode = FALSE) {

 // if calculating OOO_COUNT at source:

 if (ooo_rcvd_bytes > loss_threshold_bytes) && loss_recovery_mode = FALSE){

 loss_recovery_mode = TRUE

 recovery_psn = highest_sent_psn

 last_rtx_psn = Src_Lowest_Not_Rcvd_PSN; // First PSN considered lost

 }

 if (loss_recovery_mode) {

 // Retransmit as many lost PSN as cwnd allows

 300

Copyright © 2025 Ultra Ethernet ConsortiumTM. All rights reserved.

 while((last_rtx_psn < Src_Lowest_Not_Rcvd_PSN + cwnd_pkts) &&

 (last_rtx_psn < recovery_psn)) {

 enqueue last_rtx_psn for retransmission;

 last_rtx_psn = next unacked PSN between last_rtx_psn and

 recovery_psn

 if (last_rtx_psn == NULL) {

 last_rtx_psn = recovery_psn + 1;

 }

 }

 }

} //End of ACK processing

On Retransmit {

 // Loss recovery processing already applied cwnd

 // Transmit all enqueued packets

 if (last_rtx_psn > recovery_psn) {

 loss_recovery_mode = FALSE;

 }

} //End of Retransmit processing

This attempts to identify all PSNs that are roughly within the loss_retx_factor congestion window

relative to the oldest unacknowledged packet. When supported, packets MUST NOT be retransmitted

more than once using this loss detection mechanism.

See section 3.5.15.5.2 for how to recover lost ACKs using this loss detection mechanism.

Informative Text:

For clarity in comparing the destination and source methods for determining OOO_COUNT, the

equations are simplified to fit in a single line by letting pdc/ccc = inflight_pdc_bytes/inflight_ccc_byte

and excluding min_retx_config in this comparison. The pdc/ccc term is used when multiple PDCs share

a CCC to scale the CCC state for each individual PDC.

Consider the calculation used in the destination method shown as equation A below. Equations A, B,

and C are mathematically equivalent.

A. (OOO_COUNT > loss_threshold_pkts)

B. (OOO_COUNT > (loss_retx_factor * cwnd * pdc/ccc) / avg_tx_pkt_size

C. OOO_COUNT * avg_tx_pkt_size > loss_retx_factor * cwnd * pdc/ccc

Average transmit packet size effectively converts OOO_COUNT to bytes. This is an estimate of the

number of bytes that arrived out of order at the destination, ooo_rcvd_bytes, and can be calculated

using:

OOO_COUNT * avg_tx_pkt_size = ooo_rcvd_bytes =

 ((HPSN – Src_Lowest_Not_Rcvd_PSN) * avg_tx_pkt_size) – inflight_pdc_bytes

 301

Copyright © 2025 Ultra Ethernet ConsortiumTM. All rights reserved.

3.5.15.4.2 EV-Based Loss Detection

Another method for early loss detection is to maintain a record of which PSN used each entropy value

(EV). If an ACK is received for a higher PSN that used the same EV, the lower PSN(s) may be assumed to

be lost. For N outstanding packets, this scheme requires O(N) PDS state to store EVs.

The state re uired can be optimized by introducing the concept of K “slots” where each slot uses the

same EV, EVs are used in round-robin fashion, and thus the slots form an in-order list. Loss is detected

using simple arithmetic: The next PSN expected on a slot is the last PSN on that slot + K. Optimizations

could be to use part of the EV to identify the slot, or to use part of the PSN as the EV for a slot and do

arithmetic on the bitmap to detect loss.

The example in Figure 3-70 provides precise early loss detection except for tail loss, which generally

requires using Probe CPs as described in section 3.5.15.4.3. The example is not optimized and is used

here to provide clarity. The PDC SLOT STATE table in Figure 3-70 tracks the next Expected_PSN on each

EV using simple addition. When an EV is changed or skipped (e.g., CMS detects congestion), an entry is

added to the EV CHANGE TABLE. When all packets on the original EV are received, the EV CHANGE

TABLE state is moved to the PDC SLOT STATE table and the EV CHANGE TABLE entry is deleted.

This example uses up to 128 EVs per PDC, where the lowest 7 bits of the EV identify the slot number.

The slot state holds the next Expected_PSN, which is incremented by 128 when a PSN is received. If a

higher PSN is received, any lower PSNs expected in that slot are determined to be lost. If the EV for the

slot is updated or skipped, the ‘ev_update’ bit is set. Example processing code for an implementation

that stores state as shown in Figure 3-70 follows:

SLOT_STATE = older EV state, set ev_update when EV is changed

EV_CHANGE = temporary state with new EV, moves to SLOT_STATE when all packets

on older EV are completed

if(cms_changes_EV) {

// Need to track 2 paths(EVs)during change

 add_ev_change_entry()

Figure 3-70 - Example PSN Tracking per EV

 302

Copyright © 2025 Ultra Ethernet ConsortiumTM. All rights reserved.

 SLOT_STATE.ev_update = TRUE

}

// Check if PSN used older EV

if(SLOT_STATE.ev_update = FALSE || rcvd_ev[15:8] != EV_CHANGE.new_upper_ev) {

 // Yes, this is on older EV

 if (rcvd_psn != SLOT_STATE.next_psn) {

 // Not Expected_PSN so determine loss

 determine_lost_psn()

 }

 // Calculate next Expected_PSN

 SLOT_STATE.next_psn = rcvd_psn + 128

 if (SLOT_STATE.next_psn = EV_CHANGE.start_psn){

 // All PSN using older EV are done

 SLOT_STATE.ev_update = 0

 SLOT_STATE.next_psn = new_next_psn

 delete_ev_change_entry()

 }

} else {

 // This PSN is on the new EV, check if it’s the Expected_PSN

 if (rcvd_psn != EV_CHANGE.new_next_psn) {

 // Not the Expected_PSN so determine loss

 determine_lost_psn()

 }

 // calculate the next Expected_PSN

 EV_CHANGE.new_next_psn = rcvd_psn + 128

 }

}

3.5.15.4.3 Tail Loss Detection

Tail loss refers to losing the last packet(s) of a message or EV such that the early loss detection

mechanism doesn’t trigger. For example, if using the OOO method in section 3.5.15.4.1, then if a small

number of packets is lost – below the loss_threshold_pkts or ooo_rcvd_bytes threshold – the detection

method will not trigger.

This section describes a method for using a Probe CP to detect tail loss by leveraging the loss recovery

mode described in both OOO-based solutions in sections 3.5.15.4.1 and 3.5.15.4.2.

A per PDC timer, Tail_Loss_Timer, may be used. This timer is enabled and set to Tail_Loss_Time when

there is any unacknowledged PDS Requests on the PDC. The timer is restarted if any ACK or NACK packet

is received on the PDC. The timer is disabled if there are no unacknowledged packets.

When the Tail_Loss_Timer expires, a Probe CP is transmitted and the timer restarted. If the timer

expires again before the ACK is received, Tail_Loss_Retx_Cnt is incremented and the Probe CP is

retransmitted. If the maximum retry count, Max_Tail_Loss_Retx, is reached, no additional Probe CPs are

Informative Text:
When cwnd is reduced such that fewer packets are in flight, it may be beneficial to adjust the number of

EVs in use accordingly. This improves the freshness of the EV congestion state and reduces the potential

for tail loss. Probe CPs can be used to check slots that have been migrated to new EVs.

 303

Copyright © 2025 Ultra Ethernet ConsortiumTM. All rights reserved.

sent. RTO processing will handle the recovery or close the PDC if necessary. Alternatively, the retransmit

count can be excluded and the Probe CPs transmitted until the RTO_TIMER expires.

The tail loss Probe CP uses the PDS Request traffic class, so it can be used to measure the network RTT.

The payload is set to [SRC_LOWEST_NOT_RCVD_PSN[31:3], 0b000]. The Probe CP carries a locally

generated value, PROBE_OPAQUE, that is echoed back in the ACK in the pds.probe_opaque field. The EV

is randomly selected. If the Probe CP is retransmitted, a different EV should be used.

When the ACK for the Probe CP is received, the RTT is compared to the target delay, ccc.target_qdelay

(see CMS section 3.6.13.3). If the probe-measured RTT is less than or equal to the target delay, loss

recovery mode is triggered. If the probe-measured time is greater than the target delay, the timer is

reset, and another Probe CP is generated. The RTO retry counter is not incremented in this case. The

retry counter is cleared when any ACK is received.

If an ACK for another packet is received before the Probe CP ACK, the Probe CP ACK is ignored with

respect to triggering loss recovery mode, and the Tail_Loss_Timer is restarted. If there are still

unacknowledged PSNs, the timer remains enabled, otherwise the timer is disabled.

If there are no events pending other than waiting for ACKs to arrive to cause CACK_PSN to equal the

highest sent PSN, do not trigger this Probe CP. Refer to section 3.5.15.5.1.

3.5.15.4.4 Receiver Based Loss Detection

Similar to EV-based loss detection (see section 3.5.15.4.2) and OOO-based loss detection (see section

3.5.15.4.1), the destination may monitor local state and determine a packet was lost. A NACK with

pds.nack_code = UET_RCVR_INFER_LOSS is transmitted that triggers the source to retransmit the

packet.

3.5.15.5 Early Loss Detection - ACKs

Often lost ACK packets can be recovered by monitoring CACK_PSN. The exceptions are guaranteed

delivery ACKs and the last ACKs when the PDC goes idle. Early loss detection for PDS ACKs refers to

determining if an ACK was lost before the RTO_TIMER expires. This capability SHOULD be supported.

The method(s) used are implementation specific. This section provides a number of example methods.

3.5.15.5.1 Loss Detection for Guaranteed Delivery ACKs

CACK_PSN can be used as a method for inferring lost ACKs when the missing ACK carries a guaranteed

delivery SES response. At the source, the following indicates the PSN has a guaranteed delivery SES

response:

• The pds.sack_bitmap field shows a PSN arrived at the destination AND

• CACK_PSN is set to one less than that PSN

For example, if the received pds.sack_bitmap indicates PSN = N arrived and CACK_PSN = N-1, then PSN =

N is guaranteed delivery. This is true since CACK_PSN would be set to N or greater if that packet didn’t

need a guaranteed response. Refer to section 3.5.12.5.

 304

Copyright © 2025 Ultra Ethernet ConsortiumTM. All rights reserved.

In this scenario when using ROD, the loss of the ACK can be inferred immediately upon reception of the

next ACK, since ACKs arrive in PSN order.

When using RUD, the ACKs may arrive out of order, and a mechanism such as a timer or monitoring an

ACK bitmap can be used to infer the ACK loss. The time-out period should be larger than the network

RTT plus an adjustment to account for SES processing at the destination.

When the source determines the ACK is lost, it MUST generate an ACK Request CP or retransmit the

original request packet. The source SHOULD generate the ACK Request CP unless the missing ACK is

carrying read response data (refer to section 3.5.16.2). I.e., it was an SES Read Request.

3.5.15.5.2 OOO-Based Loss Detection — ACKs

If using an OOO-based method as described in section 3.5.15.4.1, when the loss recovery mode is

triggered, if Src_Lowest_Not_Rcvd_PSN > CACK_PSN then it is likely the ACK associated with

CACK_PSN+1 is guaranteed delivery and that is was lost. The source should send an ACK Request CP or,

if the packet was a read request, retransmit the original packet.

If additional guaranteed delivery ACKs have been lost, this can be determined by monitoring how

CACK_PSN advances when the first ACK (for PSN = CACK_PSN+1) arrives. If CACK_PSN advances to

another PSN that is lower than recovery_psn, repeat this process (send an ACK Request CP or retransmit

the original packet) until CACK_PSN is equal to or greater than recovery_psn.

3.5.16 Control Packet (CP)

The PDS uses CPs on RUD and ROD PDCs. All CP types MUST be supported. CPs may use the traffic class

of either PDS Request or PDS ACKs; refer to the CMS section 3.6.4.7. The guidelines for assigning CPs to

traffic classes are:

• CPs that are allocated a unique PSN on a ROD PDC MUST use the PDS Request traffic class.

• Refer to CMS section 3.6.4.7 for information on mapping packet types to traffic classes.

This section specifies each type of CP and their expected use. The pds.ctl_type field identifies the CP, as

defined in section 3.5.10.7. The packet format is illustrated in Figure 3-71.

A unique PSN is assigned to a CP when the packet requires guaranteed delivery. These CPs MUST be

allocated the next PSN in the PSN space in the direction the packet is sent (i.e., forward or return). When

using a unique PSN, the pds.flags.retx bit is set when the packet is retransmitted. The pds.flags.retx bit

may also be set when retransmitting a probe CP. Refer to the summary table at the end of this section.

CPs MUST NOT be marked as trimmable. Trimmed CPs are dropped. The reception of a trimmed CP

SHOULD be counted.

 305

Copyright © 2025 Ultra Ethernet ConsortiumTM. All rights reserved.

3.5.16.1 NOOP

This CP is allocated a unique PSN and triggers an ACK. No other processing is required at the destination.

The CP pds.payload field is set to 0x0. The pds.flags.ar bit MUST be set to one to indicate the

destination MUST generate an ACK. The pds.flags.isrod bit MUST be set if the NOOP CP is sent on a ROD

PDC and MUST be cleared if the NOOP CP is sent on a RUD PDC.

This CP can be used to open a PDC. Therefore, it uses the pds.flags.syn field and associated state used to

open a PDC. Only NOOP and Negotiation CPs can be used to open a PDC. Other CPs MUST NOT be used

to open a PDC.

3.5.16.2 ACK Request

This CP is intended to recover lost ACKs when using ROD (as described in section 3.5.21.3) or RUD (as

described in section 3.5.12.5). It requests an ACK for a specific PSN as identified by the pds.psn field in

the CP header. The CP pds.payload field SHOULD carry the message ID associated with the requested

packet. The CP pds.payload field MUST be set to 0x0 if the message ID is not populated with a message

ID. SES does not assign a message ID to all packets so there may not be a valid message ID. Also, an

implementation may isolate SES and PDS functionality, such that PDS may not have a message ID

available.

The source sends the ACK Request CP to the destination. The ACK Request CPs MUST use the PSN for

which it is requesting an ACK. The pds.flags.ar bit MUST be set to one to indicate the destination MUST

generate an ACK.

An ACK Request CP SHOULD be generated when the SACK bitmap and CACK_PSN indicate a guaranteed

delivery response is missing and when a trimmed ACK is received with the pds.flags.req field set to

Figure 3-71 - CP Format

 306

Copyright © 2025 Ultra Ethernet ConsortiumTM. All rights reserved.

REQ_CLEAR. The exception is when the associated packet is a read request of size 

Max_ACK_Data_Size.

If the missing response is associated with a read request of size  Max_ACK_Data_Size, then the original

packet using that PSN MUST be retransmitted. The target does not save read data, so the initiator must

reissue the read.

The destination MUST respond as follows:

if received PSN is processed by SES {

 switch (SES response) {

 case not guaranteed delivery:

 send ACK with default SES response

 break

 case read response data:

 send NACK with pds.nack_code = UET_ACK_WITH_DATA

 break

 case guaranteed and response is available:

 send ACK with SES response

 break

 case guaranteed and response is not available

 send NACK with pds.nack_code = UET_GTD_RESP_UNAVAIL

 break

 default:

 fatal_error() // Not possible

 break

 }

}

If received PSN is still being processed by SES {

 Send NACK with pds.nack_code = UET_RCVD_SES_PROCG

} else {

 // The PSN was not received

 Send NACK with pds.nack_code = UET_PKT_NOT_RCVD

}

When an ACK is determined to be lost, implementations may choose to send an ACK Request CP or

retransmit the original packet.

If an ACK Request CP is received with a PSN lower than CLEAR_PSN, this packet is silently dropped. This

can happen due to network reordering where the packet is retransmitted before the ACK for the original

packet arrives and then another packet carrying the clear passes the retransmitted packet. This event

may be counted for diagnostic purposes.

3.5.16.3 Clear

The pds.clear_psn_offset field in the PDS Request header is used to calculate the CLEAR_PSN PCD state.

CLEAR_PSN is used to free the state associated with ACKs at the destination. The Clear Command CP and

Clear Request CP either request the cumulative CLEAR_PSN or carry a cumulative CLEAR_PSN. These are

generally used when resources are tight, as processing clear events frees up guaranteed delivery state.

 307

Copyright © 2025 Ultra Ethernet ConsortiumTM. All rights reserved.

The pds.flags.ar bit MUST be equal to zero for the Clear Command and Clear Request CPs, as these CPs

MUST NOT trigger a PDS ACK.

Clear Command and Clear Request CPs MUST assign pds.psn = 0x0.

3.5.16.3.1 Clear Command

The source sends a Clear Command CP to the destination when there is no PDS Request packet available

to carry a required CLEAR_PSN. For example, if there are no pending packets to send and no

outstanding, unacknowledged PSNs on the PDC and the pds.flags.req field in a received ACK indicates a

clear is needed. This is also sent in response to a Clear Request CP. Not all ACKs require a clear.

When generating this CP, the CP pds.payload field MUST be set to the CLEAR_PSN.

3.5.16.3.2 Clear Request

The destination sends a Clear Request CP to the source when there are ACKs requiring a clear. In

general, the destination relies on the source to detect lost guaranteed delivery ACKs and generate an

ACK Request CP (or retransmit the original request packet). Therefore, this CP may be sent based on

local resource limitations (e.g., limited resources for storing guaranteed delivery responses) to free up

storage of non-default responses.

When generating this CP, the CP pds.payload field is set to the PSN requiring the clear.

3.5.16.4 PDC Close

Two CPs are defined for closing a PDC as specified in section 3.5.8.3: Close Command CP and Close

Request CP. Only the initiator of the PDC can close a PDC. The target can request the PDC be closed. If

the target requests a close and the initiator fails to acknowledge the Close Request CP within a

configured time, the target MUST close the PDC in error.

Both close CPs MUST be allocated a new PSN, specifically the next PSN in the PDC PSN space. The

pds.flags.ar bit MUST be set to one to indicate the destination MUST generate an ACK. Both close CPs

MUST be acknowledged.

3.5.16.4.1 Close Command

The initiator sends a Close Command CP to the target to indicate the PDC is being closed. The CP

pds.payload field is set 0x0.

3.5.16.4.2 Close Request

The target sends a Close Request CP to the initiator to request the initiator close the PDC. The CP

pds.payload field is set to 0x0.

3.5.16.5 Probe

Probe CPs are generated at the source and trigger an ACK. The ACK is used to collect congestion control

information. The conditions for generating a Probe CP are listed in section 3.5.15 and in the CMS section

3.6.13.7. A Probe CP may be generated for implementation specific reasons.

 308

Copyright © 2025 Ultra Ethernet ConsortiumTM. All rights reserved.

The Probe CP is not allocated a new PSN. The pds.probe_opaque field in the CP header is used to carry a

16-bit opaque value that is reflected back in the associated ACK packet. The pds.probe_opaque field can

be used to associate a received ACK with a specific Probe CP packet. The pds.probe_opaque field is

copied from a received Probe CP packet into the pds.ack_psn_offset field in the corresponding ACK. The

Probe CP pds.payload field is set to the desired selective ACK base PSN in the ACK response (when

ACK_CC or ACK_CCX is in use). The pds.flags.ar bit MUST be set.

When a destination receives a Probe CP, an ACK is generated, as pds.flags.ar is set. The pds.flags.p bit

MUST be set to indicate the ACK is a Probe CP response. The pds.flags.req field MUST NOT be set to

REQ_CLEAR or REQ_CLOSE.

When ACK_CC or ACK_CCX is in use, the pds.sack_psn_offset field is determined based on the PSN in

the Probe CP pds.payload field. If the PSN in the Probe CP pds.payload field is lower than CACK_PSN,

then CACK_PSN is used as the base PSN for the pds.sack_bitmap field in the ACK. Other fields are

populated as usual.

3.5.16.6 Credit

There are two types of Credit CPs used with RCCC and TFC: one to send credit (Credit CP) and one to

request credit (Credit Request CP). These packets are transmitted based on a request from CMS.

3.5.16.6.1 Credit

A Credit CP is used to carry credit allocated to sources. Credit CPs are generated at the destination and

sent to the source. The conditions for triggering a Credit CP and the details of the pds.payload.credit

field are discussed in the CMS sections 3.6.14.6 and 3.6.15.2. The Credit CP format is illustrated in Figure

3-72. The fields are defined in Table 3-64.

Credit CPs MUST set the pds.psn field to 0x0. Credit CPs MUST NOT set pds.flags.ar to one and MUST

NOT be acknowledged. Credit is associated with a CCC. If multiple PDCs are sharing a CCC, the Credit CP

may be sent on any PDC that is scheduled with the CCC.

An ACK_CC or ACK_CCX may be used to send credit, in which case the credit is carried in the

pds.ack_cc_state or pds.ack_ccx_state fields as defined in the CMS section 3.6.9.2. Either of these two

mechanisms (Credit CP and ACK) may be used, or both may be used simultaneously, as the

pds.payload.credit field is a monotonically increasing value.

Figure 3-72 - Credit CP Payload

 309

Copyright © 2025 Ultra Ethernet ConsortiumTM. All rights reserved.

Table 3-64 - Credit CP Payload

Field Name

Size
(in bits)

Field Description

credit 24 Credit generated by RCCC algorithm – refer to the CMS section 3.6.9.3.1

rsvd 8 Set to zero

3.5.16.6.2 Credit Request

A Credit Request CP is used to request credit. It is generated by the source and sent to the destination.

Figure 3-73 illustrates the payload format and Table 3-65 describes the fields.

Credit Request CPs MUST set the pds.psn field to 0x0. This CP MUST set pds.flags.ar to zero and MUST

NOT be acknowledged. Credit is associated with a CCC. The Credit Request CP may be sent on any PDC

that is scheduled with the CCC.

Credit requests may also be carried in the pds.req_cc_state field of the PDS Request header. Either of

these two mechanisms (Credit Request CP and PDS Request header) may be used or both may be used

simultaneously, as the pds.req_cc_state.credit_target field is a monotonically increasing value.

Table 3-65 - Credit Request CP Payload

Field Name

Size
(in bits)

Field Description

ccc_id 8 Congestion Control Context Identifier

credit_target 24 Credit request

3.5.16.7 Negotiation

The Negotiation CP is included to support adding capability negotiation in the future, while maintaining

backward compatibility. If this control type is received and negotiation is not supported, then an ACK is

generated as described below. This ACK may use any of the available acknowledgement formats: ACK,

ACK_CC, or ACK_CCX.

The Negotiation CP is allocated a unique PSN for the pds.psn field. The pds.flags.ar bit MUST be set to 1

to indicate that the destination MUST generate an ACK. The pds.flags.isrod bit MUST be set to 1 if the

packet is sent on a ROD PDC and MUST be set to 0 if the packet is sent on a RUD PDC. This CP can be

Figure 3-73 - Credit Request CP Payload

 310

Copyright © 2025 Ultra Ethernet ConsortiumTM. All rights reserved.

used to open a PDC; therefore, it uses the pds.flags.syn field and associated state used to open a PDC if

sent during PDC creation.

The Negotiation CP has a pds.payload field of 32 bytes that is reserved for future use. The pds.payload

field MUST be set to 0x0 and ignored upon receipt. The Negotiation CP MUST be acknowledged using

the base ACK format.

3.5.16.8 CP Summary Table

Table 3-66 summarizes the fields used in CP headers by type. Source to destination means transmission

from the initiator to the target on the forward direction, and from the target to the initiator on the

return direction.

Table 3-66 - PDS CP Summary

CP Type CTL_TYPE PSN Usage Control Payload ACK

NOOP 0x0 Unique, new
PSN

Either direction,
can open a PDC

0x0 pds.flags.ar is set.
Triggers an ACK; no other
action.

ACK
Request

0x1 PSN for which
ACK is
requested

Either direction {message_id} or
0x0

pds.flags.ar is set.
Triggers an ACK or NACK
where ACK_PSN =
pds.psn from CP.

Clear 0x2 0x0 Either direction CLEAR_PSN pds.flags.ar is cleared.
Does not trigger ACK.

Clear
Request

0x3 0x0 Either direction PSN needing clear pds.flags.ar is cleared.
Does not trigger ACK.

Close
Command

0x4 Unique, new
PSN

Init -> Target on
fwd direction

0x0 pds.flags.ar is set.
Triggers an ACK.

Close
Request

0x5 Unique, new
PSN

Target -> Init on
return direction

0x0 pds.flags.ar is set.
Triggers an ACK.

Probe 0x6 0x0 Source to
Destination

SACK bitmap base
PSN

pds.flags.ar and
pds.flags.p flags are set.
Triggers an ACK.

Credit 0x7 0x0 Destination to
Source

Credit pds.flags.ar is cleared.
Does not trigger ACK.

Credit
Request

0x8 0x0 Source to
Destination

Target_Credit pds.flags.ar is cleared.
Does not trigger ACK.

Negotiation 0x9 Unique, new
PSN

Either direction,
can open a PDC

0x0
(32B)

pds.flags.ar is set.
Triggers an ACK.

3.5.17 Semantic Responses

Every PDS Request triggers an associated SES Response. SES MUST indicate to PDS if the semantic

response requires guaranteed delivery, meaning it contains unique information (e.g., SES NACK code or

data). SES always provides a guaranteed delivery semantic response for fetching atomics or reads if the

result is carried in the ACK. SES may provide a guaranteed delivery semantic response for other

requests, including when an error occurs.

 311

Copyright © 2025 Ultra Ethernet ConsortiumTM. All rights reserved.

The target PDS MUST maintain state for guaranteed delivery semantic responses until a clear is

received, enabling retransmission of the response when a duplicate request packet is received. All other

responses to duplicate packets use the default SES Response shown in section 3.5.13. The destination

MUST build the appropriate ACK if a duplicate request or ACK Request CP is received that is in the

supported ACK window (section 3.5.12.6).

All fetching atomic responses MUST be returned in the associated ACK packet, regardless of the

Max_ACK_Data_Size. Fetching atomic responses up to 16 B MUST be supported when supporting

fetching atomics. Fetching atomic results MUST be stored at the target and retransmitted if the

associated ACK is lost. An implementation SHOULD NACK a fetching atomic operation if the response

exceeds the supported size. In this case a NACK code of UET_ATOMIC_RESP_TOO_LARGE is used.

If an ACK has associated data from a read request (i.e., the read size is  Max_ACK_Data_Size), the data

is not stored at the target. The target MUST mark the PSN as required delivery and generate a NACK if

an ACK Request CP is received for that PSN. The initiator MUST retransmit the original read request to

recover the missing ACK in this case.

3.5.18 Reserved Service Support

Support for UET reserved service is optional. The MUST statements in this section only apply if reserve

service is implemented.

PDS allows reserving a pool of PDC resources including both PDC and CCC state. SES identifies which

packets use a reserved PDC resources by providing a context. The Rsv_PDC_Context and

Rsv_CCC_Context parameters shown in Table 3-67 are an example of such a context.

PDS MUST allow reservation of a configured number of PDC and CCC resources for use by the reserved

service. The number of reserved PDCs and CCCs SHOULD be at least 16. The method of reserving these

resources is implementation specific. The following is an example solution:

Table 3-67 - Reserved Service Support – Example Configuration Parameters

Field Name Description

Num_Rsv_PDC Number of PDCs in the reserved PDC pool
Num_Rsv_CCC Number of CCCs in the reserved CCC pool
Rsv_CCC_Type Select {NSCC, RCCC, TFC, none} for initiated PDCs
Rsv_CCC_Target_Mode Select {SHARED_CCC, CCC_PER_PDC}
Rsv_PDC_Context Identifier used to group packets sharing a common reserved PDC; the scale

matches Num_Rsv_PDC

Rsv_CCC_Context Identifier used to group packets sharing a common reserved CCC; the scale
matches Num_Rsv_CCC

EXAMPLE

• The libfabric provider configures PDS: {Num_Rsv_PDC = P, Num_Rsv_CCC = C, Rsv_CCC_Type =

TFC, Rsv_CCC_Target_Mode = SHARED_CCC}

o PDS reserves these resources and modes

 312

Copyright © 2025 Ultra Ethernet ConsortiumTM. All rights reserved.

• The libfabric provider creates a service with properties (e.g., a send queue): {type = RSV,

Rsv_PDC_Context = 6, Rsv_CCC_Context = 6}

o This triggers configuration/allocation of both SES and PDC resources (e.g., mapping of

rsv_pdc_context to local PDCID if needed, else libfabric uses direct PDCID – or an

implementation may choose to reserve a specific range and add a constant/offset)

• When SES sends packets to PDS from this send queue, it uses: {RSV = 1, Rsv_PDC_Context = 6,

Rsv_CCC_Context = 6} (see logical interface, section 3.5.4)

• When PDS receives packets from the local SES with RSV= 1, the context fields identify the

associated PDC/CCC resources.

• When PDS receives packets from the network with pds.flags.syn = 1 and pds.pdc_info[0] =

USE_RSV_PDC, a reserved PDC is allocated.

o If Rsv_CCC_Target_Mode = SHARED_CCC, map all target-reserved PDCs to the same

CCC, else allocate a CCC

• When service is complete, libfabric provider destroys the service and resources in SES and PDS

are freed

If a packet with the pds.flags.syn bit set is received with pds.pdc_info[0] != USE_RSV_PDC, the PDC and

CCC resources MUST NOT be taken from the reserve pool.

Packets associated with a PDC context MUST use the same PDC and CCC. Only packets associated with

the same PDC context may use that PDC. Reserved PDCs MUST be opened and closed under the control

of the libfabric provider and MUST NOT be closed dynamically due to resource limitations. That is, unlike

normal PDCs, the PDC remains in the ESTABLISHED state until the associated context is destroyed

explicitly.

For transmit scheduler services for reserved PDCs, refer to section 3.5.14.

Informative Text:
Reserved PDCs can be established by sending a UET_NO_OP or other semantic request to the
destination FEP. The PDC follows the common establishment method, including supporting secure
PSNs.

3.5.19 Sequence Diagrams

The following three sections on RUD, ROD, and RUDI use packet sequence diagrams to illustrate how the

protocols work. All sequence diagrams use the following key:

Table 3-68 - Sequence Diagram Key

Function Description Example

PDS Requests Solid line

PDS ACKs Dashed line

SES headers Fields in brackets are SES generated, and are carried in PDS
Request/ACK; these are shown to provide context on the
sequence, but are not used by PDS

[MID=1, RESP]

 313

Copyright © 2025 Ultra Ethernet ConsortiumTM. All rights reserved.

Function Description Example

Colors All requests/ACK in a direction are shown in the same color; a
single PDC may use up to four colors:
#1 Forward direction Request
#2 Forward direction ACK
#3 Return direction Request (Read Resp)
#4 Return direction ACK

#1
#2
#3
#4

Figure 3-74 shows a sequence with text pointing out the meaning of each field and arrow. All sequence

examples are informative.

The terms used in the sequence diagrams are abbreviated to allow them to fit in the figure and remain

legible. Many of these abbreviated terms are neither the field names of the headers in the packet nor

the computed values within the implementation, both of which are referenced in the text describing the

sequence diagrams. For example, CLEAR in Figure 3-74 is intended to represent the CLEAR_PSN value

that is calculated from the pds.clear_psn_offset and pds.psn fields or explicitly carried in the

pds.payload field of a Clear Command CP.

Figure 3-74 - Example Sequence with Key

 Read Resp, MID , MID1, DATA
orig_pdcid_val =

 MID , MID1, DATA

333 RESP, gtd_del

PacketsMessages Packets MessagesPackets

333 Read, MID1,
 orig_pdcid, orig_psn = 333

Seman c
processing

 Read, MID1

 MID1, RESP

Forward direc on
PDS Re uest

 MID , RESP , gtd_del

 MID , RESP
Read COMPLETION
(libfabric op on)

CLEAR = 48

SES headers

Forward direc on
PDS ACK

SES headers

Return direc on
PDS ACK SES headers

Return direc on
PDS Re uest

SES headers

SES opcode not
used by PDS,
shown as this

a ects the overall
se uence

 314

Copyright © 2025 Ultra Ethernet ConsortiumTM. All rights reserved.

3.5.20 Reliable Unordered Delivery

A RUD PDC is a reliable PDC established between a single initiating FEP and a single target FEP that

guarantees packets are delivered once and only once. PDCs are ephemeral, established and closed on

demand. Packets from multiple PIDs and/or send queues may share a PDC. All packets from a single

message use a single PDC.

3.5.20.1 RUD Services

It is important to recognize that all SES Requests – send, write, read, atomic, etc. – are fundamentally

the same to PDS.

1. RUD MUST transmit PDS Request packets as directed by the source SES and retransmit up to

Max_RTO_Retx_Cnt times to attempt to deliver the packets to the destination.

2. RUD MUST deliver PDS Request packets to the destination SES once and only once.

3. RUD MUST generate ACK packets at the destination that carry SES Responses.

a. PDS accepts an indication from SES whether each SES Response has guaranteed

delivery.

b. PDS MUST store guaranteed delivery SES Responses (excluding data carried in an ACK

for a read response) to enable retransmission of the associated ACKs if a valid duplicate

request arrives (i.e., within the ACK window – see section 3.5.12.6).

c. PDS MUST construct the default SES Response to enable retransmission of the

associated ACK if a valid duplicate request is received and the SES Response for the

associated PSN was not guaranteed delivery.

d. PDS MUST receive a clear indication for all PSNs with guaranteed delivery SES Responses

before freeing the associated SES Response.

4. PDS MUST receive and process ACK packets at the source and pass the SES response to SES.

5. PDS MUST send CLEAR_PSN from source to destination in all PDS Requests. This is done by

properly setting the pds.clear_psn_offset and pds.psn fields. The CLEAR_PSN computed value is

not explicitly transmitted in PDS Requests.

6. PDS MUST send CLEAR_PSN when a Clear Request CP is received – either in a PDS Request (as

described in step 5 above) or using a Clear Command CP where CLEAR_PSN is loaded into the

pds.payload field.

7. PDS MUST receive and process CLEAR_PSN.

a. PDS MUST free any stored SES Response when the associated PSN is cleared.

8. PDS MUST send all read responses in the same direction for a single message.

a. If a message is larger than PDS Max_ACK_Data_Size, then all responses use the return

direction even if the last packet carries less than Max_ACK_Data_Size data

SES Read sequences operate differently depending on the configuration of Max_ACK_Data_Size. Refer

to section 3.5.12.1.

3.5.20.2 Standard Sequences

Reliable unordered delivery (RUD) sequences are presented in the form of ladder diagrams. This section

specifies the normal sequences (i.e., PDS success cases) for RUD after a PDC is established.

 315

Copyright © 2025 Ultra Ethernet ConsortiumTM. All rights reserved.

3.5.20.2.1 Single-Packet Send Sequence – Non-Guaranteed Delivery

Send and write sequences are the same on best-effort and lossless networks. The standard RUD Send

sequence for a single-packet message with SES Response not guaranteed delivery is shown in Figure

3-75. The sequence in Figure 3-75 proceeds as follows:

1. The PDC is idle with all previous packets successfully delivered, PSN = ACK_PSN = CLEAR_PSN =

332.

a. CLEAR_PSN is automatically incremented when PSN has no guaranteed delivery.

2. SES at the initiator transfers a packet to PDS for transmission.

3. PDS at the initiator transmits the packet on the PDC with PSN = 333 and marks PSN = 333 as

transmitted.

4. PDS at the target receives the packet, marks PSN = 333 as received, and delivers the packet to

SES.

5. SES at the target provides the sematic response to PDS with no guaranteed delivery indication.

6. PDS at the target transmits an ACK packet for PSN = 333 that includes the SES Response.

a. The ACK pds.flags.req != REQ _CLEAR as a clear is not required.

b. CACK_PSN is incremented as SES Response is not guaranteed delivery.

c. No state is required to be stored at the target beyond the PSN tracking state (e.g.,

bitmap/PSN).

7. PDS at the initiator receives the ACK packet, delivers it to SES, and frees the state for PSN = 333.

Figure 3-75 - Standard RUD Send Sequence for Single- Packet Message, Non-Guaranteed Delivery

 316

Copyright © 2025 Ultra Ethernet ConsortiumTM. All rights reserved.

The standard RUD Send sequence shown in Figure 3-75 also applies to non-fetching atomics. In this

scenario with non-guaranteed delivery, a clear is not required. In general, PSN state may be freed once

all lower PSNs are in clear state – either by receiving a CLEAR_PSN or because the SES Response did not

require a clear.

3.5.20.2.2 Single-Packet Send Sequence – Guaranteed Delivery

PDS sequences for send and write are the same on best-effort and lossless networks. The standard RUD

send sequence for a single-packet message with an SES guaranteed delivery response is shown in Figure

3-76. The sequence in Figure 3-76 proceeds as follows:

1. The PDC is idle with all previous packets successfully delivered, PSN = ACK_PSN = CLEAR_PSN =

332.

2. SES at the initiator transfers a packet to PDS for transmission.

3. PDS at the initiator transmits the packet on the PDC with PSN = 333 and marks PSN = 333 as

transmitted.

4. PDS at the target receives the packet, marks PSN = 333 as received, and delivers the packet to

SES.

5. SES at the target provides the sematic response to PDS with guaranteed delivery indication

(gtd_del)

6. PDS at the target transmits an ACK packet for PSN = 333 that includes the SES Response.

a. The ACK pds.flags.req = REQ _CLEAR, as a clear is required.

b. CACK_PSN is not incremented, as SES Response is guaranteed delivery.

c. The SES Response is stored at the target.

7. PDS at the initiator receives the ACK packet, delivers it to SES, and frees state for PSN = 333.

8. PDS at the initiator sends CLEAR_PSN = 333 to the target using either of the following:

a. CLEAR_PSN is carried in the next PDS Request packet.

b. A Clear Command CP may be used if there is no PDS Request packet to send; see section

3.5.16.3 for details on when Clear CPs are generated.

9. PDS at the target frees the SES Response state for PSN = 333.

a. CACK_PSN is incremented to 333 upon receiving CLEAR_PSN.

 317

Copyright © 2025 Ultra Ethernet ConsortiumTM. All rights reserved.

3.5.20.2.3 Multi-Packet Send Sequence – Non-Guaranteed Delivery

Send and write sequences are the same on best-effort and lossless networks. The standard RUD Send

sequence for a multi-packet message is shown in Figure 3-77. The sequence in Figure 3-77proceeds as

follows:

1. The RUD send sequence for multi-packet messages is the same as the RUD send sequence for a

single-packet message.

a. The single-packet sequence is repeated for each packet of the multi-packet message.

b. Packets may arrive out of order at the destination.

c. Acknowledgements may be cumulative – the figure shows an ACK every two packets;

however, ACK generation events vary when cumulative ACKs are used; see section

3.5.12.2.

2. The PDC is idle with all previous packets successfully delivered, PSN = ACK_PSN = CLEAR_PSN =

332.

3. On the initiator, the PSN increases with each packet and CLEAR_PSN increases with CACK_PSN

arriving from target.

a. Because all these SES responses are not guaranteed, CACK_PSN increases as the

generated ACKs fill in the SACK bitmap, rather than when CLEAR_PSN is received.

4. A single ACK arriving may ACK more than one packet; PDS may generate multiple messages to

SES – the PSN ACK’d might not be consecutive.

Figure 3-76 - Standard RUD Send Sequence for Single- Packet Message, Guaranteed Delivery

 318

Copyright © 2025 Ultra Ethernet ConsortiumTM. All rights reserved.

3.5.20.2.4 Multi-Packet Send Sequence – Guaranteed Delivery

The sequence for a RUD Send of a multi-packet message with a guaranteed delivery SES Response is

shown in Figure 3-78. This example shows all four packets in MID = 1 marked as guaranteed delivery. If

this is an error event, SES marks one packet as guaranteed delivery and may mark other packets as not

requiring guaranteed delivery. This is allowed when any one packet in a message contains an error,

because the message is completed in error, and it is not critical that all responses in a multi-packet

message be delivered.

All PSNs with guaranteed delivery have independent ACKs (i.e., an ACK per PSN), while the PSN = 337

and 338 are coalesced into one ACK. Because CLEAR = 336 arrived before the ACK 338 and both 337 and

338 had !gtd_del responses, CACK_PSN advances to 338 as well. When ACK_PSN = CACK_PSN, no clear is

required.

Figure 3-77 - Standard RUD Send Sequence for Multi-Packet Message, Non-Guaranteed Delivery

 319

Copyright © 2025 Ultra Ethernet ConsortiumTM. All rights reserved.

3.5.20.2.5 Single Packet Read Sequence – SES Standard Header

Three of the types of SES headers described in the Semantics section 3.4.2 include: standard

(UET_HDR_REQUEST_STD), medium (UET_HDR_REQUEST_MEDIUM), and small

(UET_HDR_REQUEST_SMALL). Only the standard header includes an ses.message_id field. This leads to

differences in how reads are processed. The standard header sequence is described in this section;

medium and small header sequences are described in section 3.5.20.2.6. These sequences are the same

for PDS regardless of SES header.

The standard RUD sequence for a single-packet read using SES standard headers on a best-effort

network is shown in Figure 3-79. This shows a read with return data larger than Max_ACK_Data_Size, so

the return direction is used to send return data.

The sequence in Figure 3-79 proceeds as follows:

Note: CLEAR_PSN in the packet with PSN = 337 is set to 334 because the ACK for PSN = 335 has not

yet arrived and CACK_PSN is less than 335.

Figure 3-78 - Standard Sequence for RUD Send of Multi-Packet Message with Guaranteed Delivery

 320

Copyright © 2025 Ultra Ethernet ConsortiumTM. All rights reserved.

1. The PDC is idle with all previous packets successfully delivered, PSN = ACK_PSN = CLEAR_PSN =

332.

2. SES receives a read request from the provider and generates an SES Request with MID = 1.

a. When using a standard SES Request header, SES assigns the read a unique message ID

that allows FEP-A to associate the read response with the corresponding read request.

i. SES medium and small headers do not include a message ID – see section

3.5.20.2.6.

ii. An implementation should make the message ID globally unique across all PDCs,

allowing the initiator to efficiently identify read responses in the return

direction (i.e., using a direct lookup on the message ID in the return direction).

iii. Message IDs are unique per PDC.

3. The initiator transmits the SES Read to the target as a PDS Request with PSN = 333.

4. The target transmits an ACK for PSN = 333.

a. The ACK carries the SES Response, which in this example is RC_OK — not guaranteed

delivery — meaning the read request was accepted; the requested data is not in the

ACK.

b. The reception of this ACK completes the initiator SES processing of the read transaction.

5. The target SES processes the read and generates a request to PDS to send a packet back to FEP-

A.

a. This packet carries an SES UET_HDR_RESPONSE_DATA header and includes the data

along with the original message ID (MID = 1 in this example) assigned by FEP-A.

b. Optionally, the target SES may assign its own message ID. The target SES tracks the read

transaction either as:

i. A single transaction with locally assigned message ID (MID = 9 in this example),

tracking when all return data packets in the transaction are sent and

acknowledged; this allows a local libfabric counter to be incremented (an

optional libfabric feature). A target-assigned message ID is efficient for this.

ii. Individual packets where each packet is processed totally independently; the

libfabric counter is not supported. A target-assigned message ID may or may not

be used in this case; it is an implementation-specific choice.

6. The target transmits a PDS Request using PSN = 48.

a. This packet carries the requested read data.

b. This packet uses the return direction of the same PDC on which the associated request

arrived; see section 3.5.8.1.

c. SES header fields carries the original message ID (ses.read_request_message_id) and

carry a target-assigned message ID (ses.response_message_id) when one is assigned by

the target; refer to the Semantics specification section 3.4.1.14.

i. The example shows a target-assigned MID = 9, which is echoed back in the ACK

(when not coalesced).

7. After receiving a packet with PSN = 48, FEP-A transmits an ACK for PSN = 48.

a. The return data is passed to the initiator SES.

 321

Copyright © 2025 Ultra Ethernet ConsortiumTM. All rights reserved.

i. An example implementation option at the initiator is to maintain a packet

counter for the original message ID; when the appropriate number of packets

with return data arrives, the message is complete at SES; the transaction is

complete when all packets are ACK’d at the target as well.

b. The read response transaction operates in the same manner as other transactions;

when successful, the ACKs do not require a clear.

Figure 3-79 shows how the original message identifier, MID = 1, is echoed back by SES, allowing the

initiator SES to associate the data with the request.

3.5.20.2.6 Single-Packet Read Sequence – SES Medium and Small Headers

When SES uses the medium (UET_HDR_REQUEST_MEDIUM) or small (UET_HDR_REQUEST_SMALL)

headers, there is no ses.message_id field. This leads to differences in how reads are processed. Instead

of using message ID to associate the read response with the read request, the PSN of the request is

carried in the SES Response header (ses.original_request_psn). These sequences are similar to the

example in section 3.5.20.2.5.

The standard RUD sequence for a single-packet read using SES medium and small headers on a best-

effort network is shown in Figure 3-80. This shows a read with return data larger than

Max_ACK_Data_Size so the return direction is used to send return data.

The sequence in the figure proceeds in the same manner as Figure 3-79:

Figure 3-79 - Standard RUD Sequence for Single-Packet Read – Standard SES Header

 Read Resp, MID , MID1, DATA

 MID , MID1, DATA

333 RESP, gtd_del

PacketsMessages Packets MessagesPackets

333 Read, MID1,
 orig_pdcid, orig_psn = 333

Seman c
processing

 Read, MID1

 MID1, RESP

Read re uest
accepted

 MID , RESP , gtd_del

 MID , RESP
Read COMPLETION
(libfabric op on)

CLEAR = 48

 322

Copyright © 2025 Ultra Ethernet ConsortiumTM. All rights reserved.

1. The PDC is idle with all previous packets successfully delivered, PSN = ACK_PSN = CLEAR_PSN =

332.

2. SES receives the read request from the provider and generates an SES Request without a valid

message ID.

3. The initiator transmits the SES read to the target as a PDS Request with PSN = 333.

4. The target transmits an ACK for PSN = 333.

a. The ACK carries the SES Response

5. The target SES processes the read and generates a request to PDS to send a packet back to FEP-

A.

a. This request carries an SES UET_HDR_RESPONSE_DATA header and includes the data;

the SES header carries the original PSN in the ses.original_request_psn field (orig_psn =

333 in this example) assigned by FEP-A to associate the data with the original request

(since a small SES header doesn’t have an ses.message_id field).

6. The target transmits a PDS Request using PSN = 48.

a. This packet carries the requested read data and uses the return direction of the same

PDC on which the associated request arrived; see section 3.5.8.1.

b. The SES Response with data header carries the original PSN in the

ses.original_request_psn field (orig_psn – in this example 333) to associate the data

with the original request.

7. After receiving PSN = 48, FEP-A transmits an ACK for PSN = 48.

a. The read response transaction operates in the same manner as other transactions;

when successful, the ACKs do not require a clear.

Figure 3-80 - Standard RUD Sequence for Single-Packet Read – Medium & Small SES header

 Read Resp, DATA, orig_psn = 333

pkt_id, DATA

333 RESP, gtd_del

PacketsMessages Packets MessagesPackets

333 Read,
 orig_pdcid, orig_psn = 333

Seman c
processing

pkt_id, Read

pkt_id, RESP

 RESP , gtd_del

 RESP
Read COMPLETION
(libfabric op on)

CLEAR = 48

Forward
direc on

Return
direc on

 323

Copyright © 2025 Ultra Ethernet ConsortiumTM. All rights reserved.

3.5.20.2.7 Single-Packet Read Sequence Optimization

Read responses that are Max_ACK_Data_Size or smaller use the PDC ACK to carry the SES Response with

data. This is efficient for small reads and fetching atomics. The sequence is the same as the single-packet

send sequence with guaranteed delivery as described in section 3.5.20.2.2.

3.5.20.2.8 Multi-Packet Read Sequence

Multi-packet reads (when an application requests a read larger than one MTU) are similar to single-

packet reads, repeated once for each packet.

Figure 3-81 shows an example of a RUD sequence for a multi-packet read. The sequence in Figure 3-81
proceeds as follows:

1. PDC is idle with all previous packets successfully delivered, PSN = ACK_PSN = CLEAR_PSN = 332.

2. FEP-A SES issues three packets to PDS, where two packets are a 1 MTU read and the third packet

is a small read (less than Max_ACK_Data_Size).

a. These packets are for a single SES message and carry the same message identifier (= 88).

3. FEP-B generates an ACK for the first two packets arriving at the target. In this example,

cumulative ACKs are used (i.e., there is no packet with ACK = 333, rather the PSN = 333

acknowledgement is determined at FEP-A using CACK_PSN = 334).

a. pds.cack_psn = 334, pds.ack_psn_offset = 0.

b. This ACK is not guaranteed delivery as it carries a default SES response.

4. FEP-B generates a second ACK for the third packet with pds.psn = 335.

a. The SES response is set to RC_OK indicating the read request was accepted and read

responses will be provided on the return direction. This packet is also not guaranteed

delivery so CACK is advanced.

b. pds.cack_psn = 335, pds.ack_psn_offset = 0.

5. FEP-A issues a PDS write request. This is a new message and uses a different message (= 879).

a. This request packet encodes CLEAR_PSN = 335 in the pds.clear_psn_offset and pds.psn

fields using pds.clear_psn_offset = -1 and pds.psn = 336.

6. FEP-B SES generates responses to the first two read requests and passes these to the PDS.

a. These are carried in PDS Request packets using pds.psn = 48 and pds.psn = 49 in the

return direction.

7. FEP-A PDS sends a cumulative ACK for the two SES Responses.

a. pds.cack_psn = 49 and pds.ack_psn_offset = 0.

8. FEP-B PDS acknowledges the write request message 879 using pds.cack_psn = 336 and

pds.ack_psn_offset = 0.

9. FEP-B SES generates the return data for the third read packet and PDS sends a request with

pds.psn = 50 and pds.clear_psn_offset = -3. The pds.clear_psn_offset is -3 because the ACK for

PSN = 48 and PSN = 49 has not yet arrived at FEP-B.

10. FEP-A PDS receives the packet with pds.psn = 50 and generates an ACK that includes clearing

PSN 48 through 50.

a. pds.cack_psn = 50 and pds.ack_psn_offset = 0.

 324

Copyright © 2025 Ultra Ethernet ConsortiumTM. All rights reserved.

3.5.20.3 Negative Acknowledgements, Packet Drops, and Retries

This section specifies the RUD sequences for packet drops and other cases that cause PDS

retransmissions. Negative acknowledgements (NACKs) can occur at PDS or SES. This section covers PDS

NACKs. SES NACKs are not visible to PDS. SES NACKs appear as SES guaranteed delivery responses that

are carried, but not interpreted, by PDS. Retry attempts at SES appear as new requests to PDS.

3.5.20.3.1 Single-Packet PDS NACK Sequence

Figure 3-82 shows the PDS NACK sequence for a RUD Send of a single-packet message. The sequence in

Figure 3-82 proceeds as follows:

1. The PDC is idle with all previous packets successfully delivered, PSN = ACK_PSN = CLEAR_PSN =

332.

2. FEP-A generates a packet with MID = 14 to transmit, and PDS transmits the packet with PSN =

333.

Figure 3-81 - Standard RUD Sequence for Multi-Packet Read

 325

Copyright © 2025 Ultra Ethernet ConsortiumTM. All rights reserved.

3. When a PDS Request with PSN = 333 is received at the target PDS, an out-of-packet buffer

condition is encountered.

4. PDS at the FEP-B generates a NACK 333 packet and sends it to FEP-A.

a. The PDS Request packet is dropped at FEP-B.

5. PDS at FEP-A is responsible for retransmitting PSN = 333.

6. Based on the NACK code (i.e., pds.nack_code field), the FAP-A waits for the configured time and

retransmits PSN = 333

a. If Max_NACK_Retx_Cnt is exceeded, PDS declares an error and SES completes the

packet and message in error.

b. PDS at the initiator is responsible for retransmitting PSN = 333 even if the PDS NACK is

lost; in this case an RTO_TIMER expiration will trigger retransmission up to

Max_RTO_Retx_Cnt times.

The PDS NACK sequence for a RUD Send of a multi-packet message is the same as for a single-packet message. Similarly, the

PDS NACK sequence for RUD Reads is the same as for RUD Sends.

3.5.20.3.2 NACK Sequence for Lost PDS Requests and ACKs

PDS at the initiator is responsible for retrying transmissions when packets are dropped in the network,

including in the following situations:

• A PDS request transmitted by initiator is dropped – does not arrive at destination.

Figure 3-82 - PDS NACK Sequence for RUD Send of Single-Packet Message

 326

Copyright © 2025 Ultra Ethernet ConsortiumTM. All rights reserved.

• A PDS ACK transmitted by the target is dropped – does not arrive at source.

o PDS determines ACK state based on CACK_PSN, including both successful ACKs (if

CACK_PSN is larger than a missing ACK PSN) and guaranteed delivery ACKs (if the

pds.sack_bitmap field indicates packet was received but CACK_PSN does not).

Figure 3-83 shows the PDS Request dropped sequence for a RUD Send of a single-packet message. The

source is responsible for detecting the loss and retrying the transmission. In the example shown in

Figure 3-83, the source retries the transmission after a timeout.

Figure 3-84 shows the ACK dropped sequence for a RUD Send of a single-packet message. The sequence

in Figure 3-84 proceeds as follow:

1. The PDC is idle with all previous packets successfully delivered, PSN = ACK_PSN = CLEAR_PSN =

332.

2. FEP-A transmits a request with PSN = 333.

3. FEP-B accepts PSN = 333, marks the PSN as received, and generates an ACK with ACK_PSN = 333.

4. In the example, the ACK packet for PSN = 333 transmitted by FEP-B is dropped in network.

5. FEP-A retransmits the request with PSN = 333.

a. In this example FEP-A will timeout, since the ACK does not arrive; there are multiple

other methods for determining if a packet was lost (e.g., NACKs, SACK bitmap, etc.).

Figure 3-83 - PDS Request Dropped Sequence for RUD Send of Single-Packet Message

 327

Copyright © 2025 Ultra Ethernet ConsortiumTM. All rights reserved.

6. FEP-B processes the retransmitted packet as follows:

a. FEP-B checks if the PSN is outside the valid PSN range (based on MP_RANGE) – which in

this example is not true; if TRUE, drop the packet with no ACK.

b. FEP-B checks if PSN = 333 is not marked as received, so it can accept and pass the

request to SES – in this example, the request has already been received.

i. The packet is marked as a retransmission (pds.flags.retx is set), which is used to

trigger an ACK. However, the pds.flags.retx flag does not indicate whether a

previous copy of the packet arrived.

c. PSN = 333 is in the expected range and is marked as received.

i. FEP-B determines if there is a guaranteed delivery SES Response state entry for

PSN = 333.

ii. If there is a guaranteed delivery SES Response entry for PSN = 333:

1. FEP-B retransmits the ACK to the initiator with stored, guaranteed

delivery SES Response.

2. FEP-B maintains the SES Response, waiting for clear before freeing.

iii. If there is not a guaranteed delivery SES response entry for PSN = 333:

1. FEP-B retransmits the ACK with the default response; see section 3.5.17.

Figure 3-84 - PDS ACK Dropped Sequence for RUD Send of Single-Packet Message

 328

Copyright © 2025 Ultra Ethernet ConsortiumTM. All rights reserved.

3.5.21 Reliable Ordered Delivery

A ROD PDC is a reliable PDC established between a single initiating FEP and a single target FEP that

guarantees packets are delivered at most once. PDCs are ephemeral: established and closed on demand.

Packets from multiple PIDs and/or send queues may share a PDC. All packets from a single message use

a single ROD PDC. Messages MUST NOT be interleaved on a ROD PDC.

3.5.21.1 ROD Services

The requirements in this section are for ROD PDS using a GoBackN retransmission protocol for all

packets conveyed on the PDC. With the GoBackN retransmission protocol, UET ROD mode MUST

operate on a single network path such that packets always arrive at the target in the order in which the

packets were transmitted by the source. Packets within a message MUST be transmitted in order. The

source MUST transmit the packets in the order that packets were posted to a common send queue.

There are no ordering requirements across messages in separate send queues.

ROD implementations use the following requirements for PDS Requests (both forward and return

direction):

• If a packet arrives in order and a NACK is generated for a reason other than an out-of-order PSN,

the NACK carries the pds.nack_code field representing the event (e.g., UET_NO_PKT_BUFF or

UET_TRIMMED).

1. The NACK payload (pds.payload field) carries the Expected_PSN except in the case of

pds.nack_code = UET_NEW_START_PSN.

2. The pds.nack_psn field is set to the PSN of the packet being NACKed.

3. This applies in both forward and return directions.

• If a packet is received at the destination with an out-of-order PSN (PSN != last received PSN+1),

the packet MUST be dropped and a NACK generated.

4. pds.nack_code = UET_ROD_OOO.

5. pds.nack_psn = the PSN of the out-of-order packet.

6. pds.payload carries the Expected_PSN.

7. This applies in the forward and return directions.

• If a packet is received in order, the packet is accepted.

• When a NACK is received at the source, the source determines if the NACK indicates a new

packet loss or if the NACK is related to a packet loss that already triggered GoBackN processing.

If new packet loss occurred, the source MUST stop transmitting higher PSN packets on that PDC

and apply GoBackN retransmission. The source MUST retransmit all packets starting from the

Expected_PSN in the NACK payload. The When a NACK arrives at a source PDC that is not

actively processing another NACK, the PDC stops transmitting and triggers GoBackN processing

starting at PSN = pds.payload = Expected_PSN.

o Actively processing another NACK refers to a previous NACK arrived, and an ACK has not

yet arrived after that NACK

o pds.nack_psn indicates the PSN that arrived out of order at the destination.

 329

Copyright © 2025 Ultra Ethernet ConsortiumTM. All rights reserved.

• If an ACK arrives while processing a GoBackN event, the GoBackN processing for the NACK that

triggered the GoBackN event is complete. Transmission continues per normal ROD processing.

• If additional NACKs arrive prior to an ACK and those NACKs have pds.nack_psn > Expected_PSN,

pds.payload = Expected_PSN and pds.retx = 0, these NACKs are part of the current GoBackN

processing and should not be used to trigger a new GoBackN event.

• If additional NACKs arrive prior to an ACK and those NACKs have pds.payload > Expected_PSN

and pds.retx = 0, these NACKs indicate new packet loss and trigger a new GoBackN event.

o Retransmission starts at Expected_PSN = pds.payload

• If additional NACKs arrive prior to an ACK and those NACKs have pds.retx = 1 then one or more

of the retransmitted packets was lost

o If this is the first NACK with pds.retx = 1, trigger a new GoBackN event with

retransmission starting at Expected_PSN = pds.payload

o If this is not the first NACK with pds.retx = 1, a new GoBackN event with retransmission

starting at Expected_PSN = pds.payload may be triggered if pds.payload >

Expected_PSN

o Else if not first NACK with with pds.retx = 1 and pds.payload = Expected_PSN, this NACK

is part of te current GoBackN processing and should not trigger a new GoBackN event.

• Handling of scenarios where a packet requires transmission more than three times (i.e., initial

transmit, retransmit after a NACK with pds.retx = 0 and retransmit again after a NACK with

pds.retx = 1) is implementation specific. One option is to fallback to RTO. Alternatively,

additional state can be tracked to identify this scenario.

This processing is illustrated in section 3.5.21.3.

ROD implementations use the following requirements for PDS ACKs (both forward and return direction):

• All ACKs for a ROD PDC MUST be sent in order using the entropy value of the request.

• When loss of an ACK with a non-guaranteed delivery SES Response is detected based on

CACK_PSN being equal to or higher than the PSN associated with the missing ACK, the PDC

MUST infer a UET_DEFAULT_RESPONSE-based CACK_PSN from the next arriving packet.

1. If the ACK for the last packet is lost and there is insufficient information to infer the

associated SES Response is non-guaranteed, either an RTO_TIMER will expire and an

ACK Request CP is sent, or the original PDS Request is retransmitted.

• When loss of an ACK with a guaranteed delivery SES Response is detected, one of three actions

MUST be taken:

1. The source generates an ACK Request CP.

▪ ROD PDCs SHOULD generate an ACK Request CP, unless the original packet was

a read request; refer to section 3.5.16.2.

2. If the missing ACK is associated with a read request (i.e., carrying read response data),

the source retransmits the original PDS request.

 330

Copyright © 2025 Ultra Ethernet ConsortiumTM. All rights reserved.

▪ This will arrive out of order at the destination; ROD PDCs MUST support

retransmitting a guaranteed delivery ACK when a duplicate PSN is received out

of order.

3. The source may fall back to GoBackN and retransmit all the packets starting from the

missing PSN; this is the least efficient option.

When using action 1 or 2 in the bullet list above, packets with a higher PSN may continue to be

transmitted while the ACK Request CP or retransmitted PDS Request is outstanding. Therefore, a

destination ROD PDC MUST process duplicate packets even though the PSN is out-of-order.

3.5.21.2 Standard Sequences

This section specifies the normal processing sequences (i.e., no PDS error events) for ROD.

The standard sequences for the ROD normal process are the same as the standard sequences for RUD,

specified in section 3.5.20.1 — except the packets always arrive in order at the destination. ROD PDCs

track the next Expected_PSN, which is the last received PSN + 1.

3.5.21.3 Error Sequences

This section specifies the ROD sequences for packet drops and other error events using the GoBackN

protocol. Figure 3-85 illustrates the sequence when a request packet is dropped.

• PDC is idle with all previous packets successfully delivered, PSN = ACK_PSN = CLEAR_PSN = 332.

• Packets with PSN = 333, 334, 335 are sent from FEP-A to FEP-B.

o PSN = 333 is dropped in the network.

• FEP-B receives a packet with pds.psn = 334, which does not match the Expected_PSN of 333.

o PSN = 334 is dropped at FEP-B, and a NACK is sent with pds.nack_code =

UET_ROD_OOO, pds.nack_psn = 334 and pds.payload = Expected_PSN = 333.

o All packets received on the PDC are dropped at FEP-B until a packet with PSN = 333 is

received.

• FEP-B receives a packet with pds.psn = 335, which does not match the Expected_PSN of 333.

o PSN = 335 is dropped at FEP-B, and a NACK is sent with pds.nack_code =

UET_ROD_OOO, pds.nack_psn = 335 and pds.payload = Expected_PSN = 333.

• FEP-A receives a NACK with pds.nack_psn = 334, pds.nack_code = UET_ROD_OOO with

pds.payload = 333, which triggers the retransmission of PSN = 333, 334, 335.

o pds.retx is set to 1 for all three packets, indicating the packets are retransmits.

• FEP-A receives a NACK with pds.nack_psn = 335, pds.nack_code = UET_ROD_OOO with

pds.payload = 333.

o FEP-A does not trigger retransmission as it is already processing a GoBackN event

starting at PSN = 333.

• The destination accepts all three packets and generates ACKs accordingly.

o This example shows PSN = 334 and PSN = 335 using a cumulative ACK.

o Because CACK_PSN = maximum PSN transmitted, there are no clears required. That is, if

pds.ack_psn_offset = 0 then all PSN are cleared.

 331

Copyright © 2025 Ultra Ethernet ConsortiumTM. All rights reserved.

If an ACK is dropped in transit from the destination to the source, three scenarios are possible:

1. Cumulative ACKs are in use and the dropped ACK was not guaranteed delivery.

o In this case, the next ACK to arrive will carry a pds.sack_bitmap field and pds.cack_psn

field indicating the packet did arrive at the destination, and there is no stateful

response.

o No further action is needed, as the source can infer the needed information.

2. Cumulative ACKs are in use and the dropped ACK was guaranteed delivery.

o In this case, the next ACK to arrive will carry a pds.sack_bitmap field indicating the

packet arrived at the destination; the pds.cack_psn field allows the source to infer that

the ACK requires guaranteed delivery.

▪ In the ROD case, there is no need to track the highest acknowledged PSN; since

ACKs arrive in order, the source can immediately infer the ACK was lost – then

check CACK_PSN to determine if the lost ACK was guaranteed delivery or not.

o The source should generate an ACK Request CP if required, or it may use GoBackN.

3. Cumulative ACKs are not in use and an ACK was dropped.

o In this case, when the next ACK is received with the next Expected_PSN+1, the source

will generate an ACK Request CP.

Figure 3-85 - ROD Send Sequence for Dropped PDS Request Packet

 332

Copyright © 2025 Ultra Ethernet ConsortiumTM. All rights reserved.

The sequence for cumulative ACKs with a lost ACK that has guaranteed delivery — item 2 in the list

above — is shown in Figure 3-86 and described as follows:

1. PDC is idle with all previous packets successfully delivered, PSN = ACK_PSN = CLEAR_PSN = 332.

2. FEP-A sends two packets to FEP-B, PSN = 333 and 334.

3. Both arrive and are processed.

a. The PSN = 333 SES Response requires guaranteed delivery; PSN = 334 does not.

4. ACK for PSN = 333 is dropped.

5. When ACK for a packet with PSN = 334 is received, FEP-A determines that the 333 ACK was lost

and that it was guaranteed delivery.

a. The pds.sack_bitmap field indicates PSN = 333 arrived.

b. CACK_PSN is set to 332; because pds.sack_bitmap shows PSN = 333 arrived, the

CACK_PSN indicates 333 requires a clear.

6. FEP-A generates an ACK Request CP to request an ACK for PSN = 333.

7. FEP-B receives the ACK Request CP and generates the ACK for PSN = 333.

a. This carries the original SES Response, which was saved since it is guaranteed delivery.

8. When ACK with PSN = 333 is received, it is processed as well as any responses that were held to

be passed to SES in order.

9. FEP-A then updates the clear state to PSN = 334; this is used in the next message.

10. When the CLEAR_PSN = 334 reaches FEP-B, CACK_PSN is updated — in this case to 335, since

PSN = 335 is not guaranteed delivery.

 333

Copyright © 2025 Ultra Ethernet ConsortiumTM. All rights reserved.

A PDS NACK event is handled similarly to a dropped request packet. If a PDS NACK for PSN = XYZ is

generated by the destination:

• The destination drops all subsequent packets with PSNs beyond XYZ, and

• The source retransmits the packets starting at PSN = XYZ.

3.5.22 RUDI Sequence Diagrams

RUDI sequences are specified for RMA Writes and RMA Reads. RUDI provides reliable delivery for

idempotent operations. It does not use PDCs. Each packet is handled individually without maintaining

sequence numbers.

The pds.pkt_id field in RUDI PDS headers is a locally assigned number that is echoed back in the RUDI

response to allow the response to be associated with the request.

Figure 3-86 - ROD Send Sequence for Dropped ACK Packet Using ACK Request

 334

Copyright © 2025 Ultra Ethernet ConsortiumTM. All rights reserved.

3.5.22.1 RUDI Services

The primary differences between the RUDI Write sequence and the RUD Write sequence are:

• RUDI does not maintain any PDS or SES state at the target; all state is at the initiator.

o Consequently, no clear protocol exchanges are needed to free state at the target.

o All reliability MUST be provided at the initiator; SES Responses are not available for

retransmit.

• PDS at the target MUST wait for semantic processing to complete before transmitting the

response for each packet.

o There is no message completion at the target.

o RUDI Requests MUST be acknowledged by RUDI Response packets.

• Each RUDI Request packet MUST result in one and only one response packet.

• PDS NACK event processing for RUDI includes the following:

o The destination MUST transmit a NACK if a trimmed RUDI Request is received.

o The destination SHOULD transmit a NACK if a RUDI packet is dropped (e.g., due to

limited resources).

o The source MUST support processing NACKs for RUDI Requests and retransmit the

request.

o The source MUST support receiving trimmed RUDI Responses and retransmit the

request.

o RUDI Response packets MUST NOT be NACK’d.

• Loss recovery MUST be provided by the initiator.

o An RTO_TIMER per packet is required.

• RUDI does not use UET congestion control.

3.5.22.2 Standard Sequences

This section specifies the normal processing sequences for RUDI. Figure 3-87 shows the standard RUDI

RMA Write sequence for a multi-packet message.

 335

Copyright © 2025 Ultra Ethernet ConsortiumTM. All rights reserved.

Figure 3-88 shows the standard RUDI RMA Read sequence for a multi-packet message. RUDI return data
is carried in a response packet on the forward direction.

Figure 3-87 - Standard RUDI RMA Write Sequence for Multi-Packet Message

 336

Copyright © 2025 Ultra Ethernet ConsortiumTM. All rights reserved.

3.5.22.3 Negative Acknowledgements, Packet Drops, and Retries

This section specifies the RUDI sequences for packet drops and other cases that cause a retry.

The methods for determining packet loss are retransmit timeout (RTO) at the initiator, NACKs from

target, and trimmed RUDI responses. The target transmits a NACK if a trimmed RUDI request is received

and SHOULD transmit a NACK when PDS resources are not available.

The initiator retransmits the request to recover from all packet loss events. The sequence is similar to

that shown for packet loss on RUD as seen in Figure 3-82 and Figure 3-83.

RUDI Responses are never NACK’d. There is no state at the target to handle a NACK for a RUDI response.

3.5.23 Error Model

This section specifies the PDS error model. There are different types of events:

• Normal events that MUST be handled without impacting the PDC state.

o For example, sending a NACK due to trimmed packets or out of resources at the target,

RTO timeout when a packet is lost in the network, etc.

• Unexpected events that occur due to implementation errata or denial of service attacks, which

MUST be handled without impacting well-behaved PDCs (i.e., NACK error type of PDC_ERR).

o For example, receiving a packet with a PSN that is out of range.

Figure 3-88 - Standard RUDI RMA Read Sequence for Multi-Packet Message

 337

Copyright © 2025 Ultra Ethernet ConsortiumTM. All rights reserved.

o These events SHOULD be counted and available as statistics (i.e., a counter for each

NACK code; the counter may be a single bit wide).

• Unrecoverable errors requiring the PDC to be closed (i.e., NACK error type of PDC_FATAL).

Refer to the NACK codes listed in section 3.5.12.7.

3.5.23.1 PDC Normal Events

These errors are expected and are handled gracefully. For example, if the necessary resources to

establish a PDC are unavailable, the target MUST respond to the establishment packet—where the

pds.flags.syn bit is set—with a PDS NACK packet. This NACK packet must include a pds.nack_code field

that specifies unavailable resources (i.e., PDS_NACK_PDC).

The source must retry the configured number of times (Max_RTO_Retx_Cnt) to recover from normal

operating events and then report an error if the establishment fails. All packets associated with the

failed PDC are dropped, and an error is reported to SES.

3.5.23.2 Unexpected Events

NACK error types of PDC_ERR are unexpected. The events are handled gracefully to minimize the impact

of implementation errors and potential denial of service attacks. These events MUST be counted at the

source and SHOULD be counted at the destination. The counter may be a single bit.

If a request or CP cannot be delivered, the destination FEP MUST respond with a PDS NACK packet

identifying the reason for the packet delivery failure (e.g., unknown PDCID with pds.flags.syn set to 0).

At the destination, all packets with unexpected events are dropped. At the source, if a NACK is received

with pds.nack_code of type ‘unexpected’, the associated PDC is closed and the event reported. All

packets associated with the closed PDC are dropped and reported to SES.

3.5.23.3 PDC Unrecoverable Events

If an unrecoverable PDC event occurs (i.e., NACK error type = PDC_FATAL), PDS MUST close the PDC with

a Close Command CP or Close Request CP, release the PDC resources, and report the error. An example

of a fatal PDC event is exhaustion of a retry counter. All packets associated with a failed PDC are

dropped, and a failure event is provided to SES.

These events MUST be counted at the source and SHOULD be counted at the destination.

3.5.24 Full Header Format

This section shows the overall header stack, up to and including UET headers. All headers are expressed

in a conventional network byte order that is consistent with IETF RFC 1700. Numbers are expressed as

decimal or hexadecimal and are pictured in "big-endian" order. This convention is consistent with IETF

RFC 1700.

UET provides an optional 32-bit CRC that can be used when encryption is not used. The UET CRC

calculation is defined in section 3.5.25.

 338

Copyright © 2025 Ultra Ethernet ConsortiumTM. All rights reserved.

Refer to the TSS section 3.7.11 for the full header format when using encryption. The examples including

encryption in Figure 3-91 and Figure 3-94 are simplified header formats showing only header fields that

are important for packet parsing.

Not all combinations are shown in the following examples. The provided set of full-stack headers is

sufficient for the implementor to visualize any missing combinations. IPv4 and IPv6 are shown using

common figures, with IPv4 and IPv6 using Protocol and Next Header, respectively, to identify the next

header.

3.5.24.1 UET over UDP/IP, no UET CRC, no Encryption

Figure 3-89 shows the full header stack, depicting important fields necessary for parsing when using

UDP, no UET CRC and no UET encryption.

3.5.24.2 UET over UDP/IP Using UET CRC, no Encryption

Figure 3-90 shows the full header stack, depicting important fields necessary for parsing when UDP and

UET CRC without UET encryption.

Figure 3-89 - Full Header: UET/UDP/IP – no UET CRC, no TSS

 339

Copyright © 2025 Ultra Ethernet ConsortiumTM. All rights reserved.

3.5.24.3 UET over UDP/IP using Encryption

Figure 3-91 shows the full header stack, depicting important fields necessary for parsing when using

UDP, UET CRC and UET encryption.

Figure 3-90 - Full Header: UET/UDP/IP with UET CRC, no TSS

Figure 3-91 - Full Header: UET/UDP/IP with Encryption

 340

Copyright © 2025 Ultra Ethernet ConsortiumTM. All rights reserved.

3.5.24.4 UET directly over IP no UET CRC, no Encryption

Figure 3-92 shows the full header stack, depicting important fields necessary for parsing when using UET

directly over IP and UET CRC and UET encryption are not in use.

3.5.24.5 UET directly over IP with UET CRC, no Encryption

Figure 3-93 shows the full header stack, depicting important fields necessary for parsing when using UET

directly over IP with the UET CRC and UET encryption is not in use.

Figure 3-92 - Full Header: UET/IP no UET CRC, no TSS

Figure 3-93 - Full Header: UET/IP with UET CRC, no TSS

 341

Copyright © 2025 Ultra Ethernet ConsortiumTM. All rights reserved.

3.5.24.6 UET directly over IP using Encryption

Figure 3-94 shows the full header stack, depicting important fields necessary for parsing when using UET

directly over IP with the UET CRC and UET encryption.

3.5.25 UET CRC

This section describes the coverage and calculation used for the UET CRC. The UET CRC is optional and

used to provide additional protection beyond the Ethernet FCS. Additional protection can be achieved

using TSS. It is RECOMMENDED that either the CRC or TSS is used to ensure end-to-end protection of

data and CPs. The CRC is placed after the UET payload in the UET trailer field. A global user configuration

(refer to section 3.5.5), UET_Data_Protect, indicates if the trailer contains the CRC. This configuration is

the responsibility of the operator and MUST be consistent across the entire fabric domain, as received

packets cannot be properly parsed if the CRC is present on some packets and not others in the same

domain.

The CRC is designed to include non-mutable portions of the IP headers shown in Figure 3-95.

Figure 3-94 - Full Header: UET/IP with Encryption

 342

Copyright © 2025 Ultra Ethernet ConsortiumTM. All rights reserved.

The Roff offset is calculated automatically based on the packet encapsulation and is not a user-

configurable parameter.

When the configuration parameter UET_DATA_PROTECT is set to TSS, the CRC MUST NOT be used.

When TSS is enabled, the ICV provides protection equivalent to the CRC.

For a packet sent when the configuration parameter UET_Data_Protect is set to CRC, the CRC MUST be

calculated for all packets including CPs based on the CRC calculation procedure defined in the steps

below and appended as the UET trailer.

All packets received when the configuration parameter UET_Data_Protect is set to CRC MUST be

validated based on the CRC procedure, unless the packet was trimmed. The process of trimming can

remove the UET CRC, and verification of the CRC cannot be done on trimmed packets.

If the CRC validation fails, the following occurs:

1. The packet is dropped and not passed to SES.

2. The validation failure event is reported.

3. The diagnostic counter UET_CRC_ERR_COUNT is incremented.

The CRC algorithm is CRC32C, also known as Castagnoli. It uses the iSCSI polynomial (0x1EDC6F41, or

reversed 0x82F63B78) per IETF RFC 3385 [52]. CRC32C polynomial is:

𝐺(𝑥) = 𝑥32 + 𝑥28 + 𝑥27 + 𝑥26 + 𝑥25 + 𝑥23 + 𝑥22 + 𝑥19 + 𝑥18 + 𝑥14 + 𝑥13 + 𝑥11 + 𝑥10 + 𝑥9 + 𝑥8 + 𝑥6 + 1

The CRC calculation procedure uses the following steps:

Figure 3-95 - UET CRC Coverage

 343

Copyright © 2025 Ultra Ethernet ConsortiumTM. All rights reserved.

1. The CRC is calculated over the packet starting at the first byte of the source IP address for both

IPv4 and IPv6 packets, as defined by the Roff offset.

2. For UDP packets, the checksum is set to zero for calculation and verification.

3. The initialization value is 0xFFFFFFFF, and the polynomial in normal form is 0x1EDC6F41.

4. Galois Field (GF2) polynomial division of the message, M(x), by the generator polynomial, G(x), is

used to produce the remainder, R(x).

5. The calculation is performed in big-endian byte order with the least significant bit first.

6. The CRC value is the complemented value of R(x) and appended to the end of the UET payload

in network byte order. The 32 bits of the CRC value are placed after the UET payload as the UET

trailer, so that the x31 term is the left-most bit of the first octet, and the x0 term is the right-most

bit of the last octet.

 344

Copyright © 2025 Ultra Ethernet ConsortiumTM. All rights reserved.

3.6 Congestion Management Sublayer (CMS)

UET defines an end-to-end congestion management solution, UET-CC (UET Congestion Control), for

packet buffer congestion in a best-effort (sometimes called ”lossy”) Ethernet network. The goal is to

achieve high network efficiency, reduce packet loss, and minimize latency, including tail latency, and to

ensure reasonable fairness between competing flows.

The target network (referred to as a backend network) is primarily carrying HPC and AI training and/or

inference workloads. To avoid unfairness, it is recommended that all traffic in the same traffic class as

UET-CC traffic runs UET congestion control. UET-CC is not intended for wide-area network traffic, as it

assumes a low-latency control loop: UET-CC aims at expected base RTTs that range from 1 µs to 20 µs. It

is recommended that network fabric control traffic such as BGP running over TCP, or other traffic not

using UET-CC, is run in a separate traffic class. UET-CC performs adaptive load balancing. Therefore, it

should be able to load balance around traffic in higher priority traffic classes, including non-UET traffic

classes, as long as that traffic does not itself congest the network.

Congestion management can be decomposed into the following components:

• Telemetry — determining the congestion state of network paths, locally on the endpoint and

on the network; this information may be collected at and/or used by the initiator, switches

along the path, or target.

• Sender-based window — controlling the maximum outstanding, unacknowledged data, as

measured in bytes.

• Receiver-credit congestion control — controlling the rate at which data may be transmitted

to a specific destination to more directly control incast.

• Multipath path selection — modifying the path packets take to minimize congestion using

adaptive packet spraying, with a granularity of spraying at the packet level.

3.6.1 UET CC Guidelines [Informational]

The design of UET-CC is based upon a number of core design decisions, listed below for background.

Although words typically associated with normative requirements are used, this section does not specify

requirements for compliance, which are provided when each feature is specified separately.

• UET-CC is designed to operate with existing network switches. This necessitates that UET-CC rely

only on basic features including:

o The ability of switches to classify traffic and provide independent queuing based on

traffic class (TC), where TC is assigned based on IP DSCP or VLAN priority code point

(PCP).

o The ability of switches to provide explicit congestion notification (ECN) marking as

specified by IETF RFC 3168 [14].

• UET-CC may provide improved performance if packet trimming is supported and enabled in

switches.

• UET-CC supports multipathing through the use of adaptive packet spraying.

 345

Copyright © 2025 Ultra Ethernet ConsortiumTM. All rights reserved.

• Some unsprayed UET-CC traffic may be present, but it is intended that the majority of traffic is

sprayed. UET-CC is designed to support the co-existence of sprayed and a minority of unsprayed

traffic.

o High-bandwidth AI workloads have been shown to benefit significantly from

multipathing.

• UET-CC is designed to provide at least a moderate level of fairness. Strict fairness between

competing UET-CC sessions for network capacity is not a requirement.

o In particular, short-term imbalance (transient unfairness) in bandwidth or latency

between connections is less important than reducing tail latency.

o Complete blocking (starvation) of any connection must be avoided.

• UET-CC aims to provide fairness between competing congestion control contexts (CCCs). Each

CCC may provide congestion control for multiple PDCs. Fairness between multiple PDCs within a

CCC is left to implementations. When two competing CCCs contain different numbers of PDCs, it

is not a goal of UET-CC to provide fairness at the PDC level.

3.6.2 Congestion Control Algorithms

UET-CC introduces three congestion control algorithms that can be implemented by devices targeting

best-effort networks. Network signal congestion control (NSCC) MUST be implemented. Receiver-credit

congestion control (RCCC) is an optional algorithm that may be used in conjunction with NSCC, or in a

stand-alone capacity. Transport flow control (TFC) is designed to provide a point-to-point flow-

controlled channel. TFC is an optional CC mechanism.

3.6.3 Congestion Control Algorithm Design Targets

UET-CC is designed to operate on best-effort networks and address:

• Network congestion

• Incast at the target

• Bulk-data messaging using requests (e.g., UET_WRITE, UET_SEND, etc. of messages greater than

one BDP in size or a stream of such operations between a pair of FEPs aggregating to more than

one BDP in size)

• Moderate-bandwidth interfering flows in the network

• Flow control (using TFC) for point-to-point protocols

Additional use cases (e.g., bulk data UET_READ transactions) are believed to be addressed, but were not

the primary design point; however, some use cases (e.g., lossless networks) are specifically not covered

in the initial design.

3.6.4 Telemetry and Network Switch Services

This section describes the supported telemetry mechanisms for monitoring the congestion state in the

network, including the endpoint. Due to the guiding decision that the protocol must work on existing

switches, the only REQUIRED in-network telemetry is ECN marking. Endpoint telemetry including end-to-

 346

Copyright © 2025 Ultra Ethernet ConsortiumTM. All rights reserved.

end latency and endpoint state (e.g., dropped packets) is included. Support for packet trimming is

REQUIRED by UET-CC endpoints but is OPTIONAL to support or enable in UE switches.

3.6.4.1 Explicit Congestion Notification (ECN)

The use of ECN is a required mode for the UE congestion management and MUST be supported by UE-

compliant endpoints and switches. As defined in IETF RFC 3168 [14], ECN is a single bit of telemetry per

packet that is provided by network switches.

Each switch monitors the queue depth for the traffic class used by the protocol. As IP packets traverse

the network, the ECN flag is set if a configured threshold is crossed (called deterministic marking).

Alternatively, the probability of marking the packet may vary based on the queue depth (called

probabilistic marking). UET switches MUST support using instantaneous queue depth when determining

whether to ECN-mark a packet.

If NSCC is enabled or if path-aware ECN-based load balancing is enabled, all UET data packets MUST be

marked as ECN-capable by setting the IP ECN-ECT bit. In other cases, setting ECN-ECT is OPTIONAL.

The NSCC algorithm defined in this specification assumes that the ECN congestion experienced (ECN-CE)

flag is set when a packet is dequeued, whereas IETF RFC 3168 [14] implies ECN-CE is set when a packet is

enqueued but would otherwise have been dropped. Setting ECN-CE on dequeue is common practice in

current network switches, as it provides a more up-to-date indication of network congestion. The UET-

CC sender algorithm will not perform as desired if ECN-CE is set on enqueue. Switches SHOULD perform

ECN marking when the packet is dequeued.

3.6.4.2 Round-Trip Time (RTT)

The NSCC algorithm uses latency as an indication of the level of congestion in the path from the sender

to the receiver. To measure latency, UET-CC measures the round-trip time (RTT). To avoid reverse-path

congestion being misinterpreted as forward path congestion, it is RECOMMENDED that UET ACKs,

NACKs, and control packets are sent using a higher priority traffic class than UET data packets (section

3.6.4.7). There may be some delay between a UET data packet arriving at the destination and an ACK

being transmitted. To avoid this receiver delay being misinterpreted as a sign of network congestion, the

destination is REQUIRED to measure this delay and report it in ACK packets as

pds.ack_cc_state.service_time (section 3.6.9.2.4). The source then subtracts

pds.ack_cc_state.service_time from the measured round-trip time to obtain an estimate of the actual

network round-trip time. The algorithm to measure RTT is therefore:

A. The source saves a timestamp for some or all transmitted PDS request packets.

B. The destination PDS calculates the service time at the target:

a. The destination PDS captures the arrival time of the received packet and the transmit

time of the corresponding PDS ACK.

b. Service time = ACK.transmit time – PDS_request.arrival time.

c. Service time is carried in the associated ACK packet.

C. The source calculates the RTT using the timestamp from the arrival of the ACK message.

a. RTT = ACK.arrival_time – PDS_Request.transmit_time – ACK.service time.

 347

Copyright © 2025 Ultra Ethernet ConsortiumTM. All rights reserved.

At the destination, the service time should be calculated as close to the transmission time of the ACK

packet as practically possible. Any delay between calculating the service time and actually sending the

ACK will be interpreted as network latency by the NSCC algorithm.

SERVICE_TIME is specified in units of 128 ns, with a goal of overall accuracy of ~500 ns. Implementations

SHOULD maintain saved timestamps with sufficient accuracy and precision to achieve this goal.

3.6.4.3 Endpoint Congestion State

Endpoints can monitor congestion using locally available information. This is endpoint telemetry, which

can be used without any support from network switches. Example metrics that could be measured

include indications of local congestion at endpoints, such as:

• The current offered workload to multiple destinations at the source, which indicates potential

source congestion (outcast).

• The depth of the packet buffer at the destination, which indicates potential destination

congestion – e.g., the destination cannot process packets fast enough or cannot sink data into

memory fast enough.

• Transmit and receive rates for non-UET traffic.

This information may be included in the congestion state used to adjust the rate limiting.

3.6.4.4 Packet Trimming

Packet trimming is a method where, rather than dropping packets when a switch buffer is congested,

packets are trimmed to a small size and forwarded with higher priority to the destination. This capability

was introduced in NDP [31] and Cut Payload [30]. This is a form of in-network telemetry provided by

network switches.

Packet trimming is intended to enable the use of relatively shallow packet buffer queues in the network

switches. In turn, shallow packet buffer queues help minimize the RTT, allowing the overall control loop

to work more efficiently. When a trimmed packet arrives at the destination:

• The destination knows the source is attempting to send to it and can allocate resources such as

credit to transmit, if required.

• The destination knows the network is congested on the path the packet took.

o The EV used to determine the path of the packet can be reported back to the source,

allowing the source to temporarily avoid using the congested path.

• The destination knows a specific packet was dropped and can quickly request retransmission,

reducing the recovery time:

o Trimmed packets are forwarded with high priority, so they arrive quickly and provide an

early indication of packet loss. Recovering lost packets quickly reduces the state needed

to track out-of-sequence arrivals and helps avoid increases in flow completion time due

to tail loss.

 348

Copyright © 2025 Ultra Ethernet ConsortiumTM. All rights reserved.

o UET sprays packets across many paths, resulting in reordering. This complicates loss

detection, as the simple arrival of a higher sequence number cannot be used to infer

loss.

Packet trimming helps mitigate the problem of loss detection by informing the destination which

packets were lost, providing congestion state and explicit drop notifications. This allows congestion

management algorithms to activate and allows reliability mechanisms to efficiently recover lost packets.

In its simplest form, the procedure is:

• Packets that are eligible to be trimmed are sent with a specific diffserv codepoint,

DSCP_TRIMMABLE, chosen for that particular network and class of UET traffic.

• Switches that are configured to perform trimming will only trim packets that they know to be

trimmable, as indicated by DSCP_TRIMMABLE.

• When a packet with DSCP_TRIMMABLE arrives at such a switch, if a queue would overflow and

the packet would be dropped, the packet is truncated to no smaller than MIN_TRIM_SIZE, which

is a network-specific configuration parameter.

• The IP length field is modified and the IP header checksum (for IPv4) is updated so that the

trimmed packet is a valid IP datagram.

• Any payload fields left in the truncated packet (including the UDP length field, if UDP is used) are

unmodified.

• The DCSP is changed to DSCP_TRIMMED (also configured for that particular network and class of

UET traffic) to indicate to the network that the packet has been trimmed and cannot be

trimmed again, and to indicate to the receiving FEP that the packet was trimmed.

• After trimming, the trimming switch should treat the packet in the same way it would treat a

newly arrived packet with DSCP_TRIMMED.

• The network should typically be configured so that DCSP_TRIMMED indicates to switches that a

different traffic class should be used, so that trimmed packets do not sit behind untrimmed

packets in switch queues.

This description of packet trimming is provided for guidance only; more complete details of trimming

and compliance requirements are in section 4.1.

Packet trimming can assist in the efficient fast startup of multiple PDCs converging on a common

destination by providing congestion signals that explicitly identify lost packets. Fast startup is used to

minimize latency. Time used to slowly build up to faster rates is added latency and reduced network

utilization. However, simultaneous fast startup can lead to excessive congestion and packet drops,

which may lead to higher latency and longer tail latency. Packet trimming helps recover from such

congestion quickly.

UE FEPs MUST be capable of receiving trimmed data packets, as identified by the ip.dscp field, and

generating NACKs for them (see section 3.5.15.1). Implementation and enabling of trimming in switches

in UET deployments is OPTIONAL.

 349

Copyright © 2025 Ultra Ethernet ConsortiumTM. All rights reserved.

When trimming is used with UET-CC, MIN_TRIM_SIZE MUST configured large enough for trimmed

packets to include the UET PDS Request header and any optional CC_State included in the header –

taking into account any encapsulations that may occur.

When trimming occurs on the last hop in the network, a different code point,

DSCP_TRIMMED_LASTHOP, MAY be set to indicate to the destination where the congestion occurred, as

last hop congestion due to incast may be handled differently from other congestion. In the switch,

DSCP_TRIMMED_LASTHOP should be treated the same as DSCP_TRIMMED. In the receiving FEP,

DSCP_TRIMMED_LASTHOP indicates that the packet should be processed in the same way as a

DSCP_TRIMMED packet, except:

• It is not used as an input to the load-balancing algorithm (at either the sending or receiving FEP)

because no alternate path is available.

• It is not used as a congestion signal to NSCC when RCCC is also enabled, because RCCC can

handle last-hop congestion by itself.

The UET-CC algorithms in this specification assume that either all data packets sent on a particular PDC

are marked as eligible for trimming (using DSCP_TRIMMABLE) or none are. Mixing trimmable and non-

trimmable data packets in a PDC is NOT RECOMMENDED. Similarly, it is recommended that all sprayed

PDCs in a traffic class are marked as eligible for trimming, or none are. Although it is not required that

all PDCs sent in a specific traffic class are marked as eligible for trimming, care should be taken when

mixing trimmable and non-trimmable PDCs in the same network to avoid the potential for unfair

sharing of the network.

3.6.4.5 Priority Flow Control

Priority flow control (PFC) is defined in clause 36 of IEEE Std 802.1Q-2022 [15]. PFC uses a queue buffer

depth threshold. When the threshold is crossed, a PFC is sent to the attached device. All traffic on the

specified traffic class(es) is paused until another PFC message clears the pause or a timer expires. These

messages are generated and accepted by Ethernet switches and NICs.

UET-CC is designed for operation in a best-effort network and assumes that PFC is not enabled for end-

to-end UET traffic on switch-to-switch links in the network. Enabling PFC on such links is likely to reduce

performance, as it will violate the latency assumptions of the CC algorithms. PFC SHOULD NOT be used

anywhere in a best-effort network.

3.6.4.6 Credit-based Flow Control

The UE Link Layer specification defines credit-based flow control (CBFC) that operates hop-by-hop in the

network to provide more fine-grained flow control than can be provided by PFC. CBFC allows a receiving

NIC or downstream Ethernet switch to regulate traffic of the specified traffic classes sent to it by an

upstream NIC or Ethernet switch. CBFC is specified in section 5.2.

As with PFC, UET-CC assumes that CBFC is not enabled for end-to-end UET traffic on switch-to-switch

links in the network. Enabling CBFC on such links is likely to violate the latency assumptions of the CC

 350

Copyright © 2025 Ultra Ethernet ConsortiumTM. All rights reserved.

algorithms, which may reduce performance. CBFC SHOULD NOT be used anywhere in a best-effort

network.

Implementation Note:

SES and PDS in conjunction with the TC mappings presented in section 3.6.4.7 are designed for either

best-effort or lossless operation. Historical deployments have utilized flow control on the egress link

(egress switch to NIC) in networks that were otherwise best-effort networks; however, this is not a

recommended deployment model. Implementations that wish to support this model and use the

best-effort TC mappings should take great care.

Informative Text:

CBFC, which operates at the link level, should not be confused with receiver-credit congestion control,

which operates end-to-end and is one of the UET-CC algorithms.

3.6.4.7 Mapping UET to Traffic Classes and DSCP

UET-CC is designed to operate using either two traffic classes (TCs) or three traffic classes, where each

TC is provided independent packet buffering, ECN marking, trimming, and scheduling services relative to

other TCs. UET packets are mapped to a traffic class based on DSCP. UET defines mappings onto

between two and six DSCP values that utilize abstract names (e.g., DSCP_TRIMMABLE). Each of the DSCP

names is mapped to an underlying DSCP value based on the network (and class of UET traffic).

The allocation of packet types to traffic classes depends on whether the network is best-effort or

lossless. This specification focuses on best-effort operation, but traffic classes for lossless are also

described in section 3.6.4.7.3.

3.6.4.7.1 DSCP Mappings

In the simplest deployments, UET can use as few as two DSCP values, as illustrated in Table 3-69. This

operational model does not use trimming and segregates packets into either a bulk data DSCP or a

control DSCP. The bulk data DSCP is named DSCP_NO_TRIM to retain some nomenclature overlap with

the trimming use case. A third DSCP, DSCP_TRIMMABLE_RTX, can also be used without trimming to

separate retransmitted packets.

 351

Copyright © 2025 Ultra Ethernet ConsortiumTM. All rights reserved.

Table 3-69 - UET DSCP Mappings without Trimming

PDS Packet Types 2 DSCP Mapping 3 DSCP Mapping

PDS Requests (RUD, ROD, RUDI) DSCP_NO_TRIM DSCP_NO_TRIM

Retransmitted PDS Requests DSCP_NO_TRIM DSCP_TRIMMABLE_RTX

Control Packets DSCP_CONTROL or
DSCP_NO_TRIM

DSCP_CONTROL or
DSCP_NO_TRIM

PDS ACKs DSCP_CONTROL DSCP_CONTROL

PDS NACKs DSCP_CONTROL DSCP_CONTROL

RUDI Send/Write Response
Packets

DSCP_CONTROL DSCP_CONTROL

RUDI Read Response Packets DSCP_NO_TRIM DSCP_NO_TRIM

Note:

• Control packets default to using DSCP_CONTROL. Special use cases – such as those needing sequencing
behind other packets – MAY place control packets on DSCP_NO_TRIM.

 If trimming is enabled, additional information is needed to separate trimmable from trimmed packets.

This is accomplished by using a third DSCP, as shown in Table 3-70. Additional DSCP values can be used

to provide additional information to UET-CC, as shown in the 4+ DSCP Mapping column Table 3-70.

Additional DSCP values beyond four may be needed to indicate a packet should not be trimmed

(DSCP_NO_TRIM) if an ACK, NACK, or control packet would be larger than the trim size, for example.

Similarly, it may be advantageous to indicate that a packet is a retransmitted packet.

UET does not mandate that specific numeric values be associated with these DSCP names; the mapping

of DSCP names to specific values is the responsibility of the network operator and is dependent on the

specific network configuration. Similarly, it is possible for a network to have more than one class of UET

traffic, in which case these DSCP names and traffic classes may be replicated as appropriate.

Table 3-70 - UET DSCP Mappings with Trimming

PDS Packet Types 3 DSCP Mapping 4+ DSCP Mapping

PDS Requests (RUD, ROD, RUDI) DSCP_TRIMMABLE DSCP_TRIMMABLE

Retransmitted PDS Requests DCSP_TRIMMABLE

DSCP_TRIMMABLE or
DSCP_TRIMMABLE_RTX1

Control Packets2 DSCP_CONTROL or
DSCP_TRIMMABLE

DSCP_CONTROL or
DSCP_TRIMMABLE or

DSCP_NO_TRIM3

PDS ACKs >= Trimmable_ACK_Size DSCP_TRIMMABLE DSCP_TRIMMABLE

PDS ACKs < Trimmable_ACK_Size DSCP_CONTROL DSCP_CONTROL

 352

Copyright © 2025 Ultra Ethernet ConsortiumTM. All rights reserved.

The codepoint DSCP_TRIMMABLE_RTX is used for retransmitted data packets. Using this codepoint is

OPTIONAL. If it is not used, the packets SHOULD use the DSCP_TRIMMABLE codepoint (DSCP_NO_TRIM

when trimming is not enabled).

UET benefits when retransmitted data packets are not dropped or trimmed, as this may cause the

packet tracker to run out of space, hitting the PDC MPR limit and causing a performance loss. However,

it is NOT RECOMMENDED to place retransmitted data packets in DSCP_CONTROL, because this can delay

control packets and confuse the congestion control loop. To reduce their probability of trimming or loss,

switches SHOULD be configured with a higher trim threshold for DSCP_TRIMMABLE_RTX than for

DSCP_TRIMMABLE (or DSCP_NO_TRIM) packets.

3.6.4.7.2 Traffic Classes for Best Effort Networks

When using two traffic classes, the traffic classes are referred to as TC_low and TC_high. When using

three traffic classes, they are referred to as TC_low, TC_med, and TC_high. Traffic in TC_high SHOULD

receive priority treatment over TC_med, and TC_med SHOULD receive priority treatment over TC_low.

How such priority treatment is provided in UE switches is implementation specific. For example, this can

be provided by appropriate use of variants of weighted round-robin algorithms. UET expects that low-

rate traffic sent on the TC_high traffic class will experience very small queuing delays irrespective of the

load in TC_med and TC_low traffic classes. Similarly, low-rate traffic sent on the TC_med traffic class

SHOULD NOT be delayed significantly by TC_low traffic.

Implementation Note:

Care should be taken in the implementation of priorities. In some traffic patterns, DSCP_CONTROL

traffic could represent as much as 40% of the total bandwidth. For example, a basic implementation

of the HPC Challenge (HPCC) RandomAccess benchmark [32] sends a single tiny request to each of

PDS Packet Types 3 DSCP Mapping 4+ DSCP Mapping

PDS NACKs DSCP_CONTROL DSCP_CONTROL

RUDI Send/Write Response Packets DSCP_CONTROL DSCP_CONTROL

RUDI Read Response Packets DSCP_TRIMMABLE DSCP_TRIMMABLE or
DSCP_NO_TRIM

Trimmed Packet DSCP_TRIMMED DSCP_TRIMMED

Packet Trimmed on Last Hop DSCP_TRIMMED DSCP_TRIMMED_LASTHOP

Note:
1. It is advantageous if retransmitted packets are not dropped. To enable this, deployments and

implementations MAY use a DSCP_TRIMMABLE_RTX value for retransmitted packets. This would be the
fifth DSCP.

2. Control packets default to using DSCP_CONTROL. Special use cases – such as those needing sequencing
behind other packets – MAY place control packets on DSCP_TRIMMABLE.

3. Control packets that are trimmed (due to using DSCP_TRIMMABLE) are dropped at the target. In
deployments where it is preferable to drop a control packet that requires sequencing behind data packets,
a sixth DSCP may be used: DSCP_NO_TRIM.

 353

Copyright © 2025 Ultra Ethernet ConsortiumTM. All rights reserved.

many destinations. These patterns may not leverage UET-CC as effectively as bulk data flows;

however, consideration of these workloads should be given when implementing the handling of

DSCP_CONTROL traffic and when setting QoS policies for UET networks. Giving DSCP_CONTROL traffic

strict priority or allocating a small fraction of overall bandwidth to DSCP_CONTROL traffic could lead

to unforeseen network behaviors.

The recommended mapping of DSCP codepoints to traffic classes is shown in Table 3-71. Separate

mappings are shown for using two TCs or three TCs (depending on network configuration).

Table 3-71 - UET DSCP to TC Mappings for Best Effort Networks

RUDI packets are not controlled by UET-CC. RUDI packets that consume substantial bandwidth to a

destination SHOULD be mapped to a separate traffic class. How this traffic class is configured and the

DSCP used are network-specific parameters that depend on the use case.

DSCP 2 TC Mapping 3 TC Mapping

DSCP_CONTROL TC_high TC_high

DSCP_TRIMMED TC_high TC_med

DSCP_TRIMMED_LASTHOP TC_high TC_med

DSCP_TRIMMABLE TC_low TC_low

DSCP_TRIMMABLE_RTX TC_low TC_low

DSCP_NO_TRIM TC_low TC_low

Note:

• DSCP_TRIMMABLE_RTX should be used to reduce the probability of loss of a retransmitted packet – even

though it shares the TC_low traffic class.

 354

Copyright © 2025 Ultra Ethernet ConsortiumTM. All rights reserved.

A single PDC mapped over two best-effort traffic classes is illustrated in Figure 3-96. The PDC is between

two PDS instances, as depicted within the dashed box in Figure 3-96.

3.6.4.7.3 Traffic Classes for Lossless Networks

When UET is used in lossless networks, a different mapping of packet types to traffic classes is required

to avoid potential deadlocks. In a lossless network, two TCs, TC_request and TC_response, SHOULD be

used. All UET requests SHOULD be mapped to TC_request. Packets flowing in the return direction (i.e.,

ACK/NACK packets and RUDI response packets) SHOULD be mapped to TC_response. This avoids

deadlock when pausing TC_request.

The goal is to allow responses through when request packets are paused. If this were not the case and

requests caused responses to be paused, then a deadlock is possible because a resource-limited FEP

may have to pause incoming requests pending a response that frees resources. If pausing requests

cannot cause responses to be paused, such a deadlock is prevented.

PDS requests from target to initiator are read responses carrying data that is larger than

Max_ACK_Data_Size. To prevent deadlock, implementations MUST guarantee that return data carried in

PDS requests from target to initiator can be accepted from the network unconditionally.

Implementation Note:

The requirement to unconditionally sink read data on lossless networks requires some pre-allocation

of resources when the read request is issued. The acceptance and processing of the read data cannot

be dependent on the ability to send an acknowledgement.

Figure 3-96 - PDC mapped over Best-Effort Ethernet: Traffic Class Mapping (ROD and RUD)

TC_high
TC_low

ACK

PDSPDS

RETURN DATA

REQUEST
ACK

TARGETINITIATOR

SES

FEP-A FEP-B

SES

PDC Forward direction

Return direction

 355

Copyright © 2025 Ultra Ethernet ConsortiumTM. All rights reserved.

A single PDC mapped over lossless Ethernet traffic classes is illustrated in Figure 3-97. The PDC functions

the same for both best-effort and lossless networks, with the only difference being the TC mapping for

the PDS return data packets generated by the target.

Table 3-72 - UET Control Packet to TC Mappings for Lossless Networks

Control Packet 2 TC Mapping

NOOP TC_request

ACK Request TC_request

Clear Command TC_request

Clear Request TC_response

Close Command TC_request

Close Request TC_response

Probe TC_request

Credit TC_response

Credit Request TC_request

Negotiation TC_request

Control packets are mapped onto TC_request and TC_response based on their type and whether they

have a response.

3.6.5 UET CC Protocol Operation Overview

The UET Congestion Control protocol, UET-CC, as defined in this specification, provides congestion

management on a best-effort Ethernet network.

3.6.5.1 Types of Congestion [Informational]

Congestion control is a key component required to enable best-effort network operation in large

datacenter networks. While PFC is useful for certain use cases, large-scale PFC deployments suffer from

Figure 3-97 - PDC mapped over Lossless Ethernet: Traffic Class Mapping (ROD and RUD)

TC_request
TC_response

ACK

PDSPDS

RETURN DATA

REQUEST
ACK

TARGETINITIATOR

SES

FEP-A FEP-B

SES

PDC Forward direction

Return direction

 356

Copyright © 2025 Ultra Ethernet ConsortiumTM. All rights reserved.

various pathologies that are well documented in the literature [15], [1]. UET can operate with both

lossless and best-effort networks; this specification refers to best-effort networks, so avoids these issues

by design.

As congestion has different causes, congestion control requires different mechanisms that work in

conjunction to ensure predictable high network performance. Compared to the internet, back-end

datacenter networks have much lower and more predictable latency, higher bandwidth for end hosts,

and many more available paths between a source and a destination. UET is optimized for back-end

datacenter networks — an area targeted traditionally by HPC networks. UET is aimed at AI and HPC

workloads, which commonly consist of synchronized collectives that aim to run on a network with many

redundant paths at close to 100% load, while caring mostly about the final completion time within a

group collective. Congestion control algorithms designed for other contexts often perform poorly in

such environments.

UET-CC is intended to be used in networks with topologies such as fat trees where, in the absence of

failures, there are many routed paths from a source to a destination, and they are all of equal length and

capacity. Future UET-CC specifications may extend CC to other network topologies.

There are five main causes of congestion in datacenter networks:

1. Network congestion localized to a subset of switch-to-switch links in the topology, mainly due to

improper load balancing (e.g., ECMP hash collisions leading to multiple flows being placed on

the same paths) or failures or interference from ordered traffic.

2. Overall network congestion when most or all available paths between two end hosts are

congested; for instance, in the case where the network core is under-provisioned for the traffic

it carries.

3. Outcast when the source apps are trying to send to many destinations simultaneously and thus

generating more traffic than the source’s connection to the network can manage.

4. Incast when many sources are sending to the same destination at the same time.

5. Local congestion at the destination when accessing memory.

HPC networks have traditionally relied on link-level flow control to provide a lossless L2 implementation

together with simple end-to-end flow-control algorithms as adopted in RDMA over Converged Enhanced

Ethernet9 (also known as RoCE). Single-path transports (e.g., RoCE/TCP) running traditional congestion

control algorithms such as DCTCP [17], DCQCN [18], or Swift [19], coupled with ECMP flow hashing, is

the standard for Ethernet-based datacenter congestion control today. However, many research works

have shown this approach deals poorly with flow collisions ((1) in the list above). Instead, when the

transport actively sends packets from each flow across multiple paths, collisions are reduced (see

MPTCP [29], NDP [31], Homa [20], pHost [21], MP-RDMA [22]), network utilization increases, and flow

completion times become low and predictable.

9 Converged Enhanced Ethernet (CEE) is specified in IEEE Std 802.1Q

 357

Copyright © 2025 Ultra Ethernet ConsortiumTM. All rights reserved.

Instead of relying on end-to-end multipathing, HPC networks have traditionally used adaptive packet

routing (see [24], [25], and [26]) with extensions such as fine-grained L2 flow-control for traffic isolation

[27]. UET specifies ECMP flow hashing schemes for load balancing but, at the same time, allows vendors

to enhance networks with compatible but proprietary features such as adaptive packet spraying or fine-

grained end-to-end flow control. Those are outside the scope of this specification.

3.6.5.2 Adoption of Multipath

The PDS adopts multipath packet transmission at its core. The approach the PDS adopts is to use packet

spraying: Each packet is placed onto a pseudo-randomly chosen path by selecting an appropriate

entropy value and placing it in the packet. This unifies the best of HPC’s packet-adaptive routing with

Ethernet’s flow hashing. The PDC/CCC uses a configurable and typically large number of entropies (e.g.,

64-256) and essentially round robins between them; however, when feedback packets indicate that the

path associated with a given entropy is congested (e.g., via an ECN mark or a trimmed packet), the

source may decide to reduce the number of packets placed on that path. This is similar to packet-

spraying solutions in datacenters [28] and source-adaptive routing [26]. Details are provided in section

3.6.16.

3.6.5.3 Window Based Operation

Multipathing helps avoid flow collisions, but congestion can still appear for at least the following reasons:

1. Oversubscribed networks.

2. Outcast traffic patterns at the source.

3. Incast traffic patterns at the destination.

To deal with this, the PDS must limit the amount of data in flight between any source and destination.

Three congestion control mechanisms are specified:

• Network-signal Congestion Control (NSCC)

NSCC maintains an explicit congestion window at the source. The source PDS estimates packets

in flight. When the congestion window is larger than the number of inflight bytes in packets sent

but not yet acknowledged, NACKed, or inferred to be lost (timed out or other mechanism), then

the source can send. The source PDS considers packets to have left the network when they are

(a) acknowledged by the destination; (b) negatively acknowledged by the destination; or (c)

inferred by the source to be lost. The source adjusts the window size based on congestion

feedback from the destination.

Informative Text:

An alternate approach, not taken by the PDS, is typified by MPTCP[29]. This approach uses a relatively

small number of paths (8-16) and keeps state for each path, including congestion state and per-path

sequence numbers. This approach permits better loss detection per sub-flow but requires more state

to implement. It also creates an upper bound on the number of usable paths due to the size of the

window, which results in poorer load balancing in certain cases, and so reduced throughput.

 358

Copyright © 2025 Ultra Ethernet ConsortiumTM. All rights reserved.

• Receiver-credit Congestion Control (RCCC)

An RCCC sender maintains a pool of credit. It can send whenever there is credit in its credit pool.

As it uses credit, the source conveys requests for more credit to the destination via the credit

target field in data packets or in Credit Request CPs and receives credit back from the

destination in Credit CPs or ACK packets. In the steady state, the amount of credit flowing

between the destination and the source constitutes an implicit window. The destination paces

out the sending of credit to all its sources so that in aggregate their rate does not cause

congestion at the destination’s incoming link(s). Thus, the size of the credit window between a

single source and its destination varies depending on how many sources are sending to that

destination.

• Transport Flow Control (TFC)

TFC maintains a pool of credit. It can send whenever there is credit in its credit pool. As it uses

credit, the source may convey requests for more credit to the destination via the credit target

field in data packets. The source receives credit back from the destination in either Credit CPs or

ACKs. The destination sends credit based on available receive buffer resources to avoid packet

drops. This mechanism differs from RCCC in that it is intended for point-to-point services with

limited buffering and low tolerance for packet loss. Multipath may or may not be used with TFC.

Note that the window-based approaches are in contrast to a rate-based approach, such as

RoCE/DCQCN. The window-based approach is preferable because of its inherent stability due to packet

clocking: In severe congestion events, a window-based source will stop transmission as it waits for

explicit confirmation that packets have left the network. In contrast, in a rate-based approach such as

DCQCN, lack of feedback is implied to be a sign of appropriate network operation, and the rate is

increased. This approach works in lossless networks, where PFC kicks in as a backstop, but in best-effort

networks where packets may be silently discarded due to congestion, increasing throughput in response

to a lack of congestion feedback results in poor performance.

3.6.5.4 UET CC Startup Behavior

In the case of NSCC, the congestion window is dynamically adjusted by the congestion control algorithm;

it is increased when there is no congestion to discover and use spare network capacity and it is

decreased to cope with congestion. Traditionally, protocols such as TCP would start with a conservative

window (e.g., 10 packets) and then increase until congestion is detected. This ensures that flows can

reach a steady state after a number of round-trip times.

In the context of datacenters, there are at least three reasons that the standard congestion control

approach is suboptimal:

1. Many flows are around one bandwidth-delay product (BDP) or less, meaning that they can never

reach steady state.

2. The network is well provisioned meaning that, in many cases, flows can operate at line rate.

3. The BDP of the idle network is well known.

 359

Copyright © 2025 Ultra Ethernet ConsortiumTM. All rights reserved.

(3) implies that the maximum size of the window (MaxWnd) can be restricted to around 1.5 BDPs. This

allows enough for a source to fill the path to a destination (requiring 1 BDP with no queues) and for just

enough queueing to ensure high multipath utilization. There is no reason to have a window larger than

this bound.

(1) and (2) taken together imply that new flows should, by default, start at line rate, using a window

around MaxWnd. The alternative — starting with a smaller window and dynamically increasing it in the

absence of congestion — would inflate the flow completion time of small flows.

Starting at line rate will work well most of the time, when the destination is idle and when there is no

overall network congestion. The biggest risk when starting at line rate is for the destination to be

already receiving other flows, such that its link is already saturated. In such cases, many packets will be

lost. The difficulty in such cases is knowing quickly which packets need retransmission, and adapting the

window to enable safe and fast retransmission. When available, packet trimming enables accurate and

fast loss detection.

Finally, outcast is a case where a source has many active PDCs to different destinations, and the PDCs

are bottlenecked by the source’s link(s). UE FEPs include a scheduler that determines which PDC sends

when, so that data is generated for sending at no more than the source’s linkspeed. The main

consideration here is that during an outcast, the scheduler rather than the CC window may be what

limits transmission. Under such circumstances, the default initial window may be much larger than can

be used, and so care must be taken when initializing the control loop.

After the initial burst of packets, two different approaches for adjusting the window of in-flight data are

permitted: one where the destination dictates how the window evolves based on explicit demand, and

one where the source controls the window based on feedback from the destination and the network.

The sender- and receiver-driven approaches behave similarly in the first RTT, starting at line rate by

default and spraying packets across paths to avoid collisions. They differ, however, in their handling of

incast and overall network congestion.

RCCC addresses incast at the receiver by tracking the unsatisfied demand (the amount of unsent data, or

backlog) from each source. The receiver gives credit in a round robin (or any other sharing approach) to

each source to avoid congesting its incoming network links. The source can measure unsatisfied demand

by counting the number of outstanding bytes yet to be sent for the messages it is currently processing

for any given target. In oversubscribed networks, RCCC needs an additional mechanism to deal with core

congestion.

NSCC addresses incast and overall congestion with a single mechanism. Its incast handling does not

directly take into account what the destination knows about the incast traffic, but it does not need an

additional mechanism to cope with the other types of congestion.

Both sender- and receiver-driven approaches need to take care in outcast scenarios, where neither the

network nor the destination is the bottleneck. In this scenario, network or destination feedback might

suggest the absence of congestion. However, the FEP cannot transmit at line rate to any specific

 360

Copyright © 2025 Ultra Ethernet ConsortiumTM. All rights reserved.

destination due to the source scheduler dividing the link's capacity among multiple PDCs destined for

various endpoints. CC algorithms need to take care not to use this lack of negative feedback as an

indication that they should increase the sending window, as this can lead to unnecessary congestion

when the outcast ends and the CC algorithm then sends at an unreasonable rate.

In this document we present algorithms for both receiver- and sender-driven approaches. TFC is

described in section 3.6.15.

3.6.6 Congestion Control Context (CCC)

Between two FEPs, one or more PDCs may be established using the same traffic class for transmitted

data. These PDCs are called a “PDC group.” A congestion control context (CC context or CCC) controls

the admission of data packets into the network for a PDC group.

A CCC controls the admission of data packets into the network in a single direction; thus, for

bidirectional data transmission two CCCs are used, one controlling admission in each direction. The CCC

utilizes control packets in the reverse direction to determine the fate of those data packets, and so

adapt its admission decisions for future data packets. Reverse-path PDS ACK packets and control packets

are not congestion controlled and SHOULD use a separate traffic class and queue from data traffic

(section 3.6.4.7). The reverse CCC may need to factor the bandwidth used by ACK packets into its

admission decision.

As more than one PDC can be active simultaneously within the same CCC, a congestion control

algorithm cannot assume that all data packets handled by a CCC share one sequence number space.

Rather, a CCC needs to keep track of the total number of bytes in packets it admits to the network and

updates that byte count when packets are acknowledged, NACKed, or when it is determined that the

packet has, with high likelihood, been lost (referred to as an inferred loss). Conceptually, the CCC keeps

track of state by keeping records of sequence numbers of data packets and their responses, timeouts,

etc., but in practice the PDC and CCC are unlikely to be implemented in a manner that replicates this

state in both PDC and CCC. For simplicity of explanation, it is assumed that the CCC sees reverse path

control packets and updates its own state accordingly.

When multiple PDCs transfer data in the same direction from the same sending FEP to the same

receiving FEP using the same traffic class, those PDCs SHOULD be mapped to a common PDC group and

SHOULD share a CCC. This ensures the CCCs do not unnecessarily compete with one another, and that

load balancing of the aggregate traffic flow is performed effectively. This applies to PDCs transferring

data in the forward direction as well as those transferring data in the reverse direction. That is, read

response data mapped onto a reverse direction PDC from FEP-B to FEP-A SHOULD be controlled by the

same CCC as write request data mapped onto a forward direction PDC from FEP-B to FEP-A. Two RUD

PDCs using different CCCs would still be expected to converge, but would be less optimal.

UET permits multiple PDC groups with each group using a different (set of) traffic class(es). When two

PDC groups transfer data packets from the same source to the same destination (using different traffic

class mappings), a separate CCC MUST be used for each PDC group. This is because congestion

measured on one traffic class cannot safely be used to infer congestion on another traffic class.

 361

Copyright © 2025 Ultra Ethernet ConsortiumTM. All rights reserved.

3.6.7 CCC for ROD PDCs

The ROD delivery mode provides reliable ordered delivery. UET achieves this by sending all the packets

of a ROD PDC via the same network path. ROD flows SHOULD use one CCC per PDC, not shared with

other ROD flows or with RUD flows. This ensures that when a single-path ROD PDC encounters a flow

collision within the network, other ROD PDCs and RUD PDCs sending to the same destination FEP are

not adversely affected by congestion state of a flow that may have taken a different network path.

Multiple CCCs between the same FEPs using the same traffic class MAY share some state, such as a

baseline estimate for RTT.

3.6.7.1 CCC for RUDI & UUD

RUDI and UUD do not support UET CC. Neither uses an ACK packet to carry the required congestion

control state. The rationale is that these will typically be used when sending small messages to large

numbers of destinations. Closed-loop congestion control for a single-packet PDC is generally not

meaningful, as there is no flow to control.

When RUDI and/or UUD is used to carry significant bandwidth, these SHOULD NOT be mapped to the

same traffic class as UET CC traffic.

3.6.8 Source Context

Each CCC gates admission of packets to the network for the corresponding PDCs. Each CCC does this

using feedback from the network and the destination, and it uses this feedback to control the aggregate

amount of unacknowledged data permitted to enter the network using that CCC. Multiple CCCs can co-

exist at one source. This can happen when each CCC controls traffic to a different destination, when

CCCs to the same destination use different traffic classes, when PDCs to the same destination mix single-

path ROD and RUD traffic, or when there are multiple single-path ROD PDCs to the same destination.

When multiple CCCs simultaneously allow data to be sent, it is the role of a scheduler in the sending FEP

to determine the order that PDCs may send, and how the transmission capacity is allotted among them.

Scheduler behavior is implementation specific.

With protocols such as TCP, if multiple connections have sufficient congestion window to send, it is

common for them all to do so until their windows fill. If their aggregate rate exceeds the link speed, they

can then build a substantial output queue downstream of the congestion control gate. With UET, it is

NOT RECOMMENDED to allow PDCs to build a significant output queue, though some small amount of

queuing downstream of the CCC gate may be needed by implementations.

For example, when a CCC is limited by a window and an ACK arrives that causes that CCC to extend the

window, the CCC would then normally cause a packet to be transmitted (this is known as ACK-clocking

and is a desirable property for congestion control). However, other CCCs at the same source may be in

the same situation, and so it is possible for multiple CCCs to allow transmission simultaneously. The

source’s scheduler must keep track of which CCCs currently permit transmission and schedule

transmission from PDCs under the control of these CCCs. When multiple CCCs or PDCs within a CCC have

data available to send, the source’s scheduler selects an eligible PDC in an implementation-specific

manner.

 362

Copyright © 2025 Ultra Ethernet ConsortiumTM. All rights reserved.

Conceptually then, the following steps occur:

1. The CCC determines whether any of its PDCs may be scheduled.

2. The scheduler then decides which PDC to send next from those that are schedulable.

3. On the selected PDC, a packet is generated to be sent. This may be new data or a

retransmission.

4. The CCC is contacted again to finalize fields such as the EV, which require late binding because

CCC state may have changed since the CCC became ready to send.

The interactions between the reliability module, its scheduler, and the CCC are described in more detail

in section 3.6.8.1.

3.6.8.1 Abstract interface between PDS and Congestion Control

UET PDS and congestion control will likely be implemented in the same device in an integrated manner,

but for the purposes of specification, they are defined here as distinct modules separated by an abstract

API. An optimized implementation is not required to implement this API, but the emergent behavior

should closely correspond to what would happen if this API were used.

A CCC generally does not need to know of the existence of a particular PDC, or of the transmission or

acknowledgment of a packet with a specific sequence number. Rather, the PDC tracks the transmission

of packets and their acknowledgment. We define a set of abstract events that communicate state

changes between the PDS and the CMS. The API is assumed to be stateful. The PDS keeps track of which

CCC is associated with each PDC, whereas the CCC does not know about PDCs.

3.6.8.1.1 Source API

The PDS MUST allocate a CCC whenever the first PDC to a destination is created, and MAY deallocate it

when the last PDC to a destination is destroyed. A CCC MAY be maintained after the last PDC is

destroyed to cache congestion state (but see section 3.6.14.1 regarding closing RCCC CCCs and section

3.6.15.3 regarding closing TFC PDCs).

• AllocateCCC(bool:sprayed)

The CMS will create a new CCC.

The parameter sprayed is TRUE if the CCC will handle sprayed traffic, and FALSE if it will handle

single-path traffic. The PDS SHOULD map multiple sprayed PDCs in the same traffic class to the

same destination to the same CCC. This is usually transparent to congestion control.

• DeallocateCCC()

 The CMS will deallocate resources associated with the CCC.

When multiple PDCs have data to be sent, the source uses a scheduler to determine access to the

outgoing link(s). Notionally, a PDC can be scheduled when it has new data to send or data to retransmit,

and its associated CCC is in the READY state.

 363

Copyright © 2025 Ultra Ethernet ConsortiumTM. All rights reserved.

A CCC can be in one of four states:

• A CCC is READY if there is data (new or retransmissions) ready to be sent by any of its PDCs and

the CCC will permit sending at this time.

• A CCC is ACTIVE if there is data not yet sent by any of its PDCs, or data queued for

retransmission by any of its PDCs, but the CCC will not permit sending.

• A CCC is PENDING if it is not active, but there is data that has been sent by any of its PDCs that is

not yet acknowledged.

• A CCC is IDLE if it is not ready, active, or pending.

The state machine in Figure 3-98 indicates the transitions between the four states.

To summarize the state transitions:

• A CCC transitions from IDLE state to ACTIVE when new data arrives to be sent on any PDC

associated with the CCC.

• A CCC transitions from ACTIVE to READY state if the CCC’s congestion control algorithm permits

sending. For window-based control, this is when there is space in the source’s cwnd. For

destination credit control, this is when the source has sufficient credit. If both are used, both

conditions must be satisfied.

• A CCC transitions from READY back to ACTIVE if the CCC’s congestion control algorithm no

longer permits sending. This typically occurs when data has been sent, filling the cwnd or

consuming credit. It can also occur when sending does not occur, if an ACK or NACK arrives or a

timeout occurs that causes the cwnd to be reduced.

• When in READY state, if data is sent but the CCC still allows sending, the CCC stays in READY

state.

Figure 3-98 - CCC State Machine

 364

Copyright © 2025 Ultra Ethernet ConsortiumTM. All rights reserved.

• A CCC transitions from READY to PENDING state when no PDC associated with the CCC has any

more new data to send or packets marked for retransmission.

• A CCC transitions from PENDING to IDLE state when all data has been ACKed on all PDCs

associated with the CCC. A CCC MUST NOT be removed except when in IDLE state, unless all

PDCs associated with the PDC have been declared failed.

• A CCC transitions from PENDING to ACTIVE state if a packet sent on a PDC associated with the

CCC is marked for retransmission. This can be caused by receiving a NACK, inferring loss from a

SACK, or due to a retransmission timeout.

• A CCC transmissions from ACTIVE to PENDING state if there are no new data packets to send,

and the last data packet marked for retransmission is acknowledged.

Note that multiple transitions may happen consecutively triggered by a single state change. For

example, a CCC may immediately transition from IDLE to ACTIVE to READY if new data arrives to be sent

and the CCC is already in a state that permits sending.

The scheduler will rotate between PDCs in READY state, sending packets from them in turn. How the

scheduler chooses which PDC to service next is implementation specific.

Packet arrivals or timer events trigger actions in the source CCC behavior. These actions are:

• OnACK() – An ACK packet arrived for a PDC under this CCC.

• OnNACK() – A NACK packet arrived for a PDC under this CCC. The PDS indicates if a PDC is fully

established (i.e., a PDCID was returned from the remote device).

• OnInferredLoss() – A PDC retransmit timer expired for a PDC under this CCC, or loss was

otherwise inferred from received SACKs. The PDS indicates if a PDC is established.

• OnNewData() – New data was queued for a PDC under this CCC.

• OnCreditUpdate() – New credit arrived for the CCC.

• OnSend() – The scheduler sent a packet from a PDC under this CCC.

Each of these actions can cause the state machine for the CCC to move between the

READY/ACTIVE/PENDING/IDLE states. These actions do not directly cause data packets to be sent;

rather, the CCC moves to the READY state and then data may be sent on any corresponding PDC when

the scheduler determines it is time for that PDC to send. These actions may, however, cause control

packets to be sent.

In addition, when the scheduler is ready to send using a PDC, it calls GetSendParams() on the CCC, which

returns the CC-related fields for the packet. It is not desirable, or even possible, to compute all packet

fields at the time that a CCC becomes ready. One of these fields is the Entropy value (EV) (3.6.10.1) that

determines the packet’s path. For optimal path selection, it is preferable to determine this when the

packet is finally going to be sent, because incoming ACKs and NACKs arriving between the CCC being

ready and the packet being sent may change the choice of path/EV or may change which PDC under that

CCC is selected for transmission.

 365

Copyright © 2025 Ultra Ethernet ConsortiumTM. All rights reserved.

When supporting rendezvous, PDS can query CMS at the behest of SES. When PDS calls

GetEagerEstimate(), CMS returns the current value of cwnd. This is passed through PDS to SES to be

used to set the size of the eager portion of the message.

The CCC actions discussed in this section are further described in pseudocode in section 3.6.12. Before

the actions are called, some data needs to be prepared. This preparation is detailed in section 3.6.10.

3.6.9 UET-CC Header Formats and Fields

The congestion control state is carried in PDS headers. The following fields are defined in this section:

• pds.req_cc_state

• pds.ack_cc_state

The pds.req_cc_state field is used for RCCC and TFC. The pds.ack_cc_state field is used by NSCC, RCCC,

and TFC.

The pds.ack_cc_state field is 64 bits when using ACK_CC and is 128 bits when using ACK_CCX (extended

length). The currently defined formats for NSCC, RCCC, and TFC use pds.type = ACK_CC and pds.cc_type

= CC_NSCC or CC_CREDIT. The field setting pds.cc_type = CC_NSCC is used whenever NSCC is enabled.

3.6.9.1 pds.req_cc_state – RCCC and TFC

This 32-bit field is carried in the PDS request packets. The bits are globally configured; there is no type

field in the header to enable parsing. One type is defined for RCCC and TFC, as illustrated in Figure 3-99,

to carry the pds.req_cc_state.credit_target field as well as the source’s CCC context identifier

(pds.req_cc_state.ccc_id).

Figure 3-99 - pds.req_cc_state Header Format for RCCC / TFC

Table 3-73 - Header Fields for pds.req_cc_state for RCCC/TFC

Field Name

Field Size

(in bits)

Field Description

ccc_id 8 Identifier assigned by source

credit_target 24 Estimate of the amount of data the source CCC has to

send

• Units: 256 bytes

• Wraps to 0x0 at 0xFFFFFF

 366

Copyright © 2025 Ultra Ethernet ConsortiumTM. All rights reserved.

pds.req_cc_state.ccc_id is defined in section 3.6.14.1 and is used to identify the source’s CCC context to

the destination.

The pds.req_cc_state.credit_target field represents the cumulative number of bytes at the source that

have been made ready to transmit in 256 B units. The amount of work is the sum of all work ever posted

to the PDCs sharing the CCC. When the source increases pds.req_cc_state.credit_target, this serves as a

request to the destination for more credit. A CC algorithm MAY restrict how quickly the

pds.req_cc_state.credit_target field increases (as opposed to setting pds.req_cc_state.credit_target

directly to the total amount of data to be transmitted) to avoid excessive credit being sent to a source

that cannot immediately use it.

The pds.req_cc_state.credit_target field is defined in section 3.6.14

3.6.9.2 pds.ack_cc_state for NSCC

NSCC uses the pds.ack_cc_state field when pds.type = ACK_CC and pds.cc_type = CC_NSCC. The format

is shown in Figure 3-100.

Table 3-74 - pds.ack_cc_state for ACK_CC with CC_TYPE = CC_NSCC

Field Name

Size
(in bits)

Field Description

service_time 16 Service time at destination, measured from the time the
PDS request packet arrives at the Ethernet MAC to the
time a PDS ACK packet is transmitted by the Ethernet MAC

• Units: 128 nsec

• Accuracy target: ~500 nsec
0xFFFF indicates service time exceeded 8.38848 ms

restore cwnd (rc) 1 Indicates cwnd should be restored after destination
congestion ends

rcv_cwnd_pend 7 This field indicates the congestion level at the destination

rcvd_bytes 24 Per PDC received byte count, maintained at the destination
and incremented when a network packet is accepted

• Units: 256 bytes

• Wraps to 0x0 at 0xFFFFFF

ooo_count 16 Count of out of order packets

Figure 3-100 - pds.ack_cc_state for UET TYPE = ACK_CC and CC_TYPE = CC_NSCC

 367

Copyright © 2025 Ultra Ethernet ConsortiumTM. All rights reserved.

3.6.9.2.1 pds.ack_cc_state.rcvd_bytes for NSCC

This field represents the number of bytes the destination has accepted on the PDC in 256 B units. It is a

24-bit field that wraps.

The algorithm to calculate pds.ack_cc_state.rcvd_bytes at the destination is in section 3.6.13.9.

For use of pds.ack_cc_state.rcvd_bytes at the source, refer to section 3.6.10.3.

3.6.9.2.2 pds.ack_cc_state.rcv_cwnd_pend and pds.ack_cc_state.rc for CC_NSCC

The pds.ack_cc_state.rcv_cwnd_pend field is used by the destination to request that the source

reduces its congestion window because the destination is becoming backlogged. The

pds.ack_cc_state.rc field indicates whether the source should restore the original value of the

congestion window when flow control ends. Use is described in section 3.6.13.2.

3.6.9.2.3 pds.ack_cc_state.ooo_count for NSCC

The pds.ack_cc_state.ooo_count field MAY be used to trigger an early loss detection event at the

source as described in the PDS section 3.5.15.4.1. The pds.ack_cc_state.ooo_count field is an

instantaneous estimate of the number of out-of-order packets, and its value goes up and down. It is not

cumulative, and the field does not wrap. While pds.ack_cc_state.ooo_count is carried in the

pds.ack_cc_state field, its value is not used by the congestion management algorithms.

The pds.ack_cc_state.ooo_count field is a count of all packets received on each PDC that are out of

order, meaning at least one packet with a lower PSN has not yet been received. If out-of-order count is

implemented on a PDC, a 16-bit pds.ack_cc_state.ooo_count for that PDC MUST be supported. This

covers the maximum range of active PSNs on a PDC, which is –32640 as defined in 3.5.11.13

Support for setting pds.ack_cc_state.ooo_count is optional; if a destination does not calculate the out-

of-order count, then pds.ack_cc_state.ooo_count MUST be set to 0xFFFF to indicate the field is invalid.

3.6.9.2.4 pds.ack_cc_state.service_time for NSCC

This field is carried in the ACK_CC when pds.cc_type = CC_NSCC. The pds.ack_cc_state.service_time

field is used to adjust the RTT calculation in NSCC, ensuring it accounts for processing delays at the

destination FEP. Refer to section 3.6.4.2 for usage of this field.

Service time is defined as the time when the first byte of the associated ACK is transmitted by the

destination’s MAC minus the time the first byte of a packet triggering the ACK arrived at the

destination’s MAC. This time may be estimated, e.g., the packet may be buffered after the transmit time

is captured, with a goal of providing ~500 nsec accuracy. The pds.ack_cc_state.service_time field is

represented using 128 nsec granularity such that the least significant bit represents 128 nsec.

When set to 0x0, pds.ack_cc_state.service_time is not valid and MUST be ignored. The encoding of 0x0

simplifies the process of ignoring service time for many of the calculations.

 368

Copyright © 2025 Ultra Ethernet ConsortiumTM. All rights reserved.

3.6.9.3 pds.ack_cc_state for TFC and RCCC

TFC and optionally RCCC, when NSCC is not enabled, use pds.ack_cc_state when pds.type = ACK_CC and

pds.cc_type = CC_CREDIT. The format is shown in Figure 3-101.

Table 3-75 - pds.ack_cc_state for ACK_CC with CC_TYPE = CC_CREDIT

Field Name Size (in bits) Field Description

credit 24 Credit, allocated by the destination (units: 256 bytes)

ooo_count 16 Count of out of order packets (units: packets)

3.6.9.3.1 pds.ack_cc_state.credit for TFC and RCCC

This field is carried in the ACK_CC when pds.cc_type = CC_CREDIT. It is used to provide a credit-based

flow control between two FEPs.

The pds.ack_cc_state.credit field allows the destination to indicate to the source how much additional

data can be sent on this CCC. The source MUST stop transmitting when credit is exhausted. The source

MUST NOT transmit more packets than are allowed by the credit allocation (e.g., do not go below zero

when tracking credit).

The pds.ack_cc_state.credit field is in units of 256 bytes and is a cumulative field that wraps. It indicates

the total amount of credit allocated by the destination to the CCC since it started (this excludes any

speculative credit the source started with when the CCC was established, but that was not allocated by

the destination). The RCCC and TFC pseudocode describe how the credit is used at the source. When

NSCC is enabled, credit is returned in Credit CPs (see section 3.5.16.6).

3.6.9.3.2 pds.ack_cc_state.ooo_count for TFC and RCCC

The pds.ack_cc_state.ooo_count field when TFC or RCCC is enabled serves the same purpose and is

processed the same as when NCSS is enabled. See section 3.6.9.2.3.

3.6.10 Common Congestion Control Event Processing

The pseudocode and associated descriptive text in the congestion management sections below use the

following conventions: raw fields extracted from packets are indicated with their header name (e.g.,

pds.cc_type) and when referenced in text they are highlighted in bold font. Variable names prefixed

ccc are state that is local to the CCC, and variable names prefixed pdc are state that is specific to that

PDC. Working variables are highlighted in descriptive text using italic font (e.g., Entropy). Comments and

Figure 3-101 - pds.ack_cc_state for UET TYPE = ACK_CC and CC_TYPE = CC_CREDIT

 369

Copyright © 2025 Ultra Ethernet ConsortiumTM. All rights reserved.

inline explanations are shown as “#comment” to distinguish them from English language pseudocode (in

fixed-width font), which is a part of the algorithm itself.

3.6.10.1 Extracting Entropy from packets

The working variable Entropy is extracted from received packets depending upon how they are

encapsulated. When native IPv4 and IPv4 encapsulations are used the packet includes the PDS Entropy

Header (see section 3.5.10.1) and the Entropy value is extracted from the pds.entropy field. When UDP

encapsulation is used, the Entropy value is extracted from the udp.source_port field. In the following

sections, when Entropy is referenced, it is assumed to have been extracted from the packets or updated

by the CC algorithms.

3.6.10.2 ACK Preprocessing for Congestion Control

UET ACK packets may contain ACK CC_STATE in the pds.ack_cc_state field. The following two types of

ACK CC_STATE are defined:

• When pds.cc_type=CC_NSCC. The pds.ack_cc_state field contains data used for the NSCC

congestion control mechanism.

• When pds.cc_type =CC_CREDIT. The pds.ack_cc_state field contains data used for TFC flow

control and (optionally) for RCCC congestion control.

Preprocessing of ACK CC_STATE is described in sections 3.6.10.3 and 3.6.10.4.

The Entropy value and the pds.flags.m field (indicating congestion) from the ACK are used for active load

balancing between paths. Before processing the ACK pds.ack_cc_state field (if present), the source

should update the path state it holds.

if pds.flags.m==1:

process_ev(Entropy, ECN)

else

process_ev(Entropy, NO_ECN)

If the CCC is in TFC mode or is for a ROD CCC, this step does not apply.

3.6.10.3 ACK CC_STATE Preprocessing for pds.cc_type=CC_NSCC

An ACK arriving on a PDC can indicate the cumulative total of bytes received by the peer on that PDC in

the pds.ack_cc_state.rcvd_bytes field. The CCC does not specifically know about PDCs, so the source

performs the following calculations to determine the number of newly received bytes at the destination

on this PDC:

newly_rcvd_bytes = 0

if pds.ack_cc_state.rcvd_bytes > pdc.prev_rcvd_bytes:

newly_rcvd_bytes = (pds.ack_cc_state.rcvd_bytes–

pdc.prev_rcvd_bytes) << 8

pdc.prev_rcvd_bytes = pds.ack_cc_state.rcvd_bytes

 370

Copyright © 2025 Ultra Ethernet ConsortiumTM. All rights reserved.

The left shift is required, as pds.ack_cc_state.rcvd_bytesis in units of 256 bytes, whereas

newly_rcvd_bytes needs to be in bytes. As the pds.ack_cc_state.rcvd_bytes field can wrap,

modular arithmetic must be used for the comparisons and subtractions. Note that unlike most CCC

states, pdc.prev_rcvd_bytes is per-PDC state.

If NSCC is enabled, then the pds.ack_cc_state.rcvr_cwnd_pend and the pds.ack_cc_state.rc fields are

also extracted into the Rcv_Cwnd_Pend and Restore_Cwnd variables respectively. Otherwise, these

fields SHOULD be ignored.

If NSCC is enabled, the CCC needs to know the RTT sample measured from the ACK arrival time. This is

performed using a timestamp stored when a data packet is transmitted. This packet state is therefore

also passed to OnACK(). Whether a valid RTT can be calculated depends on whether the ACK

acknowledges a retransmitted data packet. Thus, the pds.flags.retx bit from the ACK packet is also

passed to OnACK().

On ACK arrival, the source must look up the state associated with the ACK_PSN from the ACK:

pkt_tx_state = pdc.find_packet(ACK_PSN)

The Service_Time is extracted from the pds.ack_cc_state.service_time field. If the ACKed data packet

had the ip.ecn.ce bit set at the destination the ACK has the pds.flags.m bit set.

The OnACK() action is then performed:

OnACK(newly_rcvd_bytes, Entropy, pds.flags.m, pkt_tx_state,

ack_arrival_time, Service_Time, pds.flags.retx, Rcv_Cwnd_Pend,

Restore_Cwnd)

3.6.10.4 ACK CC_STATE Preprocessing for pds.cc_type=CC_CREDIT

An ACK arriving may carry credit provided by the destination in the ACK pds.ack_cc_state field. Credit is

allocated to the CCC rather than to a specific PDC. The Credit value is extracted from the

pds.ack_cc_state.credit field, and OnCreditUpdate(Credit) is performed. Note that Credit is in units

of 256 bytes.

3.6.10.5 NACK Preprocessing for CC

A NACK indicates one packet was not processed at the destination. Typically, it is sent because the

packet was trimmed in the network, but a NACK can also be sent for other reasons as indicated in the

pds.nack_code field of the NACK packet. Irrespective of the pds.nack_code, the NACK is processed by

the CCC to update the CCC’s inflight state, even if the pds.nack_code indicates to close the PDC.

However, only NACKs with the pds.nack_code field set to UET_TRIMMED or UET_TRIMMED_LASTHOP

will elicit a congestion response.

The source must look up the state associated with the NACKed packet using the pds.nack_psn field from

the NACK:

 371

Copyright © 2025 Ultra Ethernet ConsortiumTM. All rights reserved.

pkt_tx_state = pdc.find_packet(pds.nack_psn)

If the packet was previously SACKed or cumulatively acknowledged, this state lookup will fail. CMS takes

no further action in processing this NACK10.

The source then performs the following calculations in an implementation-defined way:

nominal_pktsize = calculate_nominalpktsize(pkt_tx_state)

The OnNACK() action is then performed using these values:

OnNACK(nominal_pktsize, pds.nack_psn, Entropy, pds.flags.m,

pkt_tx_state, nack_arrival_time, pds.nack_code, pds.flags.retx)

3.6.10.6 Retransmission Timeouts and Inferred Loss

The PDS can detect loss using a retransmission timeout, or may infer loss from information returned in

the SACK bitmap of an ACK or in other implementation-defined ways. In either case, the source MUST

look up the state associated with the missing packet and compute the nominal packet size in an

implementation-defined way:

pkt_tx_state = pdc.find_packet(lost_psn)

nominal_pktsize = calculate_nominalpktsize(pkt_tx_state)

The OnInferredLoss() action is then performed:

OnInferredLoss(nominal_pktsize)

3.6.11 Congestion Control Modes

In this specification, three CC modes are defined:

1. Network-signal Congestion Control (NSCC)

NSCC uses a combination of ECN and network latency to detect and respond to congestion by

adapting a congestion window at the source and is clocked by state in the ACK pds.ack_cc_state

field when pds.cc_type = CC_NSCC.

2. Receiver-credit Congestion Control (RCCC)

RCCC uses explicit Credit CPs from the destination to control the sending rate of all sources to

that destination.

3. Transport Flow Control (TFC)

TFC uses credit sent from the destination to control sources with the aim of avoiding buffer

overflow at the destination. TFC is not, by itself, a congestion control mechanism, so the

10 While this is expected to be rare, a severely delayed NACK could cause this behavior.

 372

Copyright © 2025 Ultra Ethernet ConsortiumTM. All rights reserved.

expectation is for it be used across only a single link where congestion is managed internally to

the ingress FEP. If it is used across multiple network hops, it should be used in conjunction with

additional mechanisms to avoid or manage congestion at intermediate switches. TFC credit MAY

be sent in ACKs using the pds.ack_cc_state field when pds.cc_type = CC_CREDIT or in the

pds.payload.credit field of Credit CPs.

For ROD or RUD CCCs, either NSCC or RCCC may be used by themselves, or both can be used together.

Generally, it is RECOMMENDED that all CCCs in a cluster use the same combination for NSCC and RCCC.

3.6.12 Overall CCC Pseudocode

The CCC algorithm is divided into a common part that is independent of which CC algorithms are

selected, and specific parts for NSCC and RCCC. This section specifies the common part that handles

generic state and load balancingI.

3.6.12.1 Sender Algorithm

The pseudocode for the common parts of the NSCC and RCCC corresponding to the abstract API at the

source is shown in section 3.6.12.3.

General Configuration State

nscc: TRUE if NSCC is enabled

rccc: TRUE if RCCC is enabled

disable_quick_adapt: TRUE if quick adapt has been disabled

It is RECOMMENDED to enable quick adapt unless RCCC is enabled.

NSCC and RCCC general configuration states are listed in sections 3.6.13.3, 3.6.14.2, and 3.6.14.5.

General CCC State:

ccc.backlog = 0

ccc.backlog holds the total number of bytes (including packet headers, as calculated by

nominal_pktsize) that PDS told the CCC to send on this CCC across all the PDCs associated with

the CCC.

ccc.waiting_rtx = 0

ccc.waiting_rtx holds a count of the number of packets currently marked as needing
retransmission.

ccc.rtx_backlog = 0

ccc.rtx_backlog holds the total number of bytes (including packet headers, as calculated by
nominal_pktsize) that the PDS has pending retransmit on this CCC across all of the PDCs
associated with the CCC.

ccc.inflight_pkts = 0

 373

Copyright © 2025 Ultra Ethernet ConsortiumTM. All rights reserved.

ccc.inflight_pkts holds the total number of packets in flight on this CCC across all of the PDCs
associated with the CCC.

3.6.12.2 Nominal Packet Size

The pseudocode in section 3.6.12.3 refers to the size of the packet for many values. Where stated, these

use nominal_pktsize. It is important that the source and destination come up with the same value, even

if the length of the packet changes in flight due to, for example, network telemetry. nominal_pktsize is

an approximation of the actual packet size that is sufficiently accurate for the purposes of congestion

control, but which cannot change in flight.

nominal_pktsize = transport_pktsize + 40

transport_pktsize is the UDP length of the packet if UDP encapsulation is used, or the size of the packet

from the start of the UET entropy header to the end of the UET trailer if UDP encapsulation is not used.

3.6.12.3 Overall CCC Pseudocode
OnACK(newly_rcvd_bytes, Entropy, M_Flag, pkt_tx_state, ack_arrival_time,

 Service_Time, Retx_Flag, Rcv_Cwnd_Pend, Restore_Cwnd):

#Each packet that was ACKed for the first time (e.g., by a cumulative

#ACK or a SACK bit being set) should not be retransmitted. Remove it

#from the retransmit list if it is there.

foreach newly acked packet:

unmark_packet_for_rtx(acked_pkt)

if M_Flag == 1: #pkt was ECN marked

process_ev(Entropy, ECN)

else:

process_ev(Entropy, NO_ECN)

if nscc:

NSCC.OnACK(newly_rcvd_bytes, M_Flag, pkt_tx_state,

ack_arrival_time, Service_Time, Retx_Flag,

Rcv_Cwnd_Pend, Restore_Cwnd)

if rccc:

RCCC.OnACK()

 #Each ACK may acknowledge multiple packets (cumulative ACK, SACK, etc)

 ccc.inflight_pkts -= number_of_newly_acked_packets

update_state()

OnNACK(nominal_pktsize, NACK_PSN, Entropy, M_Flag, pkt_tx_state,

 374

Copyright © 2025 Ultra Ethernet ConsortiumTM. All rights reserved.

 nack_arrival_time, reason, Retx_Flag, pdc_present):

if reason == TRIM_NACK: #Non-last hop trim

process_ev(Entropy, NACK)

else if M_Flag == 1: #pkt was ECN marked before it was trimmed

process_ev(Entropy, ECN)

else: #last hop trim, or other cause – no need to load balance

process_ev(Entropy, NO_ECN)

if nscc:

NSCC.OnNACK(nominal_pktsize, pkt_tx_state, nack_arrival_time,

 Retx_Flag, reason, rccc)

mark_packet_for_rtx(NACK_PSN, nominal_pktsize)

if rccc:

RCCC.OnNACK(pdc_present)

ccc.inflight_pkts--

update_state()

OnCreditUpdate(Credit):

if rccc:

RCCC.OnCreditUpdate(Credit)

update_state()

OnInferredLoss(pkt_state, nominal_pktsize, pdc_present):

if nscc:

NSCC.OnInferredLoss(nominal_pktsize)

 mark_packet_for_rtx(pkt_state.psn, nominal_pktsize)

if rccc:

RCCC.OnInferredLoss(pdc_present)

process_ev(pkt_state.entropy, TIMEOUT)

ccc.inflight_pkts--

update_state()

OnSend(nominal_pktsize, is_rtx):

if is_rtx:

ccc.waiting_rtx -= 1

ccc.rtx_backlog -= nominal_pktsize

else:

 375

Copyright © 2025 Ultra Ethernet ConsortiumTM. All rights reserved.

ccc.backlog -= nominal_pktsize

if nscc:

 NSCC.OnSend(nominal_pktsize)

if rccc:

RCCC.OnSend(nominal_pktsize)

ccc.inflight_pkts++

update_state()

OnNewData(delta_backlog):

ccc.backlog += delta_backlog

if rccc:

RCCC.OnNewData()

update_state()

GetSendParams(free_port_list) -> port, entropy, credit_target, ack_req:

determine entropy and NIC port

if rccc:

credit_target = RCCC.computeCreditTarget()

ack_req = FALSE

if nscc:

#ack_req is TRUE if the CCC would like AR to be set.

#PDS may also set AR for other reasons.

ack_req = NSCC.AckRequest()

return port, entropy, credit_target, ack_req

mark_packet_for_rtx(psn, nominal_pktsize):

 #marking the packet for retransmission is a PDC function, but there

 #are CC side effects below. Mark the psn for retransmission as soon

 #as allowed by cwnd

ccc.waiting_rtx += 1

ccc.rtx_backlog += nominal_pktsize

update_state()

unmark_packet_for_rtx(acked_pkt):

#check if we were going to retransmit a packet that was just acked

if acked_pkt is marked for retransmission:

unmark the packet for retransmission

ccc.waiting_rtx -= 1

 376

Copyright © 2025 Ultra Ethernet ConsortiumTM. All rights reserved.

ccc.rtx_backlog -= acked_pkt.size

update_state():

if ccc.backlog == 0 and ccc.waiting_rtx == 0: #no more data to send

if ccc.inflight_pkts == 0:

ccc.state = IDLE

else:

ccc.state = PENDING #still waiting for Acks

else if ccc.state == IDLE or ccc.state == PENDING:

ccc.state = ACTIVE

can_send = TRUE #does each active CC algorithm allow sending?

if ccc.state == ACTIVE or ccc.state == READY:

if nscc:

can_send &= NSCC.CanSend()

if rccc:

can_send &= RCCC.CanSend()

if ccc.state == ACTIVE and can_send:

ccc.state = READY #add CCC to scheduler ready list

else if ccc.state == READY and not can_send:

ccc.state = ACTIVE #remove CC from scheduler ready list

process_ev(entropy, reason):

UET-CC does not prescribe how the feedback information received from ACKs and NACKs is used to load

balance. Oblivious load balancing and adaptive load balancing are both permitted, as described in

section 3.6.16. Some load balancing schemes require little (or no) action in process_ev(), and others may

vary in what they do based on the reason. Load balancing schemes that do not require processing of an

entropy for a given reason are not required to process the entropy for that reason. If the CCC is used for

a ROD or TFC PDC, process_ev() does nothing.

3.6.12.4 Receiver Algorithm

The following pseudocode defines the common CCC behavior at the CCC destination. The conditions for

sending an ACK are specified in the PDS section 3.5.12. RCCC also maintains a credit timer that clocks

out credit. This is detailed in section 3.6.14.5.

OnRX(pkt):

if rccc: RCCC.OnRX(pkt)

if nscc: NSCC.OnRX(pkt)

if pkt.IsTrimmed:

 377

Copyright © 2025 Ultra Ethernet ConsortiumTM. All rights reserved.

lastHopTrim = (pkt.ip.dscp == DSCP_TRIMMED_LASTHOP)

sendNACK(pkt.pds.psn, Entropy, lastHopTrim, pkt.ip.ecn.ce)

else if conditions are met to send an ACK:

sendACK(pkt.pds.psn, Entropy, pkt.ip.ecn.ce)

#other ACK CC_STATE fields will be filled in by the

#relevant CC algorithm

3.6.13 Network Signal-based Congestion Control

This section specifies the NSCC algorithm, which is based on the SMaRTT [9] and Strack [10] algorithms.

NSCC uses a congestion window, cwnd, that limits the amount of outstanding in-flight data. NSCC

permits sending only when cwnd > (inflight + MTU11). As is normal with window-based congestion

control protocols, NSCC relies on ACK clocking to regulate the amount of data permitted into the

network, whereby the arrival of ACKs indicates data has left the network and so clocks new data into the

network. In NSCC, the ACK clock that decreases inflight is driven from the Rcvd_Bytes field returned by

the destination in ACK packets, which indicates the amount of data that has arrived at the destination.

When the source is told by the destination that an amount of data has left the network, inflight is

reduced by this amount, allowing more data to be sent. Similarly, inflight is reduced if a packet is known

or inferred to have been lost. These mechanisms are resilient to reordering caused by multipath

spraying. Note that inflight can go slightly negative temporarily, due to Rcvd_Bytes being rounded up to

units of 256 bytes and due to ACK reordering; this does not affect correctness but does require that

inflight is maintained as a signed value.

A single cwnd is maintained for packets sprayed across multiple paths; in effect it tracks the available

capacity in the network across the aggregate of paths. The core NSCC algorithm adapts cwnd based on

observed network conditions. The primary control loop is driven by a combination of ECN and measured

RTT. The queueing delay is approximated by RTT – base_RTT, where base_RTT is the expected latency

when there is no queue. RTT is measured by storing the transmit time of each packet at the source and

subtracting both the ACK arrival time and the Service_Time as reported in the ACK packet. The goal is to

keep the delay within bounds, but a high delay can be measured only after a packet has spent time to

traverse the queue. In contrast, in modern Ethernet switches, ECN is set on a packet when it is

dequeued from the queue, based on the queue size at that time. This means that the single-bit ECN

signal is a leading indicator of congestion, whereas delay is a lagging multibit indicator. The destination

echoes the received ECN value back to the source. This leads to four combinations of ECN and delay that

are used to determine appropriate responses:

• ECN is not set, delay < target_qdelay:

o Network is uncongested

o Perform proportional_increase()

11 In some implementations, it may be possible to use the actual packet size instead of the MTU.

 378

Copyright © 2025 Ultra Ethernet ConsortiumTM. All rights reserved.

• ECN is not set, delay >= target_qdelay:

o Network was congested, but congestion has reduced

o Perform fair_increase()

• ECN is set, delay < target_qdelay:

o Network is becoming congested for packets after this one, but is not yet regarded as

congested

o No increase or decrease needed

• ECN is set, delay >= target_qdelay:

o Network is congested

o Perform multiplicative_decrease()

For each of these cases, a different congestion response is appropriate.

The proportional_increase() action, performed when uncongested, by default increases cwnd by a

quantity proportional to the difference between the delay and the target_delay. Thus, if the network is

lightly loaded, it will increase faster than if it is approaching the threshold to be considered congested. If

the network has been underloaded for some time, as might happen when competing flows terminate,

proportional_increase() can trigger fast_increase() to converge more rapidly on a new operating point.

fast_increase() will perform an exponential increase and is terminated by any sign of incipient

congestion.

The fair_increase() action is performed after a packet experiences congestion, but ECN indicates the

queue behind it has drained below the ECN setting threshold. The fair_increase() action kicks in to

prevent the transmission rate undershooting. It performs an additive increase, which helps competing

CCCs converge toward fairness: All CCCs receiving the same signal will increase cwnd by the same

amount, so CCCs with a smaller cwnd will see a larger proportional increase than CCCs with a larger

cwnd.

The multiplicative_decrease() action is performed when the delay is over threshold and ECN does not

indicate the queue is decreasing. In this case the average delay provides direct information regarding

how much more data is enqueued than is desired. The multiplicative_decrease() action then directly

reduces cwnd proportional to this queuing excess. If all flows in the situation perform the same action,

the aim is for the queue to be reduced to the target in just over an RTT.

The goal of the algorithm is to keep queue sizes small without sacrificing throughput, and hence avoid

packet loss in the steady state and minimize the duration of loss when the offered load changes too fast

to control. Typically, in AI networks this occurs when collectives cause synchronized flow startup.

Finally, quick_adapt() is performed when loss is detected or when delay across many paths is excessively

high. quick_adapt() uses measured achieved goodput to directly set cwnd. This means that if an incast

occurs, for example, in the second RTT the cwnds of the incast PDCs will combine to avoid overloading

the destination’s link. The quick_adapt() action does not guarantee instantaneous fairness, but in

subsequent RTTs fair_increase() and multiplicative_decrease() will cause convergence. Because

quick_adapt() relies on a measure of achieved bandwidth, it can be triggered only once per RTT. When

 379

Copyright © 2025 Ultra Ethernet ConsortiumTM. All rights reserved.

quick_adapt() is triggered, there may be many packets queued, and most of these will be acknowledged

with ECN set. Until these packets are ACKed, multiplicative_decrease() is suppressed.

NSCC is designed to be able to work with active ECN-based load balancing, where the ECN signal is also

used to balance congestion across paths, in addition to being used as an NSCC congestion signal. As a

result, NSCC does not react to low levels of congestion, indicated only by ECN and not by delay, as this is

often a symptom of imperfect load balancing. If ECN-based load balancing is used, it is desirable to give

load balancing the opportunity to react before the aggregate rate is reduced, except for high congestion

when the ECN signal saturates and is then used only to reduce the aggregate load.

NSCC leaves it to the implementor to handle outcast (e.g., when multiple CCCs are active, and inflight

never approaches the cwnd limit) if needed. During a period of outcast, it is possible that the congestion

windows (cwnd) of multiple sending CCCs increase to their maximum values beyond the sending

capacity of the outgoing FEP. This occurs because each CCC is operating below its nominally allowed rate

while the network delay appears to be low to NSCC.

3.6.13.1 Calculating RTT

NSCC needs to know the RTT sample measured from the ACK arrival. The PDC SHOULD store the

transmit timestamp for each packet sent and update this timestamp each time the packet is

retransmitted. Generally, the source will subtract the stored transmit timestamp from the time of the

ACK arrival and subtract off the destination’s Service_Time to calculate the RTT. However, care must be

taken with retransmitted packets, where there is a potential ambiguity as to whether the ACK is for the

original or the retransmitted packet. To resolve this ambiguity, a source SHOULD store whether a packet

has been retransmitted. Data packets carry the pds.flags.retx bit indicating that a packet is a

retransmission. This pds.flags.retx flag is echoed in the ACK message. Thus, if the pds.flags.retx bit in

the ACK is not set, and the packet has been retransmitted, the ACK MUST NOT be used to update the

RTT measures.

An implementation MAY choose to not update RTT measures when the pds.flags.retx bit in an ACK is

set. It is preferable, however, to update RTT based on ACKs of retransmissions, but again care must be

taken to avoid any potential ambiguity when a packet is retransmitted a second time. It is

RECOMMENDED that a source records if a packet is retransmitted a second (or subsequent) time. If a

packet has been retransmitted only once, and the pds.flags.retx bit is set in the corresponding ACK, then

it is safe to update RTT. Otherwise, it is unsafe, and the RTT should not be updated. One way to

implement this is to maintain a two-bit rtx_count, which records whether a packet has been

retransmitted a) never, b) once, or c) more than once. For clarity, the pseudocode in section 3.6.13.6

assumes such an implementation, but other implementations are permitted.

3.6.13.2 Destination Flow Control

The destination can modulate the source’s transmit rate using a receiver window penalty,

Rcv_Cwnd_Pend. This flow control is intended to be used if the destination is itself congested and is

not keeping up with the arrival rate of traffic. The pds.ack_cc_state.rcvr_cwnd_pend field is returned in

the ACK and MUST be set to a value between 0 and 127. For example:

 380

Copyright © 2025 Ultra Ethernet ConsortiumTM. All rights reserved.

• Setting pds.ack_cc_state.rcvr_cwnd_pend to 0 does not flow control sources, i.e., this field has

no effect.

• Setting pds.ack_cc_state.rcvr_cwnd_pend to 127 slows all the sources by the maximum

amount, down to a window of one packet per RTT.

• Setting pds.ack_cc_state.rcvr_cwnd_pend to 64 in all SACKs sent for an RTT halves all source

windows (cwnd), thus reducing the bandwidth to the receiver.

The pds.ack_cc_state.rc flag in the ACK indicates whether the source should save the current value of

cwnd when Rcv_Cwnd_Pend indicates a period of receiver flow control has started, and restore the

original cwnd value when receiver flow control ends.

Receivers MAY dynamically determine Rcv_Cwnd_Pend depending on the degree of destination

congestion. The specifics of how the Rcv_Cwnd_Pend is calculated is implementation dependent.

The field may be set to 0 if it is not supported by the receiver.

The source responds to non-zero values of Rcv_Cwnd_Pend by modifying the congestion control

response. This is detailed in apply_cwnd_penalty() in the NSCC pseudocode.

Table 3-76 - Congestion Control Configuration Parameters

Name Type Default Description

config_base_rtt unsigned

integer

See section

3.6.13.3

The round-trip time in seconds of the

longest path across the fabric of an

MTU-sized packet when no other traffic

is present. (Units: seconds, but see the

precision discussion in 3.6.13.3)

sender.linkspeed unsigned

integer

NIC linkspeed The maximum achievable bitrate over

the source’s link, measured in

bytes/second.

Receiver.linkspeed unsigned

integer

NIC linkspeed The maximum achievable bitrate over

the receiver’s link, measured in

bytes/second. Usually this is the same

as the source’s linkspeed. If unknown,

set to source’s linkspeed.

 381

Copyright © 2025 Ultra Ethernet ConsortiumTM. All rights reserved.

Name Type Default Description

MTU unsigned

integer

Payload MTU +

Transport

Overhead + 40

Nominal MTU. An approximation of the

MTU using the payload MTU from the

semantic sublayer plus the transport

overhead plus 40 bytes. Matches the

nominal_pktsize of a full payload MTU

packet.

BDP unsigned

integer

See section

3.6.13.3

The nominal bandwidth-delay product

needed to achieve high throughput

across the longest path in an unloaded

network. (units: bytes)

MaxWnd unsigned

integer

1.5 * BDP Upper bound on cwnd. (units: bytes)

target_qdelay unsigned

integer

See section

3.6.13.3

Target queueing delay. (Units: seconds,

but see the precision discussion in

3.6.13.3)

Gamma floating point 0.8

alpha floating point See section

3.6.13.3

fi floating point 5 * MTU *

scaling_a

Fair increase constant.

fi_scale floating point 0.25 * scaling_a

max_md_jump floating point 0.5 Limit on how much multiplicative

decrease can decrease cwnd (unitless).

base_BDP unsigned

integer

150000 The hypothetical BDP of a network with

100 Gb/s source and receiver linkspeeds

and a 12 µs base RTT. (units: bytes)

scaling_a floating point BDP/base_BDP Used to scale to networks with differing

linkspeeds or RTT.

scaling_b floating point target_qdelay

/ 0.000012

Used to scale parameters as

target_qdelay is adjusted relative to

12 µs baseline.

eta floating point 0.15 * MTU *

scaling_a

Additive increase constant to improve

fairness.

 382

Copyright © 2025 Ultra Ethernet ConsortiumTM. All rights reserved.

Name Type Default Description

qa_threshold unsigned

integer

See below Average queuing delay before

quick_adapt() kicks in without seeing

losses.

adjust_bytes_threshold unsigned

integer

8 * MTU Apply decrease at least every 8 ACKs.

adjust_period_threshold unsigned

integer

config_base_rtt Apply decrease at least once per RTT.

qa_gate unsigned

integer

3 quick_adapt is enabled when

achieved_bytes <

(ccc.max_wnd/2qa_gate).

3.6.13.3 NSCC Configuration Parameters

The following configuration parameters and constants are used to tune NSCC behavior. An

implementation SHOULD allow the configuration of all parameters shown in Table 3-76.

Implementation Note:

Table 3-76 defines the type of several parameters as floating-point numbers. The precision of floating-

point arithmetic is not defined and is an implementation-specific decision. Any valid floating-point

rounding mode may be selected for floating-point calculations.

The config_base_rtt parameter is defined as the round-trip time in seconds of the longest path across

the fabric of an MTU-sized packet when no other traffic is present, set by configuration for all CCCs.

While for the purposes of consistency in the formulas below, this is in units of seconds. Implementations

should maintain base_rtt to the nearest 128 ns or better, to match the tx_timestamp precision.

BDP defaults to:

BDP = min(sender.linkspeed, receiver.linkspeed) * config_base_rtt

BDP is in units of bytes, so linkspeeds above should be measured in units of bytes/second. The

destination linkspeed will typically be the same as the source linkspeed. If it is unknown, use the source’s

linkspeed.

alpha defaults to:

alpha = 4.0 * scaling_a * scaling_b * MTU / target_qdelay

target_qdelay, qa_threshold, and adjust_period_threshold all measure time. They are expressed here in

units of seconds for the purposes of consistency in these formulae. Implementations should maintain

target_qdelay to the nearest 128 ns or better to match the tx_timestamp precision.

 383

Copyright © 2025 Ultra Ethernet ConsortiumTM. All rights reserved.

target_qdelay defaults to:

config_base_rtt * 0.75 when trimming is used

config_base_rtt * 1.0 when trimming is not used

The parameter qa_threshold is used when trimming is disabled; it should be set to a high value to

disable it when trimming is used. The quick_adapt() action needs to be triggered before tail dropping

occurs in the network; thus, qa_threshold is a derivative of the tail drop threshold. The qa_threshold

parameter should be set to (drop threshold/Plane_BDP -1)*configure_base_RTT. Using the

recommended tail drop threshold of 5*Plane_BDP, this yields a qa_threshold of 4*target_qdelay. See

section 3.6.17 for details on the recommended switch settings.

3.6.13.4 NSCC Source State

When an NSCC CCC is initialized, the following per-CCC state is initialized:

Table 3-77 - NSCC Source State

Name Type Default Description

ccc.cwnd unsigned

integer

MaxWnd Congestion window that constrains the in-flight
data. (units: bytes)

ccc.inflight signed

integer

0 The amount of unacknowledged data still
thought to be in transit; see text below this
table. (units: bytes)

ccc.saved_cwnd unsigned

integer

0 Original value of cwnd saved when destination
flow control starts.

ccc.base_rtt unsigned

integer

config_base_rtt Base RTT for the CCC. Starts at config_base_rtt,
but is reduced if an RTT sample is lower. (units:
128 ns)

ccc.achieved_bytes unsigned

integer

0 Achieved received bytes from past RTT for quick
adapt. (units: bytes)

ccc.received_bytes unsigned

integer

0 Achieved received bytes to trigger
fulfill_adjustment(). (units: bytes)

ccc.fi_count unsigned

integer

0 Count of packet bytes that see no ECN-CE and

also see an RTT that is around base_rtt. (units:

bytes)

ccc.trigger_qa boolean FALSE Set to TRUE to trigger quick_adapt() when the

deadtime since the last call to quick_adapt() has

expired.

 384

Copyright © 2025 Ultra Ethernet ConsortiumTM. All rights reserved.

Name Type Default Description

ccc.qa_endtime unsigned

integer

0 The time value of the end of Quick_Adapt time

window. (units: local time units)

ccc.bytes_to_ignore unsigned

integer

0 Used after quick_adapt() to keep track of how

much data to ignore. (units: bytes)

ccc.bytes_ignored unsigned

integer

0 Used after quick_adapt() to count how many

bytes have been ignored so far. (units: bytes)

ccc.inc_bytes unsigned

integer

0 Used to accumulate window increase for later

application.

ccc.last_adjust_time unsigned

integer

now The last time that accumulated cwnd changes

were applied. (units: local time units)

ccc.increase_mode boolean FALSE Latches TRUE when entering fast_increase

mode. Cleared to FALSE to exit fast_increase

mode.

ccc.last_dec_time unsigned

integer

now The last time that multiplicative_decrease was

performed. (units: local time units)

ccc.max_wnd unsigned

integer

MaxWnd The scaled version of MaxWnd based on

measured RTT.

ccc.inflight maintains the total number of bytes (including packet headers, as calculated by nominal

packetsize) that the CCC has recorded as being sent and not yet been notified that have been ACKed,

NACKed, timed out, or otherwise inferred to be lost on all PDCs associated with this CCC. Under some

circumstances inflight temporarily can go slightly negative, so inflight SHOULD be stored as a signed

integer.

3.6.13.5 NSCC Source Algorithm
NSCC.OnACK(newly_rcvd_bytes, M_Flag, pkt_tx_state, ack_arrival_time,

Service_Time, Retx_Flag, Rcv_Cwnd_Pend, Restore_Cwnd):

ccc.inflight -= newly_rcvd_bytes

ccc.bytes_ignored += newly_rcvd_bytes

ccc.received_bytes += newly_rcvd_bytes

ccc.achieved_bytes += newly_rcvd_bytes

rtt_sample = calculate_rtt(pkt_tx_state, ack_arrival_time,

 Service_Time, Retx_Flag)

rcv_limit_mode =

apply_cwnd_penalty(Rcv_Cwnd_Pend, Restore_Cwnd, newly_rcvd_bytes)

if rtt_sample != INVALID_RTT:

 385

Copyright © 2025 Ultra Ethernet ConsortiumTM. All rights reserved.

update_base_rtt(rtt_sample)

delay = rtt_sample – ccc.base_rtt

update_delay(delay)

else:

return

if quick_adapt(is_loss=FALSE, M_Flag, delay):

return;

#The pds.flags.m bit in the ACK indicates ECN was marked in the

#request. There are four core cases (3 with actions):

if M_Flag == 0 and delay >= target_qdelay and not rcv_limit_mode:

fair_increase(newly_rcvd_bytes)

else if M_Flag == 0 and delay < target_qdelay and not rcv_limit_mode:

proportional_increase(newly_rcvd_bytes, delay)

else if M_Flag == 1 and delay >= target_qdelay:

multiplicative_decrease()

#we’ve accumulated window changes for long enough, now apply them

if (now - ccc.last_adjust_time) >= adjust_period_threshold

 or ccc.received_bytes > adjust_bytes_threshold:

#This is potentially done per packet or at a lower frequency

#(RTT/4, RTT/2 and so on).

fulfill_adjustment()

NSCC.OnInferredLoss(nominal_pktsize):

cwnd = max(cwnd - nominal_pktsize, MTU)

ccc.bytes_ignored += nominal_pktsize

ccc.inflight -= nominal_pktsize

NSCC.OnNACK(nominal_pktsize, pkt_tx_state, nack_arrival_time, Retx_Flag,

 reason, rccc):

adjust_cwnd=FALSE

ccc.inflight -= nominal_pktsize

rtt_sample = calculate_rtt(pkt_tx_state, nack_arrival_time,

 service_time=0, Retx_Flag)

if rtt_sample != INVALID_RTT:

 386

Copyright © 2025 Ultra Ethernet ConsortiumTM. All rights reserved.

update_base_rtt(rtt_sample)

#If the NACK was generated by trimming,

#update the delay with the estimate for the trimmed queue delay

 if reason == UET_TRIMMED or reason == UET_TRIMMED_LASTHOP:

 update_delay(config_base_rtt)

 ccc.bytes_ignored += nominal_pktsize

if reason == UET_TRIMMED

 or (reason == UET_TRIMMED_LASTHOP and rccc == FALSE):

 #Only adjust the cwnd on a last hop trim if RCCC is not enabled

adjust_cwnd = TRUE

 ccc.trigger_qa = TRUE

 #is_loss causes delay to be ignored, so set delay to 0

 #A trimmed packet counts as ECN marked for quick adapt, so set

#M_Flag

if quick_adapt(is_loss=TRUE, M_Flag=1, delay=0):

 #if quick_adapt ran, don’t adjust cwnd again

 adjust_cwnd=FALSE

if adjust_cwnd == TRUE :

cwnd = max(cwnd - nominal_pktsize, MTU)

NSCC.OnSend(nominal_pktsize):

ccc.inflight += nominal_pktsize

NSCC.CanSend():

#An implementation MAY be precise and consider inflight+pktsize if

#desired. Note: using pktsize could cause a PDC with small packets to

#starve a PDC with large packets when CWND is one MTU. This is an

#issue to be handled in the implementation of the scheduler.

return ccc.inflight + MTU <= ccc.cwnd

NSCC.AckRequest():

#NSCC performs better if the destination generates an ACK whenever

#the source’s cwnd is full. If the cwnd is not large enough to trigger

#an ACK, request an ACK.

return (ccc.cwnd - ccc.inflight) < MTU

 387

Copyright © 2025 Ultra Ethernet ConsortiumTM. All rights reserved.

or ccc.cwnd < pds.ACK_Gen_Trigger

Implementation Note:

The use of the ACK_Gen_Trigger parameter in the test in NSCC.AckRequest() would require FEPs to

have symmetric configuration of this parameter. Other implementation methods are permitted, such

as device-specific configurations to provide the lowest value of ACK_Gen_Trigger in the system to the

transmit logic.

Also, the NSCC.AckRequest() test assumes the packet size of this packet has been incorporated into

ccc.inflight before calling NSCC.AckRequest().

3.6.13.6 NSCC Internal Functions
calculate_rtt(pkt_tx_state, ack_arrival_time, Service_Time, Retx_Flag):

rtt_sample = INVALID_RTT

#other algorithms are permitted to determine if the RTT is valid

#when a packet has been retransmitted.

if (pkt_tx_state.rtx_count == 0 and Retx_Flag == FALSE)

 or (pkt_tx_state.rtx_count == 1 and Retx_Flag == TRUE):

rtt_sample = ack_arrival_time – (pkt_tx_state.tx_timestamp

 + Service_Time)

return rtt_sample

fulfill_adjustment():

ccc.cwnd += ccc.inc_bytes/ccc.cwnd

if（now - ccc.last_adjust_time) >= adjust_period_threshold:

ccc.last_adjust_time = now

ccc.cwnd += eta

if ccc.cwnd > ccc.max_wnd:

ccc.cwnd = ccc.max_wnd

ccc.inc_bytes = 0

ccc.received_bytes = 0

fair_increase(newly_rcvd_bytes):

#inc_bytes will be divided by cwnd before being added to cwnd

ccc.inc_bytes += fi * newly_rcvd_bytes

proportional_increase(newly_rcvd_bytes, delay):

 388

Copyright © 2025 Ultra Ethernet ConsortiumTM. All rights reserved.

fast_increase(newly_rcvd_bytes, delay)

if ccc.increase:

return

ccc.inc_bytes += alpha * newly_rcvd_bytes*(target_qdelay - delay)

multiplicative_decrease():

ccc.increase = FALSE #turn off fast increase

ccc.fi_count = 0

avg_delay = get_avg_delay()

if avg_delay > target_qdelay:

if (now - ccc.last_dec_time) > ccc.base_rtt:

ccc.cwnd *= max(1-gamma*(avg_delay-

 target_qdelay)/avg_delay,

 max_md_jump)

ccc.cwnd = max(ccc.cwnd, MTU)

ccc.last_dec_time = now

quick_adapt(bool is_loss, bool M_Flag, qdelay):

if disable_quick_adapt == TRUE:

 return FALSE

qa_done_or_ignore = FALSE

if ccc.bytes_ignored < ccc.bytes_to_ignore and M_Flag == 1:

#We are still in the “bytes to ignore” phase,

#don’t run quick adapt, but reset the fulfill-adjustment counters

 qa_done_or_ignore = TRUE

else if now >= ccc.qa_endtime:

if ccc.qa_endtime != 0

 and (ccc.trigger_qa or is_loss or qdelay > qa_threshold)

 and (ccc.achieved_bytes < (ccc.max_wnd >> qa_gate)):

#we have a trim packet or very large RTT

ccc.cwnd = max(ccc.achieved_bytes, MTU)

ccc.bytes_to_ignore = ccc.inflight

ccc.bytes_ignored = 0

ccc.trigger_qa = FALSE

qa_done_or_ignore = TRUE

ccc.achieved_bytes = 0

ccc.qa_endtime = now + ccc.base_rtt + target_qdelay

 389

Copyright © 2025 Ultra Ethernet ConsortiumTM. All rights reserved.

#If we are either in the bytes to ignore phase or ran quick adapt,

#reset fulfill-adjustment counters

If qa_done_or_ignore == TRUE:

 ccc.inc_bytes=0

 ccc.received_bytes=0

return qa_done_or_ignore

fast_increase(newly_rcvd_bytes, delay):

if delay ~= 0:

ccc.fi_count += newly_rcvd_bytes

if ccc.fi_count > ccc.cwnd or ccc.increase:

ccc.cwnd += newly_rcvd_bytes * fi_scale

if ccc.cwnd > ccc.max_wnd:

ccc.cwnd = ccc.max_wnd

ccc.increase = TRUE

return

else:

ccc.fi_count = 0

ccc.increase = FALSE

update_base_rtt(raw_rtt):

if ccc.base_rtt > raw_rtt:

ccc.base_rtt = raw_rtt

ccc.max_wnd = 1.5 * sender.linkspeed * (ccc.base_rtt in seconds)

apply_cwnd_penalty(Rcv_Cwnd_Pend, Restore_Cwnd, newly_rcvd_bytes):

if Rcv_Cwnd_Pend > 0:

if ccc.saved_cwnd == 0 then

ccc.saved_cwnd = ccc.cwnd

window_decrease = (Rcv_Cwnd_Pend * newly_rcvd_bytes) >> 7

ccc.cwnd = min(ccc.cwnd, ccc.inflight)

ccc.cwnd = max(mtu, ccc.cwnd – window_decrease)

else if Restore_Cwnd and ccc.saved_cwnd > 0:

ccc.cwnd = ccc.saved_cwnd

ccc.saved_cwnd = 0

 return Rcv_Cwnd_Pend > 0

 390

Copyright © 2025 Ultra Ethernet ConsortiumTM. All rights reserved.

The average delay is used in multiplicative decrease and quick_adapt(). How this should be calculated is

an implementation-specific decision. For example, an implementation that updates a stored running

average when update_delay() is called, and returns that value when get_avg_delay() is called, would

suffice. Other methods to reduce the per-ACK computation costs are also permitted.

It is a requirement that get_avg_delay() be callable multiple times per RTT and still produce an

appropriate average.

update_delay(delay):

 add this sample to the delay averaging state

get_avg_delay():

 return the average delay over the last base_rtt.

3.6.13.7 Initializing base_rtt

The fairness of NSCC depends on getting a good low RTT sample to seed base_rtt. This is especially the

case when a local flow starts up and competes with a pre-existing longer-distance flow. Under these

circumstances, the local flow may not get a good measurement of base_rtt, leading to unfairness against

the longer distance flow.

When a new NSCC CCC to a destination is established, a source SHOULD send a Probe CP on the control

traffic class using the DSCP_CONTROL diffserv codepoint to obtain a good sample of base_rtt. As a Probe

CP cannot bring up a PDC, if this Probe CP is sent immediately using the control traffic class, it is likely to

arrive before the first data packet of the PDC and would then be discarded. Thus the source SHOULD

wait until the first ACK or NACK is received before sending the Probe CP. If an implementation knows no

more data will be sent after the second RTT, this Probe CP MAY be safely omitted.

Sending a Probe CP is unnecessary if a source has a cached base_rtt from a previous CCC, can reliably

estimate base_rtt, or is handling a PDC that is known to transmit little data (typically around one BDP).

3.6.13.8 NSCC Destination State

NSCC is primarily a sender-based algorithm. It depends on the Rcvd_Bytes value calculated at the

destination to drive its ACK-clock. Rcvd_Bytes is maintained per PDC.

An NSCC destination maintains the following CC state.

Table 3-78 - NSCC Destination CC State

Name Type Default Description

pdc.rcvd_bytes unsigned integer 0 The total number of accepted new bytes on this

PDC. (units: bytes)

 391

Copyright © 2025 Ultra Ethernet ConsortiumTM. All rights reserved.

3.6.13.9 NSCC Destination Algorithm
OnRX(pkt):

if pkt contains data and pkt is not trimmed and pkt is not a duplicate:

pdc.rcvd_bytes += pkt.nominal_pktsize

The pds.ack_cc_state.rcvd_bytes field in the ACK sent from the destination is in units of 256 bytes. It is

derived from the pdc.rcvd_bytes as follows:

Rcvd_Bytes = ceil(pdc.rcvd_bytes / 256.0)

The value needs to be rounded up to avoid never acknowledging small packets when the remaining

inflight is smaller than 256 bytes. The Rcvd_Bytes value can be equivalently calculated using integer

arithmetic as:

Rcvd_Bytes = (pdc.rcvd_bytes + 255) >> 8

3.6.14 UET Receiver-Credit Congestion Control

The UET receiver-credit congestion control (RCCC) service is derived from EQDS[11]. RCCC uses end-to-

end credit control messages (“pull messages”) sent by the destination at a defined “rate” to all

concurrent sources to that destination in order to control their transmissions and so avoid persistent

congestion. Under normal conditions, credit will be sent at a rate that matches the destination’s link

speed.

From the source’s point of view, RCCC is similar to a window-based protocol: Each source starts with an

initial amount of credit. Sending a packet consumes that packet’s size in bytes from credit. A source

cannot send if credit is less than or equal to zero12. The destination will send credit messages to the

source to increase credit and allow the source to send more data. If there is no outcast, an RCCC source

can start at line rate by sending up to a BDP of ”speculative packets”. Where multiple sources send to

one destination at the same time (incast), this will create congestion at the last-hop switch.

To deal with incast, RCCC leverages information available at the destination to make optimal,

instantaneous changes to the transmission rate of each of the active sources, as demand to that

destination changes. In detail, after the first RTT, the destination leverages backlog information from

sources to schedule incoming traffic in the next RTT. It does so by sending credit control packets to the

appropriate sources. The credit packets are control packets that are paced such that the data packets

they elicit arrive at the destination’s line rate. Typically, a credit packet will carry a few MTUs of credit,

so credit packets themselves impose only a small overhead.

If there is an outcast, an RCCC source still starts with a BDP of speculative credit, but less than a BDP will

be sent before the first ACK packet is returned. At this point the remaining speculative credit is removed

12 It would be slightly more accurate if there had to be at least nominal_pktsize bytes of credit available, but it is
simpler to implement if credit only has to be greater that zero to send. The one packet offset has negligible effect
on performance.

 392

Copyright © 2025 Ultra Ethernet ConsortiumTM. All rights reserved.

so that the source does not burst beyond what the destination can cope with when other PDCs from the

outcast stop sending.

When RCCC is enabled, ECN should be disabled on the last hop in the network, on the link from the last

hop switch to the destination FEP. This permits more accurate load balancing based on the ECN signal to

be performed, as last-hop congestion (which cannot be load balanced) no longer is conflated with the

ECN load-balancing signal. ECN from the last hop is not required for congestion control, as RCCC directly

manages congestion on the last hop.

When combined with UET’s packet spraying and load balancing, the mechanisms described above are

sufficient to obtain near-optimal performance in a fully provisioned network. Network core congestion

can, however, appear when the network core is oversubscribed, either by construction or due to

failures.

An additional mechanism is required to handle oversubscribed networks.

It is RECOMMENDED to enable NSCC to complement RCCC. NSCC depends on ECN to trigger a

congestion window reduction, so disabling ECN on the last hop means that NSCC will be relatively

insensitive to incast, leaving RCCC to more effectively manage the incast, while NSCC can still respond to

congestion due to oversubscription.

With RCCC, the source notifies the destination of its backlog so the latter has an accurate view of the

demand of the sources. On receipt of any trimmed or data packet, the destination knows the source’s

demand and can schedule credit.

RCCC benefits from packet trimming in switches to ensure that even under incast, the destination has an

accurate view of the demand of the sources. On receipt of a trimmed packet, the destination knows the

source’s demand and can schedule credit.

To ensure that the destination knows how to divide its credit flow between sources so that credit is not

wasted unnecessarily, the source sets the pds.req_cc_state.credit_target field in the PDS Request

header. When work is posted to a PDC, this causes the CCC’s backlog of work to be increased, and this in

turn increases the pds.req_cc_state.credit_target. The pds.req_cc_state.credit_target field is

cumulative; when pds.req_cc_state.credit_target is increased, this indicates to the destination that the

source requires the amount of extra credit indicated by how much pds.req_cc_state.credit_target was

increased by. This ensures that pds.req_cc_state.credit_target is resilient to the reordering of data

packets.

3.6.14.1 CCC Identifiers

The CCC Identifier, CCC_ID, identifies a specific instance of RCCC or TFC. The CCC_ID is assigned by the

source and carried in PDS Request packets in the pds.req_cc_state.ccc_id field. When RCCC or TFC is

enabled, the pds.type field MUST be RUD_CC_REQ or ROD_CC_REQ. When these types are used, the

pds.req_cc_state field is present and it carries pds.req_cc_state.ccc_id and

pds.req_cc_state.credit_target fields, as shown in section 3.6.9.1.

 393

Copyright © 2025 Ultra Ethernet ConsortiumTM. All rights reserved.

When there is a PDS Request to send by an initiator of a PDC, the PDS determines if there is an existing

PDC and/or CCC:

• A lookup is done on PDC mapping tuple as defined in the PDS.

o If there is an existing, available PDC, then the associated CCCs (one for forward direction and

one for the reverse direction) are used.

▪ AI Base implementations do not require the reverse direction CCC.

o If there is an existing PDC but the implementation chooses to create another PDC to the

same destination FEP, the CCCs from the existing PDC are used.

• If there is not an existing PDC then:

o If the PDC is RUD, a lookup is done on {destination FEP address, traffic class}.

▪ If there is a match to existing CCCs (forward direction and reverse direction), then

those CCCs are used.

▪ If there is no existing CCC, then forward- and reverse-direction CCCs are allocated.

o If the PDC is ROD, then allocate forward and reverse CCCs.

In summary, if there is an existing CCC, a new RUD PDC SHOULD use the existing CCC, and a new ROD

PDC MUST NOT use the existing CCC. If there is no CCC, then a new CCC and CCC_ID are allocated. The

CCC_ID is scoped such that a CCC_ID is unique at the source among CCCs sending to the same

destination FEP. The same CCC_ID value MAY be used for PDCs to different FEPs. Similar to PDCIDs, the

assigned CCC_IDs are locally scoped.

The CCC_ID SHOULD be used for both new requests and responses with payload larger than

Max_ACK_Data_Size. That is, there SHOULD be one common pool of shared CCCs for both semantic

requests and semantic responses with payload.

When a PDS Request arrives at the destination, which is the target of the PDC, the PDS determines if

there is an existing CCC:

• If the pds.flags.syn field is set, a PDC lookup is attempted using the pds.spdcid and ip.src_addr

FEP address:

o If the PDC is already established, the associated CCC is used.

o If the PDC has not been established, then a new PDC will be established.

▪ A lookup on {ip.src_addr, pds.ccc_id } is done to assign the CCC. This lookup

MUST be performed against both source and destination CCCs at the target of

the PDC. Lookups for source and destination CCCs are performed

independently, and allocations can occur independently.

▪ If the lookup finds a match, the PDC is associated with the existing CCC instance.

▪ If the lookup does not find a match, a new CCC is allocated.

• If pds.flags.syn is cleared, then a lookup on pds.dpdcid is done:

o On the forward direction (packets arriving at target), the pds.dpdcid field is used to find

the associated CCCs that were associated with the PDC when it was established.

 394

Copyright © 2025 Ultra Ethernet ConsortiumTM. All rights reserved.

Note that the lookup used to associate a CCC with a PDC at the destination does not include the

pds.spdcid field, meaning that multiple PDCs may share a CCC. Also, the PDC type and traffic class are

not included, as the source MUST NOT use the same CCC_ID for different CCC instances to the same

destination FEP. The traffic on a forward path of one PDC MAY share a CCC with the return path of

another PDC. This is accomplished by the lookup of both source and destination CCC state when the CCC

is associated with the PDC.

When a new PDC is established that would be associated with an existing CCC, if all the PDCs associated

with the CCC are already in the process of closing, then the source MUST NOT use the existing CCC and

instead MUST allocate a new CCC. This prevents a potential deadlock where a source has no remaining

credit to start a new PDC and no active PDC on which to request such credit.

When a new PDC is established that is associated with an existing CCC, and if that CCC has no credit and

no additional credit has been requested for that CCC, a source SHOULD send a Credit Request CP

requesting more credit. This Credit Request CP MUST be sent using any of the previously existing PDCs

associated with that CCC.

At the source, one or more PDCs from a source FEP to a destination FEP are associated with a CCC.

Credit is allocated to a CCC so that any PDC in that CCC can use that credit to send. The destination

(receiver) sends credit either in ACK packets or in Credit CPs. These ACKs or Credit CPs are sent

associated with a PDC, but the credit can be used by any PDC associated with the same CCC.

The pds.req_cc_state.credit_target field indicates the desired credit associated with the aggregate of

PDCs managed by the CCC. For example, when packets are posted to any PDC in the CCC, the

pds.req_cc_state.credit_target field is incremented by the size of those packets.

In order for the destination to maintain state on a per CCC basis, the source includes a CCC_ID in the

pds.req_cc_state.ccc_id field. The CCC_ID identifies the CCC at the destination to which this

Credit_Target should be applied. This keeps the scheduler using the credit on the source aligned with

the CCC instance allocating credit at the destination.

An RCCC CCC MUST be shut down when the last PDC using it is closed.

3.6.14.2 RCCC Source State

This section contains pseudocode describing the RCCC algorithm. Implementations are not required to

precisely follow this pseudocode but SHOULD aim to achieve the same behavior.

RCCC defines the following global constants, with the associated default values:

As with NSCC, BDP defaults to:

Informative Text:
The new PDC cannot be used to request credit until it is established, and Credit Request CPs are not
allowed to establish a PDC at the target. PDS Requests, which could establish the PDC and request
credit, cannot be sent when the CCC does not have credit.

 395

Copyright © 2025 Ultra Ethernet ConsortiumTM. All rights reserved.

BDP = min(sender.linkspeed, receiver.linkspeed) * config_base_rtt

BDP is in units of bytes, so linkspeeds above should be measured in units of bytes/second. The

destination linkspeed will typically be the same as the source linkspeed. If it is unknown, use the source’s

linkspeed.

MaxWnd = 1.5 * BDP

MaxWnd is in units of bytes.

On CCC creation, the following CCC local state is instantiated:

Table 3-79 - RCCC Source State

Name Type Default Description

ccc.credit unsigned integer MaxWnd Amount of credit currently at source for this CCC.

(units: bytes)

ccc.credit_target unsigned integer 0 Cumulative credit target source has requested

(or is about to request). Represents cumulative

credit requested since the CCC was established.

(units: bytes)

ccc.cumulative_credit unsigned integer 0 Cumulative credit value the destination has sent

to the source since the CCC was established.

ccc.credit_target_sent boolean FALSE TRUE if source has told the destination its

current credit target.

ccc.speculating boolean TRUE TRUE if the source is in the startup phase using

speculative credit.

3.6.14.3 RCCC Credit Timer

RCCC requires a credit timer at the source to cover a corner case where credit packets can be lost. When

a sender enters an active state — that is, it has no credit available but has data to send — it starts a

timer with a timeout equal to the retransmit timeout. When the timer expires, the

RCCC.OnSourceCreditTimer() pseudocode is executed.

3.6.14.4 RCCC Source Algorithm

The RCCC algorithm processes the CCC API events as follows:

RCCC.OnACK():

#A PDC is always present if we received an ACK

RCCC.stopSpeculating(pdc_present=TRUE)

RCCC.OnNACK(pdc_present):

RCCC.stopSpeculating(pdc_present)

 396

Copyright © 2025 Ultra Ethernet ConsortiumTM. All rights reserved.

#waiting_rtx will have changed, so the pull target will have changed

ccc.credit_target = computeCreditTarget()

ccc.credit_target_sent = FALSE

RCCC.OnInferredLoss(pdc_present):

RCCC.stopSpeculating(pdc_present)

ccc.credit_target = computeCreditTarget()

ccc.credit_target_sent = FALSE

RCCC.OnSend(nominal_pktsize):

ccc.credit –= nominal_pktsize

ccc.credit_target_sent = TRUE

RCCC.OnCreditUpdate(Credit)

#A PDC is always present when receiving a credit update

RCCC.stopSpeculating(pdc_present=TRUE)

if Credit > ccc.cumulative_credit:

ccc.credit += (Credit - ccc.cumulative_credit) << 8

ccc.cumulative_credit = Credit

update_state()

RCCC.OnNewData():

ccc.credit_target_sent = FALSE

RCCC.CanSend():

if ccc.credit > 0:

return TRUE

if ccc.credit_target_sent = FALSE

 or (ccc.credit_target_sent = TRUE

 and computeCreditTarget()> ccc.credit_target):

#insufficient credit available and destination does not

#know about our backlog

ccc.credit_target = computeCreditTarget()

#send Credit Request CP requesting credit.

send_credit_request(ccc.credit_target)

ccc.credit_target_sent = TRUE

return FALSE

 397

Copyright © 2025 Ultra Ethernet ConsortiumTM. All rights reserved.

RCCC.stopSpeculating(pdc_present):

if ccc.speculating:

ccc.speculating = FALSE

if ccc.credit > 0:

ccc.credit = 0

#If no PDC is present, preserve an MTU of credit because

#we have to do something to establish the PDC

if pdc_present == FALSE

 ccc.credit = MTU

RCCC.computeCreditTarget():

#if nscc is not used, both ccc.max_wnd and ccc.cwnd will be MaxWnd

#in this calculation

delta = min(ccc.backlog + ccc.rtx_backlog, ccc.max_wnd, ccc.cwnd + mtu)

– ccc.credit

if (ccc.speculating and delta < mtu)

delta = mtu;

return (ccc.cumulative_credit + (delta >> 8))

RCCC.OnSourceCreditTimer():

#either we don’t have any work to do, we have pending packets which

#will trigger timeouts or we already have credit.

if ccc.state != READY:

 return

 RCCC.stopSpeculating()

 send_credit_request(ccc.credit_target)

 ccc.credit_target_sent = TRUE

3.6.14.5 RCCC Destination State

A “sender” as referenced in sections 3.6.14.5.1 and 3.6.14.5.2 is associated with a sending FEP and an

associated CCC_ID (section 3.6.14.1). All PDCs from the same source associated with the same CCC are

mapped to the same sender in the pseudocode below. If more than one CCC is established from the

same sending FEP (as indicated by CCD_ID), then these CCCs correspond to separate senders.

3.6.14.5.1 RCCC Global Destination State

On FEP initialization, the following state is established:

 398

Copyright © 2025 Ultra Ethernet ConsortiumTM. All rights reserved.

Table 3-80 - RCCC Global Destination State

Name Type Default Description

active_senders List of
sources

empty This is a list of sources that have currently requested additional credit
that has not yet been satisfied.

idle_senders List of
sources

empty This is a list of sources that have not currently requested additional
credit.

credit_timer Timer unset Timer used to trigger the sending of Credit CPs.

credit_rate floating
point

1 Used to dynamically modulate the total credit rate sent by the
destination.

3.6.14.5.2 Per-Source Destination State

On CCC start (as indicated by the establishment of a PDC with a new CCC ID) the state shown in Table

3-81 is established and associated with the source.

Table 3-81 - RCCC Per-Source Destination State

Name Type Default Description

sender.cumulative_credit unsigned integer 0 The highest credit given to this source. (units:
256 bytes)

sender.credit_target unsigned integer 0 Largest value of credit_target (corresponding to
cumulative demand) from this source. (units: 256
bytes)

3.6.14.6 RCCC Destination Algorithm

On receipt of a data packet or trimmed data packet, OnRX() is performed.

OnRX(pkt):

if pkt.credit_target > sender.credit_target:

sender.credit_target = pkt.credit_target

if sender not in active_senders

 and sender.cumulative_credit < sender.credit_target:

#previously inactive source has unsatisfied demand.

#insert the source at the end of the source list

active_senders.insert_at_back(sender)

if sender in idle_senders:

idle_senders.remove(sender)

if sender not in idle_senders and sender not in active_senders:

idle_senders.add(sender)

 399

Copyright © 2025 Ultra Ethernet ConsortiumTM. All rights reserved.

OnCreditTimer() is designed to issue credit at a rate where the amount sent within a given time period

matches the amount of data the destination can receive in that time period. Typically, k is a small

constant such as four, so that each credit message allows the transmission of four MTUs of data. Smaller

values of k result in less bursty sharing of incoming capacity but require a higher volume of control

messages.

Only a single credit timer is needed per FEP13 for a traffic class to handle any number of incoming PDCs

in that traffic class at the FEP.

OnCreditTimer (once every k * MTU/linkspeed seconds):

if active_senders.size() > 0:

#round robin across active sources (other sharing strategies

#possible, not shown)

sender = active_senders.pop_front()

sender.cumulative_credit =

min(sender.credit_target, sender.cumulative_credit + k * mtu)

sendCreditControlMessage(sender, sender.cumulative_credit)

if sender.cumulative_credit < sender.credit_target:

active_senders.push_back(sender)

else:

#source has no more demand, add to idle_senders list

idle_senders.push_back(sender)

else if idle_senders.size() > 0:

#We have no active sources, send credit to idle sources to

#allow them to speculative start if needed.

sender = idle_senders.pop_front()

sender.cumulative_credit += k * mtu

sendCreditControlMessage(sender, sender.cumulative_credit)

if sender.cumulative_credit < sender.credit_target + MaxWnd:

#only send up to MaxWnd credits

idle_senders.push_back(sender)

13 Where multiple FEPs are co-located in such a way as to share CCCs, only one timer is needed per TC per group of
FEPs sharing CCCs.

 400

Copyright © 2025 Ultra Ethernet ConsortiumTM. All rights reserved.

When sending a Credit CP, the pds.payload.credit field is set to the value of sender.cumulative_credit.

3.6.14.7 Dynamic Credit Rate

The destination credit rate is typically constant in normal operations, being set to a value marginally

smaller than linkspeed (e.g., 99%). In certain cases, however, it is desirable for the destination to

dynamically reduce its total credit rate. To enable this, RCCC can modify the credit_rate global

destination variable. The range of values of credit_rate is (0,1), where 1 is the default and means that

credit is sent at (near) linkspeed. The credit rate must be lower, bounded to a value strictly larger than 0.

One case where reducing the credit rate is useful is described in section 3.6.14.7.1, but there may be

other cases where an implementation might choose to dynamically adjust the credit rate. An RCCC

destination MAY dynamically change the credit rate for any implementation-specific purpose.

3.6.14.7.1 RCCC Destination Flow Control

If a receiving FEP is unable to keep up with the arrival rate of data, a backlog of data will build at the

destination. NSCC destination flow control uses Rcv_Cwnd_Pend to modify NSCC’s cwnd, but RCCC

does not use this mechanism.

To control the size of the backlog, an RCCC destination MAY adapt the credit_rate to reduce the arrival

rate of data from all sources. UET-CC does not mandate a specific algorithm to set credit_rate, as

destination congestion is implementation specific, but the following proportional control algorithm MAY

be used.

The max _backlog variable is set to the maximum buffer size available. The crtBacklog() function returns

the size of the current backlog of received data in bytes.

OnRx(pkt) [or periodically]:

if crtBacklog() < MaxWnd:

credit_rate = 1

else if crtBacklog() > max_backlog * 95 / 100:

credit_rate = 0.001

else

credit_rate =

 (max_backlog - crtBacklog())/(max_backlog - MaxWnd)

3.6.15 Transport Flow Control (TFC)

Transport Flow Control is provided to allow a destination to control the amount of data transmitted

from one or more sources. TFC uses a point-to-point credit mechanism, with the destination allocating

credit and the source consuming credit. A source MUST NOT transmit a packet if it does not have credit.

 401

Copyright © 2025 Ultra Ethernet ConsortiumTM. All rights reserved.

For the purposes of transmission of credit from the destination to the source, TFC is aligned with the

RCCC credit mechanism and uses the same header fields. It uses a 24-bit pds.credit field that is carried

from the destination to the source in either PDS Credit CPs or using the pds.cc_type=CC_CREDIT header

in PDS acknowledgements. When using pds.cc_type=CC_CREDIT with TFC, pds.ooo_count MUST be set

to 0xFFFF, indicating the field is invalid and pds.ooo_count MUST be ignored on receipt.

As with RCCC, the pds.credit field is a monotonically increasing number that wraps at its maximum

value. An increase in the value of the pds.credit field provides additional credit to the source. This is

used to provide tolerance to packet loss. A single bit in the pds.credit field represents 256 bytes of

credit. When a Credit CP or an ACK conveying credit arrives at the source, the source’s state is updated

in a similar way to RCCC:

TFC.OnCreditUpdate(Credit):

if Credit > ccc.cumulative_credit:

ccc.credit += (Credit - ccc.cumulative_credit) >> 8

ccc.cumulative_credit = Credit

As with RCCC, the source is permitted to send if ccc.credit > 0. Note that being able to send is not

dependent on packet size, so if ccc.credit is greater than zero, the destination MUST be able to accept an

MTU-sized packet.

TFC differs from RCCC credit in that a TFC source can retransmit without using credit. The rationale for

this difference is that the role of TFC credit is to prevent the source from sending data that the

destination cannot buffer, whereas the role of RCCC is to manage network bandwidth. With TFC, a

packet can be safely retransmitted without needing additional credit because the corresponding buffer

at the destination must have already been allocated for the original packet.

Note that retransmission at the PDC level is conceptually separate from any retransmission that may

occur at the link level using link-layer retry (LLR).

Because TFC controls access to receive buffers, different destinations may have different requirements

when it comes to buffer management. Some destinations may allocate buffers for entire MTU-sized

packets, so the transmission of a packet must then consume an MTU of credit. Other destinations may

allocate buffers in cells, whereby the arrival of a smaller packet will consume fewer cells than the arrival

of a larger packet.

To accommodate different buffer allocation strategies, the approach taken by TFC is to allow the

destination to manage a receive buffer as a number of “cells,” where each cell is of size

tfc_dest_cell_size. As credit is allocated in units of 256 bytes, a range of cell sizes from 256 bytes to 9 KB,

in multiples of 256 bytes, MUST be supported. The tfc_dest_cell_size variable defaults to 256 bytes, the

same as a unit of credit. When the source transmits a packet, the number of cells required to store the

packet is calculated, and hence the number of bytes of credit consumed, credit_used, is calculated.

A TFC source can send if TFC.CanSend() returns TRUE:

TFC.CanSend(rtx):

 402

Copyright © 2025 Ultra Ethernet ConsortiumTM. All rights reserved.

if rtx or ccc.credit > 0:

return TRUE

 else

return FALSE

Sending a packet reduces ccc.credit as follows:

TFC.OnSend(credit_used, rtx):

if rtx == FALSE:

ccc.credit –= credit_used

In CanSend() and OnSend(), rtx indicates whether the packet is a retransmission. Retransmissions do

not require credit to send and do not consume credit when sending.

Because it may be possible for packet sizes to change in transit, and as destinations may wish to store

additional data along with an arriving packet, tfc_pkt_size is defined as the UET payload size +

tfc_pkt_overhead bytes. The source and destination must use the same value of the constant

tfc_pkt_overhead. Constant tfc_pkt_overhead defaults to 256 bytes, the same as one unit of credit. It is

RECOMMENDED that tfc_pkt_overhead is configurable between 0 and 256 bytes, but an

implementation MAY use a constant size of 256 bytes — in which case a destination may need to

allocate additional buffering if larger encapsulations are used.

The tfc_pkt_overhead parameter is intended to cover any additional memory required at the destination

to store the arriving packet. This may include space to store the Ethernet, IP, UDP, and SES headers; FCS;

and any additional metadata the destination may store along with the packet. The destination MUST be

able to store any valid arriving packet for which it has allocated credit.

TFC manages a unidirectional flow of data from a sending FEP to a receiving FEP. As the requirements

for tfc_dest_cell_size and tfc_pkt_overhead are primarily determined by the destination FEP, when

PDCs are established in both directions between a pair of FEPs, the values of tfc_dest_cell_size and

tfc_pkt_overhead may be different in one direction from the other.

The values of tfc_dest_cell_size and tfc_pkt_overhead cannot be modified on an active PDC. Either their

default values MUST be used, or any non-default values MUST be configured or communicated out of

band prior to data being sent on the PDC.

3.6.15.1 Examples of credit_used calculation

The values of UET payload size, tfc_dest_cell_size and tfc_pkt_overhead determine the amount of

credit required to send a packet.

For example, to send an UET payload size of 4096 bytes with a tfc_dest_cell_size set to 512 bytes and

default tfc_hdr_size, then:

tfc_dest_cell_size = 512B (configured value)

 403

Copyright © 2025 Ultra Ethernet ConsortiumTM. All rights reserved.

tfc_pkt_overhead = 256B (default value)

tfc_pkt_size = UET payload + tfc_pkt_overhead

credit_used = ROUNDUP(tfc_pkt_size/tfc_dest_cell_size)*tfc_dest_cell_size

Thus with a 4096 byte UET payload, tfc_pkt_size is 4096 + 256 = 4352 bytes.

Sending a tfc_pkt_size of 4352 bytes requires 4352/512 = 8.5 cells; rounded up this requires 9 cells, and

so credit_used = 4608 bytes.

Alternately, a destination may wish to maintain data structures for packet buffers on a per-packet basis.

In such a case, tfc_dest_cell_size would be set to the maximum value of 9216 bytes. Sending the same 4

KB packet would use the same tfc_pkt_size of 4352 bytes, but this would require only one 9126-byte

cell. The credit_used would then be 9216 bytes. Such a destination would then allocate n * 9216 bytes

of credit for n packet buffers.

3.6.15.2 TFC Credit Initialization

When a TFC PDC is created, the ccc.credit value MUST be set to tfc_pkt_overhead or a larger configured

value, but it cannot be less than tfc_pkt_overhead. The intent of setting the initial credit to

tfc_pkt_overhead is to permit the source to send an SES NO_OP packet that contains a credit request in

the pds.req_cc_state.credit_target field, allowing the source to request enough additional credit to

send data. If an implementation reports a tfc_pkt_overhead of 0, a larger configured value should be

used. The rationale for using an SES NO_OP instead of a Credit Request CP to request initial credit is that

an SES NO_OP can bring up a PDC, whereas a Credit Request CP cannot. The ACK for the SES NO_OP may

carry the available credit, or a separate Credit CP may be used.

Once a PDC is established, if more credit is required than initially requested, the source can convey this

to the destination using the pds.req_cc_state field in PDS Request packets or the pds.payload field in

Credit Request CPs. The pds.payload field and Credit Request CP is used in the same way as RCCC. It

carries a pds.payload.ccc_id to identify the CCC context at the source and a pds.payload.credit_target

field, which carries the cumulative amount of credit requested since the CCC was created.

As with RCCC, multiple TFC PDCs may be controlled by the same CCC, or each PDC may be given its own

CCC. It is RECOMMENDED that the decision to share a TFC CCC between PDCs be a configurable option.

When a CCC controls multiple PDCs, credit allocated to one of the PDCs controlled by the CCC may be

used by any of the PDCs controlled by the CCC.

The source controls whether multiple PDCs share a CCC. The PDS Request header carries the

pds.req_cc_state.ccc_id field. If multiple PDCs between a pair of FEPs are assigned the same CCC_ID,

then the destination MUST associate these PDCs with the same CCC. If different CCC_IDs are used, then

the PDCs MUST be associated with independent CCC instances.

 404

Copyright © 2025 Ultra Ethernet ConsortiumTM. All rights reserved.

3.6.15.3 TFC CCC Shutdown

When the last PDC sharing a TFC CCC is shut down, the CCC is also shut down. Any credit allocated for

the CCC is no longer usable by the source to send new data, and any buffers at the destination reserved

for the use of that credit may be freed for other uses.

At the source, a CCC MUST NOT be reused for a new PDC after the last PDC using that CCC has entered

the QUIESCE state in the Single PDC Close State Machine of Figure 3-44. This procedure prevents a

potential race where the destination thinks the last PDC using a CCC has been shut down and frees

buffers, but the source attempts to start a new PDC using that CCC.

3.6.15.4 TFC CCC Credit Timer

Like RCCC, TFC CCC requires a credit timer at the source to cover a corner case where packets containing

credit can be lost. When a sender enters an active state — that is, it has no credit available, but has data

to send — it starts a timer with a timeout equal to the retransmit timeout. When the timer expires, the

TFC.OnSourceCreditTimer() pseudocode is executed.

TFC.OnSourceCreditTimer():

#either we don’t have any work to do, we have pending packets which

#will trigger timeouts or we already have credit.

if ccc.state != READY:

 return

 send_credit_request(ccc.credit_target)

3.6.16 Multipath Path Selection

This section describes the path selection algorithms used to load-balance the network. It is

RECOMMENDED that a UET endpoint performs multipath load balancing for RUD and RUDI traffic, but

the choice of precise implementation is left to implementations.

The protocol relies on multipath forwarding to distribute packets from flows across multiple network

paths. With the exception of the single-path ROD service, packet spraying is typically done using per-

packet ECMP, which uses hashing of network header fields to spray packets across many paths. This

approach can achieve higher throughput and lower flow completion times than what can be achieved by

a single path.

Some network switches can perform packet spraying themselves, rather than hashing the header fields

to determine the path. It is RECOMMENDED that such behavior not be enabled for UET traffic if path-

aware multipath spraying (section 3.6.16.4) is used, as it prevents UET getting a clean signal as to which

paths are congested.

Despite attempts to evenly distribute the traffic, some path-specific congestion is likely to occur.

Hashing is not guaranteed to spread the packets evenly. The presence of other traffic that is not sprayed

may impact available bandwidth on some paths. In addition, failures may render a path unavailable.

 405

Copyright © 2025 Ultra Ethernet ConsortiumTM. All rights reserved.

Improved throughput and reduced flow completion times can be achieved if the sources actively

balance traffic.

3.6.16.1 Path Entropy

When packet spraying is employed, packets are sprayed across multiple paths by varying the value of an

entropy field that carries the Entropy value (EV) in packet headers (see section 3.6.10.1). The entropy

field is used by switches to determine which ECMP path each packet takes to the destination.

Three modes of operation are permitted:

• Single path (used only by ROD). All packets in a CCC use the same EV for some period of time,

before the EV is changed.

• Oblivious spraying. The packets of a CCC are sprayed across many paths by changing the EV

through a large space (typically at least 256 values). EVs are chosen pseudo-randomly with the

goal of spreading traffic evenly across all possible paths.

• Path-aware spraying. The packets of a CCC are sprayed across many paths by adaptively

changing the EV to avoid congested paths, based on feedback provided by the destination as to

which EVs saw congestion.

3.6.16.2 Single-Path Entropy

At PDC startup, the reliability module generates an AllocateCCC() event with sprayed=FALSE. The CCC

chooses an entropy value to use for the packets of the flow. To ensure that, in the absence of route

changes or packet loss, packets arrive in order, only a single entropy value is used at one time for this

CCC.

If network congestion is observed and it is determined that the congestion is not occurring at the final

link to the destination (which cannot be avoided by re-routing), then the CCC MAY change the entropy

value it uses. To minimize the impact of reordering and any potential retransmission, it is

RECOMMENDED that the CCC either change the entropy value when the flow has become idle, or if

there is no idle period, that it does not change the entropy value more often than every t_reroute RTTs.

How long a flow should be idle before changing entropy value is a configuration choice. It is safe to

switch whenever there are no packets in transit, but such a conservative choice will not necessarily lead

to improved performance. It is RECOMMENDED that the default value of t_reroute be set to at least 10

RTTs and that this value be configurable.

When more than one single-path PDC exists between a source and destination, PDS should request the

allocation of different CCCs for them. The different CCCs between the same pair of FEPs SHOULD

coordinate to allocate different entropy values to reduce the frequency that CCCs use the same single

path.

Informative Text:

The motivation for using different but coordinated CCCs is to reduce the impact of flow collisions. A

flow collision on one PDC is unlikely to affect another PDC if they use different EVs, and congestion

 406

Copyright © 2025 Ultra Ethernet ConsortiumTM. All rights reserved.

state from one single-path EV is not a good predictor of available capacity using a different single-

path EV.

3.6.16.3 Oblivious Multipath Spraying

The source maintains a space of entropy values to use for the CCC, but it does not keep information

about which entropy values are less congested than others. A typical size for the entropy space is 256

values, but other sized spaces MAY be used. The source SHOULD use entropy values from the entropy

space in a pseudo-random order, with the goal being to use all the entropy values once before

repeating. It is beneficial for each source to independently re-randomize the pseudo-random sequence

periodically to reduce the probability of multiple sources synchronizing on sequences that hash to

similar path sequences.

How the source chooses a pseudo-random sequence is implementation defined. A simple modular

counter, while not pseudo-random, suffices for protocol interoperability and so is permitted, but it relies

on switch ECMP hash functions to provide pseudo-random load balancing. This may be sufficient in

many deployments. If so, the counter SHOULD be initialized randomly to avoid synchronization.

Oblivious spraying is most effective when combined with packet trimming. With packet trimming, on

congestive loss, the source will receive a NACK quickly from the destination and will retransmit the

packet as soon as congestion control permits. The retransmitted packet will, with high probability, take a

different path. The use of a relatively low trimming threshold of around one BDP prevents queues

growing unnecessarily large, and as trimmed packets use little capacity at the congestion bottleneck and

elicit fast retransmissions on a different path, oblivious spraying with trimming can do a good job of

actively load balancing the network.

Oblivious spraying without packet trimming is discouraged, as it will result in load balancing that is less

even than path-aware spraying. However, in a network without packet trimming, a source MAY choose

to employ oblivious spraying if it cannot hold enough per-path state.

3.6.16.4 Path-aware Multipath Spraying

As with oblivious spraying, the source maintains a space of entropy values to use for the CCC and uses

those entropy values in a pseudo-random order. The size of this space SHOULD be chosen adaptively so

that each value used can be considered for reuse within less than two RTTs. This approach is to ensure

that load balancing is not responding to out-of-date path congestion information.

In reverse-direction ACK and NACK packets, the destination feeds back the Entropy from the received

packet together with the pds.flags.m (“marked”) flag that indicates that this path experienced

congestion. The pds.flags.m is set when the arriving packet that triggers an ACK or NACK has the

ip.ecn.ce bit set.

The destination MAY use other forms of telemetry to determine whether a path is congested.

 407

Copyright © 2025 Ultra Ethernet ConsortiumTM. All rights reserved.

On receipt of an ACK or NACK packet with the pds.flags.m flag set, the source SHOULD ensure that the

indicated Entropy is not reused for at least one round-trip time. An exception is when ACKs or NACKs

indicate that the majority of paths are congested. Under such circumstances, the load balancing signal

has become saturated, and skipping paths will no longer be effective. The fraction of paths that must be

congested before the destination decides the load balancing signal is saturated SHOULD be a

configuration option. A reasonable default value for this configuration option is 50% of paths congested.

This value is a tradeoff: It is undesirable to reduce the entropy pool unnecessarily during network

oversubscription or incast; however, it is desirable to maintain load balancing for as long as reasonably

possible when congestion occurs.

How the source chooses to avoid reusing the path is implementation specific. For example, two possible

approaches are:

• Entropy from ACKs received that do not indicate congestion via the pds.flags.m flag can be re-

used for outgoing packets, as in REPS [12]. This self-clocking mechanism essentially stores the

Entropy values “on the wire.” If a packet is lost, the packet is not ACKed, so the Entropy is not

reused; similarly, if the packet is ACKed but the pds.flags.m flag indicates congestion, then the

EV is not reused. REPS can be extended with a small local circular buffer (significantly smaller

than the supported EV space, e.g., eight values) to cache good entropies. These entropy values

are then consumed when sending out data packets. If an outgoing packet requires an EV but the

buffer is empty, a new (random) EV can be used.

• Maintain a bitmap where each bit in the bitmap corresponds to an Entropy value used [10].

When feedback indicates a path selected by an Entropy value is congested, the corresponding

bit in the bitmap is set. The source rotates through the entropy space using values in a pseudo-

random order. When the source is choosing an EV for a packet to send, if the corresponding bit

is set, it skips that EV, clears the bit, and tries the next EV in sequence. To ensure feedback is

recent, the size of the active Entropy value space may be dynamically changed, so that

uncongested entropy values are reused within approximately two RTTs.

Combinations of these methods or other methods are also permitted. Path-aware spraying permits

more active load balancing across the paths selected by the entropy values.

3.6.16.5 Detecting and Handling Path Failure

CMS is primarily aimed at networks with switches that perform ECMP load balancing based on a hash of

the Entropy in the packet header. In such networks there is a mapping of a single path to a destination

with an Entropy value. Path-aware multipath spraying can use this mapping, together with ECN feedback

and NACKs generated due to packet trimming, to improve load balancing beyond what the switches

achieve by themselves. Most such networks will use a dynamic routing protocol to determine the ECMP

set for a destination address. When a failure occurs in such a network, it is expected that dynamic

routing will eventually remove failed paths from consideration, and so EVs that previously mapped to a

failed path will then be remapped to a working path. Such dynamic rerouting may take many round-trip

times, and all UET connections that spray across the failed path will suffer packet loss until rerouting has

taken place.

 408

Copyright © 2025 Ultra Ethernet ConsortiumTM. All rights reserved.

How UET-CC load balancing handles such transient failures is an implementation decision. For example,

if path-aware load balancing is being performed by UET-CC and packet trimming is enabled, then actual

packet loss should be relatively rare. In such circumstances, a UET-CC source might choose to avoid

reusing an EV that resulted in a timeout or SACK-based loss inference decision for some significant

period of time, long enough for routing to have reconverged. However, if trimming is not used, then

such inferred packet loss may be more common. An implementation would therefore need to take care

removing too many EVs from the entropy set it is using.

Some networks may have a static mapping of EVs to paths with no dynamic routing protocol used to

route around failures. UET-CC’s path-aware multipath spraying can be used in such networks to actively

route around failed paths by not reusing EVs that result in timeouts or SACK-based loss inference. In

such networks, such active path choice takes on greater importance, because routing will not remove

the paths from use. How to do this is again implementation dependent.

When a UET-CC endpoint does not perform path-aware multipath spraying, it is not a requirement for

the network to maintain a stable mapping between EVs and paths. In such networks, switches may

perform local load-balancing decisions on a per-packet basis. When this is being performed, UET-CC load

balancing SHOULD NOT attempt to remove from use any EVs corresponding to packet loss, as there will

not be a stable correspondence between an EV and a failed path.

3.6.16.6 Multi-port and Multi-plane Operation

UET supports multi-port NICs, and the CCC can spray traffic across multiple ports that are simultaneously

used for a single PDC. There are many ways multiple ports can be used, and not all of them are

supported by this specification. Among the possibilities are options numbered as follows:

1. Each port connects to a separate plane and uses the same FEP address. No inter-plane routing is

provided.

2. Each port connects to a separate plane and uses a different FEP address.

3. Each port connects to a single plane and uses the same FEP address. Anycast routing is used to

route packets to one of the destination ports with the same FEP address.

4. Each port connects to a single plane and uses a different FEP address.

Options 1 and 3 are supported by this specification.

In this specification, the CCC does not maintain addressing information, so multiple ports with different

addresses are not directly supported.

Option 2 is not directly supported by the CCC, but once the CCC has chosen an EV and port, an

implementation could map the destination FEP/port to an appropriate IP address using an additional

mapping table for destination IP addresses. This specification does not cover this use case.

Load balancing for option 4 requires the CCC to choose an EV/port/FEP address combination, and load-

balance between the different possible source ports and destination ports between the same pair of

FEPs. This specification does not cover this use case.

 409

Copyright © 2025 Ultra Ethernet ConsortiumTM. All rights reserved.

3.6.16.6.1 Multiple Separate Planes, One Shared FEP Address for All Ports.

This use case is option 1 listed above. UET RUD PDCs can be created between a pair of multi-port FEPs

configured in a multi-plane topology where each plane is logically or physically separate, such that a

packet sent from FEP A using its port on plane P will be received by the port at FEP B that is also on

plane P. In such cases, a single IP address is used by all the ports of each FEP. In such configurations, a

CCC can load-balance traffic between planes and within planes by spraying traffic across a range of

entropy values, where each EV is mapped to a specific outgoing port, and hence to a plane. Each EV for a

PDC is used on only one plane. UET ACK and NACK packets specify the EV from the respective data

packet, so it is unambiguous from the EV which path the feedback refers to.

Multi-port operation is supported via the GetSendParams() interface between the PDS scheduler and

the CCC.

GetSendParams(free_port_list) -> port, Entropy, Credit_Target

When GetSendParams() is called, the scheduler supplies a list of the ports that currently have spare

capacity to send a packet. There MUST be at least one free port in this list.

The CCC will choose an EV that is associated with one of the free ports in the free_port_list, performing

load balancing using ECN feedback to avoid congested paths, as in single-port operation.

3.6.16.6.2 Multi-port, Single Plane, One IP address for All Ports

This use case is option 3 above. In this case multi-port NICs are connected to a single plane, but all ports

of the same FEP share an IP address. Anycast routing can then ensure that all the ports can be part of

the ECMP set used to route packets. In such cases the CCC will choose the outgoing port (if more than

one free port is available), but the incoming port is determined by the switches hashing the EV from the

packets. From the point of view of the CCC, option 2 behaves in the same way as option 1, in that the

CCC MUST consistently map a chosen EV to a single outgoing port so that the EV in ACKs and NACKs

refer to an unambiguous path.

3.6.16.6.3 Single-port Spraying on a Multi-port NIC

An implementation MAY map a FEP to a single port on a multi-port NIC. For this specification, options 2

and 4 SHOULD be handled in this manner. In such cases, each port is visible to the application as a

separate FEP, and it is then the application’s responsibility to load-balance traffic between FEPs and

hence between ports. In this case the PDS and hence CCC are unaware that other ports exist; the CCC

SHOULD map its entire entropy space to the port managed by its PDS. The free_port_list in

GetSendParams() can then indicate only a single port, so the choice of port by the CCC is a no-op.

3.6.17 Switch Configuration for UET CC

UET-CC uses ECN both for load balancing and as the congestion signal driving NSCC. UET-CC also

optionally uses trimming for oblivious load balancing and to provide early loss indication. Thus, the

correct configuration of network switches is important for UET-CC performance.

 410

Copyright © 2025 Ultra Ethernet ConsortiumTM. All rights reserved.

Plane_BDP is defined as the bandwidth-delay product of the lowest bandwidth path between a source

and destination, measured without queuing, where the network path traverses the core of the network.

In most networks this will be:

Plane_BDP = min(sender.linkspeed, receiver.linkspeed) * config_base_rtt

For a multi-ported NIC on a multi-rail topology, the linkspeed is typically the linkspeed of a single port,

not the aggregate bandwidth of all ports.

Informative Comment

Plane_BDP may differ from the BDP value used in CCC algorithms over a multi-ported NIC in a multi-

rail topology. In this scenario, the CCC BDP value is based on the sprayed capacity across all ports in

the spraying set, but Plane_BDP considers only a single port or rail. For a single-port NIC, Plane_BDP

and BDP are the same.

UET can be used with two or three traffic classes (3.6.4.7) for each UET PDC. In the three-traffic class

case, these are:

• Low priority (TC_low)

Queue setting for this TC is referred to as queue_low.

• Medium priority (TC_med)

Queue setting for this TC is referred to as queue_med.

• High priority (TC_high)

Queue setting for this TC is referred to as queue_high.

• When two traffic classes are used, the medium priority TC (TC_med) will not be used.

The RECOMMENDED default settings for ECN when using probabilistic marking are:

queue_low.min_thresh = 0.2 * Plane_BDP

queue_low.max_thresh = 0.8 * Plane_BDP

ECN can also be set using a deterministic marking threshold. The recommended deterministic ECN

marking threshold is 0.5 * Plane_BDP. In general, probabilistic marking is preferred.

ECN SHOULD be disabled for queue_med and queue_high.

When trimming is enabled, the RECOMMENDED default settings are:

 411

Copyright © 2025 Ultra Ethernet ConsortiumTM. All rights reserved.

queue_low.trim_threshold = Plane_BDP

queue_med.drop_threshold = Plane_BDP

queue_high.drop_threshold = Plane_BDP

If the DSCP_TRIMMABLE_RTX codepoint is used to protect retransmitted packets, the

queue_low.trim_threshold for these packets is RECOMMENDED to be 1.5 * Plane_BDP.

In the absence of trimming, the UET congestion management algorithm supports widely deployed

shared switch buffer architectures. Although the algorithm is capable of handling highly variable

latencies caused by the shared buffer, it is recommended to bound the tail drop threshold. The

RECOMMENDED drop threshold for a given queue should be at least 2 * Plane_BDP and at most

5 * Plane_BDP.

Rather than using strict priority, a deployment MAY choose to use the same priority for queue_med and

queue_low, but instead use weighted round robin or a similar scheduling scheme to ensure that when

the trim rate is high, queue_med gets a large share of the bandwidth. In such cases a reasonable default

is for queue_med to be weighted to receive 75% of the capacity when competing with queue_low.

Informative Text:

These queue threshold settings are based on simulated results to date. Lower drop thresholds may

lead to additional loss of high-priority traffic. Additional tuning of deployed implementations may be

required.

 412

Copyright © 2025 Ultra Ethernet ConsortiumTM. All rights reserved.

3.7 Transport Security Sublayer (TSS)

This section defines an optional method of end-to-end confidentiality, integrity, and basic service

protection for UET. The extent of this security solution is FEP to FEP. Mapping from the FEP to other

security infrastructure (e.g., OCP SIOV, PCIe SRIOV, or CXL/PCIe TDISP) within the node is out of scope of

this document. The specification has been inspired by sRDMA [33] and ReDMArk [3] and adopts some of

their approaches in order to allow efficient prevention of all documented attacks. In addition, this

specification borrows heavily from PSP, IPSec, and MACSec specifications.

3.7.1 Introduction

Many good choices exist for transport security. However, having a large number of dynamic endpoints

makes traditional point-to-point encryption protocols (e.g., TLS, IPsec) difficult to deploy due to the

large session state (keys) required. In addition, the ephemeral nature of the PDS layer creates issues in

using a connection-oriented protocol. Google’s PSP [34] is a new protocol that makes a number of

simplifications with respect to IPsec. One of PSP’s key simplifications is utilizing a key derivation function

(KDF) to derive per-security association keys from a single, receiver-based, primary key. This reduces the

amount of key storage required at the receiver. However, it still requires a key exchange and storage for

each connection at the sender. The Transport Security Sublayer (TSS) described here addresses this

problem for large-scale HPC or AI/ML deployments with a large number of endpoints. One of the key

reasons for this secure protocol definition is to solve the transmitter state scaling issue and provide an

efficient mapping to the UET.

3.7.2 Security Model

3.7.2.1 Trust Model

A ”zero trust” security architecture is used. This implies an end-to-end solution where elements of the

transport network (e.g., switches) are not trusted. For purposes of this standard, a portion of the FEP

hardware responsible for the transport security processing is trusted and MUST form the trust anchor

for the solution.

3.7.2.2 Threat Model

The threat model describes attacker tools, threats, and mitigations of in-scope threats.

Table 3-82 - Threat Model Definitions

Term Definition

Attacker Entity that wants to extract information from a communication or modify

communicated data.

Ciphertext The packet data containing the encrypted plaintext that is sent on the wire

between sender and receiver.

Information Data or properties of the data exchanged between two participants that would

allow the attacker to take or cause an adverse action. Examples include

cryptographic keys, decisions of the FEP processing, etc.

Intermediary/switch An entity that routes or forwards packets to a receiver.

 413

Copyright © 2025 Ultra Ethernet ConsortiumTM. All rights reserved.

Term Definition

Plaintext The original data that needs to be encrypted by the sender before transmission and

the resulting data after it is decrypted by the receiver.

Protocol secrets UET secrets that are protected from users of the protocol and/or attackers to

maintain the trusted connection.

Side channel A method for an attacker to extract information without the knowledge of the

sender or receiver.

Threat Damage or danger that could expose protocol secrets, allow the leaking of packet

data, or degrade the integrity of the network.

Threat mitigation How TSS specifically addresses the possible threat.

In-scope threat Threat that is explicitly addressed by TSS and has defined mitigations.

Out-of-scope threat A threat that is not considered or addressed in this specification.

Trusted entity Portion of the FEP entrusted to handle key material and perform cryptographic

functions.

Privileged entity A portion of the FEP and kernel driver that is responsible for assigning transport-

critical information such as JobID and security context.

User entity User application that uses a UET transport service

Table 3-83 describes the various mechanisms available to the attacker. On-path attacks are where the

attacker is inserted in line between the sender and receiver. Off-path attacks describe the case where

the attacker within the network uses networking infrastructure (mirror, etc.) to observe and inject

traffic.

Table 3-83 - Tools Available to Attacker

Attack Tool Type of Attack Purpose

Arbitrary network packet
insertion

• Chosen ciphertext Purpose is to cause protocol faults or
misplacement of data. In-line and off-path
insertion is in scope.

Arbitrary network packet
deletion

• Chosen ciphertext Deletion of packets on path.

Arbitrary network packet
replication

• Replay attack Replication of packets on and off path.

Arbitrary network packet
modification

• Chosen ciphertext at
application layer (user)

Modification of packets on and off path.

Arbitrary privilege injection
packet modification

• Chosen ciphertext at
driver/privilege layer (user)

Compromise of privileged portions of
driver/FEP is out of scope.

Arbitrary application
insertion

• Chosen plaintext

• Performed at application layer

Purpose is to cause protocol faults or
misplacement of data.

Observe (snoop) traffic • Performed at any location
within the network or endpoint
outside of the privilege and/or
trusted portion of the FEP

Observe application patterns between
sender and receiver to obtain information
about higher layer protocols.
Collection of data for off-line data
analysis.

Arbitrary timing attacks • Chosen cipher or plaintext

• Packet can be inserted at a
specific time or sent by brute
force to achieve desired timing

Observe application patterns between
sender and receiver to obtain information
about higher layer protocols.

 414

Copyright © 2025 Ultra Ethernet ConsortiumTM. All rights reserved.

3.7.2.2.1 Security Assumptions

The threat model is based on the following assumptions:

• There are no errors in the implementation of the UET protocol, regardless of whether it is
implemented in hardware, software, or firmware. This implies that the attacker cannot be inside
the protocol.

• The protocol MUST authenticate all portions of the packet including authenticated data and
encrypted payload data that is used in the security solution.

• The protocol MUST encrypt all payload data portions of the packet.

• The protocol MUST maintain data separation between secure domains.

• The protocol MUST maintain data separation between clients in a client-server model.

• An implementation of the UET protocol MUST NOT disclose protocol secrets to users of the
protocol and/or an attacker. FEPs MUST have a secure location in which to store and/or retain
this information.

• The protocol cannot defend against an attacker from within the trusted portion of the FEP. An
attacker in the FEP can use the protocol but is constrained by the requirements of this threat
model.

• Other than the trusted entities within a FEP, the UE network and network elements such as
switches are untrusted.

• Attestation, authentication of each FEP, and key generation/distribution/refresh are
implementation specific and are considered out of scope.

• Critical transport parameters (JobID, security context, etc.) are assigned by an uncompromised
privileged entity.

• Congestion information (ECN, trimmed packets, etc.) from the switches is not authenticated and
is therefore assumed to be untrusted.

Table 3-84 - Threats and Mitigations

Threat from Attacker Threat Mitigation

Extracting protocol secrets
(keys, etc.)

Minimize the amount of packet information that is unencrypted to minimize
the attack surface.
• Ensure protocol secrets are not contained in unencrypted information

regions.
• Ensure that IV is not reused (nonce) in AEAD cipher.

• Ensure the key invocation limit for AEAD cipher is not violated.

Arbitrarily insert traffic into
the network outside of the
endpoint as a manipulator-in
the-middle

• Reliable ordered delivery (ROD) and reliable unordered delivery (RUD)
utilize the packet sequence number (PSN) to detect packet insertion,
removal, out-of-order packets, and packet replay. Connection replay is
protected using a secure Start_PSN as described in the UET PDS
specification.

• Reliable unordered delivery for idempotent operations (RUDI) packet
insertion is inherently vulnerable to replay. Packet removal and replay
detection is implementation-defined.

• Unreliable unordered delivery (UUD) requires a higher-level application to
implement packet insertion, removal, and replay detection and is out of
scope for UET.

Arbitrarily replay legitimate
traffic over the network
outside of the endpoint as a
manipulator-in the-middle

Arbitrarily remove traffic from
the network outside of the
endpoint as a manipulator-in
the-middle

 415

Copyright © 2025 Ultra Ethernet ConsortiumTM. All rights reserved.

Threat from Attacker Threat Mitigation

Arbitrarily modify existing
traffic in the network outside
of the endpoint as a
manipulator-in the-middle

• The packet data including encrypted payload is authenticated so any
modified data can be detected, and the packet is dropped and reported
when it fails authentication. Once a packet is authenticated, the receiver
can trust the routing information it contains and verify it is the intended
recipient of the received packet.

• Trimmed packets utilized for congestion control do not contain an ICV
since the original payload is removed when it is trimmed. This makes
them vulnerable to this attack. A trimmed packet is used only for
congestion control state and cannot open a connection or cause
misplacement or corruption of original data.

Perform timing attacks by
brute force or inserting traffic
at a particular time as a
manipulator-in the-middle

Replay of memory transactions that open a previously closed PDC is
considered a timing attack. The protocol will require the use of a secure
Start_PSN that is saved by the sender and receiver or assigned by the receiver
and is never reused for the same encryption/decryption key. Attempting to
replay the request to open a connection after the connection was closed will
result in the request being rejected and reported by the receiver since the PSN
will be invalid. PDS is required to close after 231-32K packets. This prevents
replaying across counter wraps.

Arbitrarily insert traffic into
the network at the application
layer and observe ciphertext

The protocol utilizes AES-GCM-256 encryption to make brute force discovery
of the plaintext cryptographically infeasible.

Snoop traffic at any location in
the network to derive
actionable data or information
as a side channel

• The protocol authenticates the entire packet including packet headers
used in the security protocol and encrypt all payload data.

• Side-channel attacks based on the encrypted data is considered out of
scope of the UET threat model.

• Side-channel attacks against the clear text authenticated header are also
considered out-of-scope.

Manipulation of IP DSCP • Considered out of scope since it requires trusting/authenticating the
switch function.

Connection Setup replay • Epoch-based rejection (see section 3.7.10) of old requests by TSS.

• When the PDC is created, either a random or Expected_PSN is used to set
Start_PSN (see section 3.5.8.2.1).

• Trimmed packets received by TSS cannot create a PDC.

Nonce reuse • The TSC field is constructed from a packet counter and epoch. Reuse
properties of the nonce are achieved if epoch is distributed by SDME, and
a FEP does not reuse epoch if it cannot be stored across reboot.

Nonce hiding • Additional random IVMask or IVMask from KDF is XORed with IV before
being presented to the cipher engine.

Unreliable transport
considerations

• A PDC is torn down if the number of authentication failures is above a
threshold.

• IV is obfuscated using IVMask.

PDS PSN re-use (wrapping) • Timing attack using an old packet sequence number to replay the packet
data.

• Mitigation: Tear down the PDC after reaching
Start_PSN+Limit_PSN_Range.

PDC/SES/CMS resource
exhaustion

• Upper layers have limited resources that could be consumed for a denial
of service.

• Mitigation: A FEP SHOULD limit resources per source FEP.

 416

Copyright © 2025 Ultra Ethernet ConsortiumTM. All rights reserved.

3.7.2.3 Endpoint Considerations

A portion of the FEP is assumed to be trusted. TSS terminates within the trusted portion of the FEP. The

mechanism for establishing trust to this trusted component is implementation dependent.

Implementation Note:

The security of the FEP is complex and highly dependent upon the customer requirements and vendor

implementations. Vendors are encouraged to implement DPA counter measures or other techniques

to reduce the attack surface to the cryptographic implementations. In addition, cryptographic

hardware SHOULD be implemented in accordance with industry best practices and certified by third-

party testing programs (e.g., NIST’s CAVP program).

3.7.2.4 Switch Considerations

The switch is not a trusted entity from an end-point security perspective. The following sections describe

a few security considerations for the switch.

3.7.2.4.1 Quality of Service/Congestion Marking

The IP differentiated services code point (DSCP) and explicit congestion notification (ECN) are used by

UET congestion control to improve performance. Both fields are carried in the IPv4 TOS and IPv6 Traffic

Class fields. Tampering or misconfiguration of these parameters can impede packet delivery and might

cause a DoS condition. Without authentication of the ECN/DSCP header fields these changes are

undetectable at the FEP, and both are considered out of scope of the trust model.

3.7.2.4.2 Packet Trimming Congestion Signal

Packet trimming is an optional UE feature. During congestion the header portion of a packet is trimmed

and forwarded to the receiver to be used by UET as a congestion signal and to trigger a retransmission.

A trimmed packet allows the receiver to gain additional information and affords rapid handling of

retransmission. The process of trimming packets prevents authentication since portions of the packet

are removed including the authentication tag. However, it is possible to decrypt trimmed packets under

some circumstances and cryptographic algorithms. An implementation MAY use this decrypted

information (e.g., PDS headers) for congestion control or loss detection.

An attacker could modify portions of the ciphertext, including the UET header, to perform an oracle

attack. The results of the attack can affect only congestion control/packet replay state and MUST NOT

affect data placement or integrity/authentication. This is the same threat model as the ECN (explicit

congestion notification) described in section 3.7.2.4.1.

Details of the trimming feature are covered in the UE trimming specification 4.1.

3.7.2.5 TSS Logical Interfaces [informative]

This section contains non-normative text that describes example PDS-TSS and TSS-Link interfaces from a

logical perspective to illustrate the information that crosses the interface. The interfaces between these

sublayers are implementation specific.

 417

Copyright © 2025 Ultra Ethernet ConsortiumTM. All rights reserved.

The TSS is responsible for authentication of the packet within the secure domain. It relies on information

provided by the link layer and PDS as well as local state (SDKDB).

Before packets are sent to the TSS from either the PDS or the link layer, the following steps MUST be

complete:

• SDKDB is configured for active secure domains.

• Global parameters configured (e.g., Rekey_Mask).

• Required initialization and configuration of cipher hardware (KDF, AES, etc.).

Figure 3-102 summarizes an example PDS-TSS interface using C function signatures. This example is

presented to provide a framework for better understanding the overall architecture but does use some

terminology that is not introduced until subsequent sections.

3.7.2.5.1 PDS – TSS Interface

The following text defines logical structures passed between the PDS and TSS. The associated example

function calls are listed in Table 3-27.

Figure 3-102 - Example PDS-TSS-Link Logical Interface

 418

Copyright © 2025 Ultra Ethernet ConsortiumTM. All rights reserved.

PDS - TSS

uint32_t sdi_idx # index into SDKDB database

uint32_t src_ssi # secure source identifier, optionally valid

 # depending on ssi-mode

uint32_t dest_ssi # SSI for destination, needed for kdf server mode

 # when source SSI is not used

uint16_t pkt_len # packet length in bytes including headers,

 # excluding TSS headers

unit8_t port_num # port number identifying port to transmit packet

uint16_t tx_pkt_handle # locally assigned packet handle, used to

 # associate TSS tx result with tx_pkt

void *pkt # ptr to packet that includes SES & PDS headers

 # as well as all UDP/IP/ETH headers

uint16_t tx_tss_resp # response back to PDS indicating success/fail

 # on transmit path

boolean rx_auth # if set, the TSS authenticated the received

 # packet and it was mapped to a secure domain

uint8_t tss_err # if non-zero, indicates TSS error type

uint8_t link_err # if non-zero, indicates link error event type

boolean tx_bypass # if set, TSS does not encap or process packet

SDME - TSS

struct sdi_param *sdi_info # security parameters, e.g., see Table 3-88

struct sdki # SDKi key

unit8_t select_an # selects either SDKiAN0 or SDKiAN1

Table 3-85 - Example Functions between PDS/SDME and TSS

Function Name Direction Description and Parameters

tx_pkt()

PDS to TSS

Packet generated by SES, passed from PDS to TSS to be
processed, encrypted, and transmitted.

{sdi_idx, src_ssi, dest_ssi, pkt_len, port_num, tx_pkt_handle,

*pkt, tx_bypass}

tx_tss_ack() TSS to PDS TSS letting PDS know if the processing was successful

 {tx_pkt_handle, tx_tss_resp}

rx_pkt() TSS to PDS Packet arrived from network, passed to TSS to be processed,
decrypted, and passed to PDS

 {port_num, *pkt, auth, pkt_len}

In this example, the SDI from the packet is mapped to a local
index for efficiency in fetching SDI params

set_sdkdb() SDME to TSS SDME programming an SDKDB entry

{sdi_idx, *sdi_info}

get_ sdkdb() SDME to TSS SDME fetching a current SDKDB entry

{sdi_idx, *sdi_info}

rotate_key() SDME to TSS SDME updating the SDKDB

{sdi_idx, select_an, sdki}

tss_err() TSS to sys Generic error event in TSS, report to sys/mgmt

 419

Copyright © 2025 Ultra Ethernet ConsortiumTM. All rights reserved.

3.7.2.5.2 TSS – Link Interface

The following defines logical structures passed between the link layer and TSS. The associated example

function calls are listed in Table 3-86.

Table 3-86 - Example Functions between link layer and TSS

Function Name Direction Description and Parameters

pkt_to_link() TSS to Link Packet from TSS to link layer for transmission

{port_num, *pkt, pkt_len}

pkt_from_link() Link to TSS Packet from link layer to TSS from network

{port_num, *pkt, link_err, pkt_len}

link_err() Link to sys Generic error event in TSS, report to sys/mgmt

Implementation Note:

The TSS layer MAY drop frames based on misconfiguration or improper security parameters (e.g.,

wrong SDK, which causes an authentication failure). These packets would be never delivered from the

PDS perspective and assumed dropped. This will cause the PDS to retransmit the packet, and if

configuration is not corrected it may eventually cause the PDC to time out and be torn down. If

multiple SDIs share the same PDC resources, this timeout may affect the other SDIs that are not

misconfigured.

3.7.3 Architecture

A central concept in TSS is a secure domain, which is a collection of FEPs that can communicate with

confidentiality and authenticity guarantees with a shared secret. The secure domain is explicitly

identified independently from the source FEP using separate fields in the packets. This allows for

independent scaling of sources and domains.

The secure domain spans from the TSS layer to all FEPs within the domain. Each FEP's TSS is deemed

trusted, meaning it is sufficiently segregated from the user parts of the system and attested according to

the system's security requirements. The process of establishing a trust relationship with the TSS varies

by implementation. Cryptographic operations and the storage of key materials occur exclusively within

the TSS. From the standpoint of an application, a “service” is initiated via Libfabric APIs and linked to

addressing details {JobID, PIDonFEP, Resource Index} along with security parameters (SDI, AN, etc.).

These resources are set up and authenticated within the FEP's privileged segment and the kernel driver

framework. A binding verification in the SES layer confirms that a service adheres to its designated

secure domain. Lastly, conventional kernel isolation methods (e.g., process ID) are employed to route

packets to the user space.

TSS does not have the concept of a controlled/uncontrolled port that supports transition between

protected (encrypted/authenticated) and normal traffic. All TSS security parameters are exchanged as

part of the initialization of the service. Mixing of services with and without TSS MUST be supported

 420

Copyright © 2025 Ultra Ethernet ConsortiumTM. All rights reserved.

simultaneously. Other non-UE packets (e.g., TCP/IP) that do not use TSS services MUST be ignored and

passed along to upper layers.

3.7.3.1 Use Cases

The following section describes the common use cases considered in the development of this

specification. Other uses cases are possible but not considered and are out of scope. In these use cases,

a FEP MAY contain multiple jobs and groups of processes related to a single OS instance. Finally, a node

MAY contain one or more FEPs.

KDF modes are defined in section 3.7.7. For clarity, the possible KDF modes for each use case are

specified. The SSI MAY be carried explicitly in the frame using the SSI field or source IP address

depending upon configuration.

3.7.3.1.1 Single Job Within a Secure Domain

A single job may contain several processes across multiple nodes. An SD is created for the job, and an

SDI is assigned that is used by all FEPs that are part of that job. Note that there is no security-level

isolation between processes within the job or secure domain. All KDF modes MAY be used with this use

case.

Once all processes of the job are complete on all nodes, the SD MAY be removed.

Informative Text:

An administrator can maintain state across job runs to reduce initialization time. Figure 3-104 shows

two jobs with separate domains.

Implementation Note:

The security model requires cooperation with the SES layer and libfabric mapping. A service is

mapped to an endpoint in libfabric. The SES layer maps the endpoint to a JobID and Resource Index,

which is mapped to a security context that contains the keys and secure domain (SDI). In addition,

replay protection relies on PDS services. See section 3.4.1.3.

Figure 3-103 - TSS Architecture

 421

Copyright © 2025 Ultra Ethernet ConsortiumTM. All rights reserved.

Figure 3-104 - Single Job in a Secure Domain

3.7.3.1.2 Multiple Jobs Within Secure Domain

This use case has multiple jobs with several processes, each across multiple nodes. The jobs in this

example do not require isolation between FEPs.

A secure domain is created and assigned an SDI and used by all associated jobs within the domain. All

KDF modes MAY be used with this use case. Relative addressing SES mode is typically used in this use

case.

Figure 3-105 - Multiple Jobs in a Single SD

3.7.3.1.3 Client-Server Model

The client-server model is used when several clients communicate to the same server. In this model,

within an SD a client can decrypt packets only from the server and is prevented from decrypting other

clients’ traffic. The server uses a common key (SDKs) to derive keys for each client. This is similar to how

Node0 Node1 Node2

SD1

SD0

FEP 0

Job0 (SSI0)

Process0

Process1

FEP 1

Job1 (SSI1)

Process0

Process1

FEP 2

Job0 (SSI2)

Process0

Process1

FEP 3

Job1 (SSI3)

Process0

Process1

FEP 0 FEP 1 FEP 2

SD0

Job1 (SSI0)

Process0

Process1

Job1 (SSI1)

Process0

Process1

Job1 (SSI4)

Process0

Process1

Job0 (SSI0)

Process0

Process1

Job0 (SSI2)

Process0

Process1

 422

Copyright © 2025 Ultra Ethernet ConsortiumTM. All rights reserved.

PSP derives keys, except the SDI selects a group instead of it being global to the NIC. To reduce per-

client overhead at the server, per-client keys are not stored but derived using the server key. This is

accomplished using a combination of KDF modes at clients and server.

Like the other cases, the process starts with creating an SDI for the secure domain and unique secure

source identifiers within the domain. Unlike the other cases, each client is assigned a different key by

the server, derived from the single server group key (SDK). This implies the server is distributing keys to

the clients or that the SDME is aware of the client-server relationship. The clients use direct KDF mode

to encrypt traffic to the server. The server uses cluster KDF mode for traffic received from clients and

server KDF mode for traffic sent to clients. Client-server is asymmetric in that it uses server-mode KDF

for server-transmitted packets and cluster mode for packets received by the server.

The following example shows how two clients A and B communicate with server S in secure domain

SDI0.

Table 3-87 - Client-Server Key Generation

Case Source Key Gen Destination Key Gen Comment

A->S A: SDKDB(SDI0) -> SDKa, SSIa
JobID-A

S: SDKDB(SDI0)->SDKs, KDF(SDKs,
SSIa)->SDKa

• Direct KDF mode at A

• Cluster KDF mode at S

B->S B: SDKDB(SDI0) -> SDKb, SSIb
JobID-B

S: SDKDB(SDI0)->SDKs, KDF(SDKs,
SSIb)->SDKb

• Direct KDF mode at B

• Cluster KDF mode at S

S->A S: SDKDB(SDI0) -> SDKs, SSIs
KDF(SDKs, SSIa) -> SDKa
JobID-Srv or JobID-A

A: SDKDB(SDI0)->SDKa • Server KDF mode at S

• Direct KDF mode at A

S->B S: SDKDB(SDI0) -> SDKs, SSIs
KDF(SDKs, SSIb) -> SDKb
JobID-Srv or JobID-B

B: SDKDB(SDI0)->SDKb • Server KDF mode at S

• Direct KDF mode at B

Note:

• SDI0 is the secure domain used.

• A->S is Client A sending to Server S (similar for B)

• S->A is Server S sending to Client A (similar for B)

3.7.3.1.4 FaaS (Function-as-a-Service)

FaaS refers to Function-as-a-Service workloads such as an AI inference system where the same cluster of

accelerators might be serving different models from different tenants. This MAY be implemented using

client-server mode.

Implementation Note:

Job identifiers (JobIDs) are added to Table 3-87 for clarity but are not strictly used by TSS. In typical

deployments, clients are identified by the server using the JobID. For clients A and B, the JobIDs at the

server are JobID-A and JobID-B, respectively. The server can use either a unique server JobID (JobID-

srv) or the client’s JobID (JobID-A or JobID-B). This use case typically uses absolute addressing in the

SES layer. In addition, buffers may be exposed to specific jobs only.

 423

Copyright © 2025 Ultra Ethernet ConsortiumTM. All rights reserved.

3.7.4 Secure Domains

A secure domain is a collection of FEPs that can communicate with confidentiality and authenticity

guarantees with a shared secret. A secure domain uses a common symmetric key and optionally a KDF

to secure communication. FEPs within a secure domain MUST be assigned a unique secure source

identifier (SSI) or an IP address provided it is unique within the domain. Each secure domain MUST be

assigned a secure domain indicator (SDI) that MUST be unique within the reachable network.

Figure 3-106 shows a secure domain key (SDKx) is used for all members of the secure domain (i.e., the

figure shows direct kdf-mode). The SSIs are unique within the secure domain and assigned to FEPs 0

through 3.

Figure 3-106 - Secure Domain with Four FEPs

Secure domains are administered by a secure domain management entity (SDME). The SDME MAY

perform its responsibilities in conjunction with or be contained with other parts of the job launch

services. The communication mechanism between the SDME and the FEP is out of scope of this

specification.

A security association defines the initial secure domain key (SDKi), which is found using the secure

domain identifier (SDI) and association number (AN) along with the SDKDB.

A key epoch is used to help coordinate changing keys and ensure nonce (number used only once)

properties of the IV. This concept is different than changing the security association, which specifically

installs a new key. Changing the epoch performs two functions:

1. It changes a portion of the TSC, affecting the IV for the symmetric cipher to ensure uniqueness.

2. It MAY change the symmetric key if a KDF is used (e.g., cluster mode).

SDx

SSI2

SS
I1

SSI0
FEP0

SDKx

FEP2

SDKx

FEP1

SDKx

FEP3

SDKx

SS
I3

SDME

 424

Copyright © 2025 Ultra Ethernet ConsortiumTM. All rights reserved.

The epoch MAY be global to the SDI or based on a source within the SDI. If a FEP leaves and rejoins a

domain for any reason where the TSC cannot be preserved, the SDME MUST coordinate either an epoch

update or a key rotation operation. The epoch MUST be a monotonically increasing number for the

same association (e.g., without a key rotation). An epoch is scoped within a security association and

MUST reset when a new key is installed.

The SDME is responsible for:

• Creating secure domains and assigning SDI values.

• Managing and updating the domain or source epoch.

• Admitting new FEPs to a secure domain (allowing them to join the secure domain).

• Managing SSI assignment to FEPs (this may directly use the source IP address).

• Distributing security parameters (SDK, AN, etc.) to FEPs within the secure domain. These

parameters are used to populate global or SDKDB configuration. This may include coordinating

the client-server KDF mode key distribution.

• Removing FEPS from secure domain.

• Coordinating key rotation.

3.7.4.1 Joining a Secure Domain

When a FEP joins a secure domain, the SDME assigns an SSI and provides security parameters. Once the

FEP receives the information from the SDME, the FEP is free to send or receive packets securely. The

SDME MUST provide a mechanism to ensure every FEP in the secure domain has current security

parameters before FEPs are allowed to send.

3.7.4.2 Removing a FEP from a Secure Domain

The SDME may administratively remove a FEP from a security domain at any time. This can be

accomplished in two ways. The first method is using the key rotation procedure defined in section

3.7.5.1. The second method involves creating a new security domain without the FEP and transition the

remaining FEPS to the new domain.

3.7.4.3 Rejoining a Secure Domain

To ensure that a nonce is not reused, a FEP MUST either re-establish communication with SDME such

that the epoch can be updated or ensure that after reboot/power-failure the nonce is preserved such

that it is not reused. See section 3.7.5.5 for more details.

3.7.5 Key Lifetime and Security Considerations

The symmetric keys (SDKs) used in the block cipher can be utilized only for a limited number of packets

(invocations) before rekeying is required. Guidance on the invocation limits is described in [36] and

further analyzed in [35].

In addition, it is assumed that the input SDKi is a “cryptographic key” in accordance with NIST

specifications. This implies that the key is secret, random, and uniformly distributed through the bit

space of key.

 425

Copyright © 2025 Ultra Ethernet ConsortiumTM. All rights reserved.

Several papers analyze attacks using a fixed nonce, authenticated data, and encrypted data as outlined

in IETF RFC 9001 Appendix B [45] based on the analysis in Hoang et al. "The Multi-user Security of GCM,

Revisited: Tight Bounds for Nonce Randomization" [46] .

During the development of this standard, discussions established an agreed-upon limit between 227 and

234.5 packets, contingent on the assumptions of the security model (single vs multi-user).

IETF RFC 8645 [47] provides a framework for discussing various strategies to manage the lifetime of

symmetric keys. The Direct KDF mode utilizes an “explicit approach” per section 5.1 of the RFC. This

explicitly updates the keys using the key rotation approach described the key rotation section 3.7.5.1. All

KDF modes MUST support key rotation. Cluster mode MAY utilize an “implicit approach” specified in the

same RFC. This mode utilizes a KDF with a parallel construction. Using this approach, keys are generated

from the master key (SDKi) using a KDF based on a counter in the packet. The KDF rekeying section

3.7.5.2 provides a detailed explanation of how this counter is constructed.

Key invocations are tracked at the transmitter. The transmitter MUST not use the key beyond the

invocation limit. The number of invocations can be tracked using the TSC counter logic, which is reset to

zero when a key rotation is initiated at the transmitter.

A FEP MUST drop packets if the authentication limit has been exceeded (tss.tsc.counter

>=invokeFatalTheshold) and MUST provide an indication to the SDME if an SDI is beyond this limit.

In addition, a FEP SHOULD indicate to the SDME that an SDI is approaching this limit (tss.tsc.counter >

invokeWarnThreshold) to allow the SDME time to coordinate a transition to a new key.

3.7.5.1 Key Rotation

Key rotation is a mechanism to update the security association and thus the SDK for all FEPS within an

SD. To facilitate this transition, a receiver MUST maintain multiple keys per SD identified by the

association number (AN). Changing the association resets both the counter and epoch to zero. The

epoch is used to ensure that when FEPs join and leave an association, the uniqueness of the IV is

preserved. The counter portion of the TSC is used to manage key-lifetime and ensure the IV uniqueness.

The SDME controls when the key rotation occurs, and it MAY occur at any time. An example of when the

SDME MAY update the association is when one of the FEPs in the domain indicates it is approaching the

invocation limit (invokeWarnThreshold). When rotating keys, the following steps MUST be performed:

1. The SDME informs all FEPs in the SD to transition to a new AN.

a. The SDME MAY provide a new SDK or instructions on how to obtain/derive a new SDK

for the association.

b. The key epoch is set to 0.

2. All FEPs MUST update the SDKDB for the SDI with the new SDKi in the correct key slot (SDKiAN0

or SDKiAN1), update TxActiveAN, and set RxActiveAN to accept both keys.

3. All FEPs MUST start using the new security association (AN) for all traffic sent within the SDI.

 426

Copyright © 2025 Ultra Ethernet ConsortiumTM. All rights reserved.

a. The counter portion of the TSC is reset to zero when the first packet is sent using the

new security association.

b. Packets received during this interval MAY have the new or old AN.

4. After a transition period, the old AN MUST be deactivated by updating RxActiveAN to only

accept the new association (key). This transition period MUST be less than the key lifetime.

a. Packets received with the non-active security association (AN) after this period MUST

be silently dropped and counted (sdiXXInInvalidSa).

b. Clearing the sdixxInAuthFailPkts counter.

5. All FEPs are now using the new AN.

3.7.5.2 KDF Rekeying

Implicit rekeying SHOULD be implemented by using the counter portion of the TSC in the key derivation

function when using cluster KDF mode. Rekeying reduces the number of cryptographic operations of the

derived key but does not improve replay protection as described in section 3.7.5.

The rekey interval is defined by how many bits are used from the counter field of the TSC. The Rekey

field is created using the Rekey_Mask and Rekey_Shift from the counter portion of the TSC. This allows

extraction up to 32 bits from the tss.tsc.counter field:

Rekey = (pkt.tss.tsc.counter & Rekey_Mask) >> Rekey_Shift

Rekey MAY be disabled by setting the Rekey_Mask to zero. Once the selected portion (Rekey) of the

counter changes, the output SDK will change since it is an input to the context field of the KDF.

For example, if the Rekey_Mask = 0xFFFF_0000_0000 and the Rekey_Shift=32, every (232 -1) packets a

new key will be derived. Figure 3-107 depicts the sequence of events.

Figure 3-107 - KDF Rekeying Example

KDF

SDK

rekey=1
pkt (counter=0)
pkt (counter=1)
pkt (counter=2)

pkt (counter=max-1)

SDKo(1)

pkt (counter=0)
pkt (counter=1)
pkt (counter=2)

pkt (counter=max-1)

KDF
rekey=2

SDKo(2)

KDF
rekey=3

SDKo(3)

epoch=1

epoch=1

epoch=1

pkt (counter=0)
pkt (counter=1)
pkt (counter=2)

pkt (counter=max-1)

 427

Copyright © 2025 Ultra Ethernet ConsortiumTM. All rights reserved.

3.7.5.3 KDF Algorithms

The KDF construction is described in section 3.7.8. The implementation of the KDF relies on a PRF

(pseudo random function), which can be implemented using several algorithms (e.g., HMAC, AES-CMAC,

etc.). There are several trade-offs with respect to implementation complexity and security strength. The

default algorithm that MUST be supported is AES-CMAC-256 in counter mode. Implementations are free

to use other algorithms within the framework of the existing construction. The assumption in this

specification is that the security strength of the input key is preserved via the KDF.

Implementation Note:

This specification defines only the AES-CMAC-256 algorithm for the kdf-algo field. Identifying other

algorithms and constructions is not currently specified and if used by implementations requires a

consistent global configuration.

3.7.5.4 Symmetric Algorithms

TSS MUST use an authenticated encryption with associated data (AEAD) cryptographic algorithm, which

combines both encryption and authentication. A portion of the plaintext, referred to as additional

authentication data (AAD), is authenticated but not encrypted. An integrity check value (ICV) is carried

with the data and used as part of the authentication.

The default cipher algorithm MUST be AES-GCM [AES-GCM] with a 256-bit key and a 16B ICV selected by

the algorithm from the SDKDB.

There are several academic papers that provide an informative overview of the desired cryptographic

properties of AEAD ciphers. Specifically references [44], [49], [50], and [51] provide the terminology

used in the following sections. Additionally, the IETF Crypto (CFRG) working group is developing on an

RFC draft that also summarizes these requirements and provides additional information [39].

Because out-of-order reception is used, the integrity of the AEAD cipher also depends on limiting the

number of attempts to forge (authentication failures) packets. An FEP MUST drop ALL packets on the

domain when the sdiXXInAuthFailPkts counter exceeds the authFailThreshold, then generate an event to

the SDME.

The input key into the symmetric cipher MUST be a cryptographic key per NIST SP800-108 [40].

Implementation Note:

The AES-GCM with 256-bit key size consistent with CNSA 2.0 [37] post-quantum resistant parameters.

Other standards may use different assumptions for post-quantum resistance (e.g., NIST SP 800-131A

[38])

 428

Copyright © 2025 Ultra Ethernet ConsortiumTM. All rights reserved.

3.7.5.5 IV Considerations

AEAD ciphers treat the IV as a nonce and MUST NOT be reused for the same key (SDK). This property is

called “nonce misuse” and will be prevented by constructing the nonce from an epoch and counter per

the TSC section 3.7.5.6.

Nonce hiding provides confidentiality for the nonce value used to encrypt plaintext. This is accomplished

by creating an IVMask which MUST be XORed with the packet IV before it is sent into the cipher engine.

TSS MUST use a deterministic IV construction for AES-GCM ciphers per section 8.2 of [36]. Section 9.1 of

the AES-GCM specification [36] discusses loss of power and reboot with respect to a repeating IV. If a

FEP reboots or reinitializes, or loses power, the FEP MUST reestablish communication with the SDME to

update the epoch before sending UET traffic. Updating the epoch ensures the nonce properties of the

nonce. An FEP that can store the current TSC MAY continue using the stored IV provided the nonce

properties are preserved.

3.7.5.6 Time-stamp Counter (TSC)

The time-stamp counter is used as part of the IV for the symmetric cipher. The FEP MUST guarantee that

each packet has a strictly increasing TSC and that packets MUST never be sent with the same TSC value.

The TSC counter is a 64-bit field that MUST be constructed by concatenation of two fields:

1. A 16-bit epoch identifier that MAY be source-specific or global to the secure domain.

2. A 48-bit counter MUST be incremented for each packet sent.

The counter portion has these additional requirements:

1. The counter MUST be initialized to 0 when the epoch is started, changed, or updated.

2. If the counter wraps or is greater than invokeFatalTheshold, then all packets MUST be dropped

within the secure domain and the sdiXXOutInvokeFail counter MUST be incremented for each

failure (packet).

3.7.6 Secure Domain Key Database (SDKDB)

The secure domain is identified by the SDI carried within the packet. The maxSDI is a property of the

FEP. The baseSDI and maxSDI are configured by the SDME after collecting the maxSDI from all FEPs and

determining a compatible range of SDIs. The SDI MUST be allocated between the range of baseSDI and

(baseSDI+maxSDI-1). The FEP MUST allow placement of baseSDI between 1 and 224-maxSDI-1, ensuring

that SDIs are allocated in a contiguous range. If the SDKDB lookup fails, then the packet MUST be

discarded and counted (ifPPInErroredPkts). SDI zero MUST NOT be allocated to be consistent with IPSec

and PSP implementations.

The SDKDB lookup returns the fields shown in Table 3-88.

Table 3-88 - SDKDB Fields

Field Size/type Description

kdf-mode enum KDF mode (direct, cluster, client-server)

 429

Copyright © 2025 Ultra Ethernet ConsortiumTM. All rights reserved.

Field Size/type Description

ssi-mode boolean Determines if SSI is obtained from the TSS header or the source IP
address.

TxActiveAN 1 bit Active AN used for transmit packets

AES-GCM-256 AES-GCM-256 AES-GCM-256

algo enum Cipher mode used: Only AES-GCM-256 is defined

encap-type 2 bits Packet encapsulation used for security association
0b00 – Native IPv4
0b01 – Native IPv6
0b10 – UDP over IPv4
0b11 – UDP over IPv6

Aoff unsigned integer
(2-byte units)

An offset from the start of the UET header towards the start of the
packet that indicates the start of the AAD (may be passed from PDS
with each packet). This is valid only for a single encapsulation type.
See Figure 3-111.

Coff unsigned integer
(2-byte units)

An offset from the start of the UET header towards the end of the
packet that indicates the the boundary between the AAD and the
cipher text (may be passed from PDS with each packet). This is valid
only for a single encapsulation type. See Figure 3-111.

SDI 24 bits SDI used in packet – included in SDKDB if the database is indexed by a
pointer (e.g., sdi_idx in logical interface)

SDKiAN0 256 bits SDKi for AN0

SDKiAN1 256 bits SDKi for AN1

Rekey_Mask 48 bits Optional MASK for Rekey

Rekey_Shift Integer (0-31) Optional SHIFT for Rekey

IVMask 96 bits Only for direct KDF mode (generated per packet, otherwise via KDF)

current_epoch 16 bits Current epoch to use for transmitted packets and epoch-based
rejection

kdf-algo enum KDF algorithm; the default is AES-CMAC-256

The SSI MAY be explicitly carried within the packet (i.e., The SSI present bit, tss.sp=1) or the source IP

address (ip.src_addr) MAY be used. The ssi-mode field MAY be a global or per SDI configuration.

Rekey is created using the Rekey_Mask and Rekey_Shift fields and MAY be used to automatically rekey

via the KDF as described in section 3.7.5.2. Rekey is disabled by setting the Rekey_Mask to zero.

Coff and Aoff are used to configure the AAD plaintext data for the packet. These offsets are 0 or greater

and are relative to the layer3/layer4 payload depending on encapsulation. AAD refers to the

authenticated but not encrypted portion of the packet. Refer to section 3.7.11 for an illustration of the

authenticated and encrypted portions of the packet.

Each SDKDB has two associated keys (SDKiAN0, SDKiAN1) that correspond to each AN0 and AN1,

respectively. The RxActiveAN is used to enable each AN key. If a packet arrives with a disabled AN, an

invalidAN error is generated to PDS and the packet is dropped.

A secure domain MUST use a consistent packet encapsulation as defined by the encap-type field in the

SDKDB.

 430

Copyright © 2025 Ultra Ethernet ConsortiumTM. All rights reserved.

3.7.7 KDF Modes

The three defined KDF modes are direct, cluster, and client-server. Direct mode MUST use the SSI (ssi-

mode=TRUE) if the packet is IPv6 to guarantee IV uniqueness. Other modes MAY use SSI or IP addresses

to convey source information, provided they meet uniqueness criteria.

If a packet arrives with an SSI and the SDKDB is not configured to use SSIs, then the packet is dropped

and the sdiXXInInvalid is incremented. Implementations MUST support direct mode and SHOULD

support both cluster and server modes. An implementation MUST indicate which modes are supported

via kdfModes parameter.

The following outline summarizes the kdfModes:

1) Direct mode: Uses the key directly from the SDKDB.

a. SDK = SDKDB[SDI||AN]

2) Cluster mode: Sender and receiver derive keys based on source from group key (SDKi). The same

derivation is used for both sending and receiving packets.

a. SDKi = SDKDB[SDI||AN]

b. SDK = KDF(SDKi, label=”U1”, context=”current_epoch|| Rekey SSI”) where SSI may be

ip.src_addr

3) Client-server mode:

a. Packets sent by server are derived based on destination within a group key. This is used

by a server to generate client-specific keys by using the destination SSI (destSSI) in the

KDF. Note that the SSI in the frame is still the source (server) SSI. Finally, automatic

rekeying is not supported in this mode.

i. SDKi = SDKDB[SDI||AN]

ii. SDK = KDF(SDKi, label=”U2”, context=” current_epoch

||DestSSI/ipv4.dest_addr/ipv6.dest_addr”)

b. Packets received by the server are handled as cluster mode packet.

The label and context fields in item 2.b above are a text strings that are required by the NIST

specifications.

Figure 3-108 describes how the SDK lookup and interface to the crypto engines are implemented by the

FEP.

 431

Copyright © 2025 Ultra Ethernet ConsortiumTM. All rights reserved.

Figure 3-108 - SDKDB database and crypto interfaces

3.7.8 KDF Construction

The KDF MAY be used to derive keys in the cluster and client-server KDF modes. Note that for client-

server both client and server KDFs are used. The KDF is implemented with single or two input blocks,

depending on how the source FEP is represented. The single-input block KDF MUST be used for IPv4

packets or when the SSI is explicitly carried in the packet. For IPv6 packets without an explicit SSI, two

input blocks MUST be used.

The KDF algorithm is specified per security domain using the kdf-algo field. The default KDF construction

MUST be implemented per NIST specification SP 800-108 [40] using AES-CMAC-256 and parameters per

Table 3-89. Other algorithms and constructions are implementation specific.

The default KDF MUST be based on the NIST specification SP 800-108 section 4.1 [40]. CMAC is used as

the associated pseudorandom function (PRF) in counter mode. The CMAC MUST be implemented using

AES-256 [41] per NIST specification SP 800-38B [42]. The KDF input parameters MUST be supported and

are summarized in Table 3-89.

Table 3-89 - KDF Parameter Summary for AES-CMAC-256

Parameter Value Description

Mode Counter Family of KDF

MAC CMAC PRF used in KDF

Block Cipher AES-256 128-bit block size

Length L 352 bits Length of derived key (Ko) key and IVMask in bits

Size of L 16 bits Size of L in bits

SDKDB
SDI

(SD+AN)

Enc Packet

tsc

Cipher
Engine

ICV

IV

kdf-mode

SSI

AAD

SDKDB
KDF

SDKi

algo

SDK

valid

Dec Packet

Coff

IP

SIP

Aoff

Implementation Note:

The KDF implementation is a vital part of the security solution. Vendors are encouraged to implement

DPA or other techniques to reduce the attack surface of the cryptographic implementations. In

addition, cryptographic hardware SHOULD be implemented in accordance with industry best practices

and certified by third-party testing programs (e.g., NIST Cryptographic Algorithm Validation Program

(CAVP) for the KDF [43]).

 432

Copyright © 2025 Ultra Ethernet ConsortiumTM. All rights reserved.

Parameter Value Description

Size of i 8 bits Size of iteration counter in bits

LocationCounter BeforeFixedData Location of counter in the data

Counter Encoding Big-endian Both counters MUST be encoded as big-endian (MSB first)
binary strings when hashed

Label Length 16 bits Supported length of Label field (fixed) in bits

Context Length 80 bits/208 bits Supported lengths of Context fields (fixed) in bits

iterations (n) 3 Number of PRF calls (generates 256-bit fixed output)

Ki size 256 bits KDF input key – SDKi in this document

Ko size 256 bits Output or derived key – the SDK in this document

IVMask 96 (128 bits) Output of KDF used to hide nonce/IV before it is used in the
symmetric cipher.

The KDF is a function that derives a key, Ko, or an SDK from an input key Ki or SDKi, label and context.

The KDF is constructed from a fixed portion, a constant for all iterations, and a counter used to create

outputs larger than a single iteration. The fixed portion (KDF_fixed) consists of a Label, Delimiter (0x00),

Context, and Length (L) fields. The Label and Context fields MUST be set based on the kdf-mode and ssi-

mode. The Length is the bit length of the derived key and MUST be 352 bits for AES-256+ IVMask. In

summary, the fixed portion MUST be:

KDF_fixed = Label||0x00||Context||L

Each iteration creates a 128 bit output with this construction. Therefore, three iterations are required.
The iteration counter, i, MUST be initialized to 1 and MUST be incremented for each iteration. The KDF
output is used as follows:

Ko(i) = PRF(Ki, 2||KDF_fixed) || PRF(Ki, 1||KDF_fixed)

IVMask = PRF(Ki, 3||KDF_fixed)

The PRF MUST be implemented using CMAC with AES-256 as the block cipher. The inputs to the CMAC

function are always aligned to the block size of the cipher to simplify implementation. The Label field

MUST be 16 bit and contain an ASCII-encoded text based on the type of KDF used.

The Rekey field is part of the Context of the KDF_fixed portion and MAY be used in the KDF Context field

to facilitate automatic rekeying. Rekey MAY be only in cluster kdf-mode. From 0 to 32 bits are extracted

from the TSC based on a mask and shift operation:

• Rekey = (tss.tsc & Rekey_Mask) >> Rekey_Shift)

o During the logical right shift operation, zeros are injected.

o Rekey MUST be initialized to zero such that if 0 bits are extracted the Rekey is zero.

• The Rekey_Mask and Rekey_Shift shift MAY be global or part of the SDKDB.

o All members of the SD MUST use the same Rekey_Mask and Rekey_Shift values.

3.7.8.1 Cluster mode KDF for IPv4 and Packets with Explicit SSI

For IPv4 and SSI packets, the Context field MUST be 80 bits and constructed from the following fields

based on ssi-mode:

• LabelCluster = 0x5531 or ‘U1’ in ASCII

• Contextv4 = current_epoch || Rekey || tss.ssi: if ssi-mode is TRUE.

 433

Copyright © 2025 Ultra Ethernet ConsortiumTM. All rights reserved.

• Contextv4 = current_epoch || Rekey || ipv4.src_addr: if ssi-mode is FALSE.

The KDF is invoked in the following manner:IVMask ||SDKo = KDF(SDKi, context=Contextv4, label=Label)

Figure 3-109 depicts how each iteration is accomplished for an IPv4/SSI cluster mode KDF.

Figure 3-109 - Cluster mode KDF for IPv4 and Packets with Explicit SSI

3.7.8.2 Cluster mode KDF for IPv6 without explicit SSI

For IPv6 traffic MUST use two-block mode to accommodate the larger IPv6 source address. The Context

in the IPv6 case is 208 bits and MUST be the following field:

 434

Copyright © 2025 Ultra Ethernet ConsortiumTM. All rights reserved.

• LabelCluster = 0x5531 or ‘U1’ in ASCII

• Contextv6 = 0x00000000|| current_epoch || Rekey || ipv6.src_addr

The KDF is invoked in the following manner: IVMask ||SDKo = KDF(SDKi, context=Contextv6,

label=LabelCluster)

Figure 3-110 - Cluster mode KDF for IPv6 without explicit SSI

3.7.8.3 Server Mode KDF

The server mode KDF is used to assist server key scaling and MUST use the cluster mode KDF

construction, except destination information is used in the Context. The Label is x5532 or ‘U2’ in ASCII

and the Context is defined as follows:

 435

Copyright © 2025 Ultra Ethernet ConsortiumTM. All rights reserved.

• LabelSrv = 0x5532 or ‘U2’ in ASCII

• Contextv4 = current_epoch||0x00000000||DestSSI:if ssi-mode==TRUE

• Contextv4 = current_epoch||0x00000000||ipv4.dest_adddr:if pkt==IPv4

• Contextv6 = current_epoch||0x00000000||ipv6.dest_adddr:if pkt==IPv6

The KDF is invoked in the following manner: IVMask||SDKo = KDF(SDKi, context=Contextv4/6,

label=LabelSrv)

3.7.8.4 KDF Examples

The following are examples of the KDF’s calculations. The source code to generate these examples is

provided in a UEC git repository in the test_uec_kdf.c file <https://github.com/ultraethernet/uet-ref-

prov/blob/main/crypto/test/test_uec_kdf.c>. These were verified using vectors from the NIST CAVP

program [43] for ”SP 8 -1 8 Key Derivation Using Pseudorandom Functions (KBKDF)”. The specific

vectors are: [PRF=CMAC_AES256], [CTRLOCATION=BEFORE_FIXED], [RLEN=8_BITS] with L=352.

In all cases, the input key is:

• SDK = 0x34448a064292601b11a0978f56a2d34cf3fc35ede1a6bc04f8db3e5243a2b0ca

• Rekey_Mask = 0x0000FFFF00000000

• Rekey_Shift = 32

Create the Rekey field by extracting the bits from the counter field from the TSC.
• TSC from packet = 0x1DC074E500000023

• Rekey = 0x000074E5

• Epoch= 0x1DC0

For the IPv4 cluster mode cases with ssi-mode=FALSE:

• Label = x5531 or ‘U1’ in ASCII

• IPv4 SIP = 0xC0A82A01 or 192.168.42.1

• Context4 = 0x1dc0000074e5c0a82a01

• Kdf_fixed4 = 0x5531001dc0000074e5c0a82a010160

• SDK = 0x151b4ddb30112971ddeff3213000ee74d8f18aac2135601f1e5215e505fed449

• IVMask = 0xa7c6992c26b0bd5dd5c20e0c

For the IPv6 cluster mode cases with ssi-mode=FALSE:

• Label = x5531 or ‘U1’ in ASCII

• IPv6 SIP = 0x20010cb0000000000fc0000000000abc or
 2001:0cb0:0000:0000:0fc0:0000:0000:0abc

• Context6 = 0x000000001dc0000074e520010cb0000000000fc0000000000abc

• Kdf_fixed6 = 0x553100000000001dc0000074e520010cb0000000000fc0000000000abc0160

• SDK = 0x55d1ee8647bd53fad0e5325795af18e7559b7d42a895edf70f9c170341e8f767

• IVMask = 0x9c96a5752fb5669ccd5ded3f

For IPv4 Server mode with ssi-mode=FALSE

• Label = x5532 or ‘U2’ in ASCII

• IPv4 SIP = 0xC0A82A01 or 192.168.42.1

https://github.com/ultraethernet/uet-ref-prov/blob/main/crypto/test/test_uec_kdf.c
https://github.com/ultraethernet/uet-ref-prov/blob/main/crypto/test/test_uec_kdf.c

 436

Copyright © 2025 Ultra Ethernet ConsortiumTM. All rights reserved.

• Context4 = 0x1dc000000000c0a82a01
• Kdf_fixed4 = 0x5532001dc000000000c0a82a010160

• SDK = 0x245e67ab286218530edd53c26ea9ec33c96b35192d0a0eb54d08be281c5d304b

• IVMask = 0x02d5ee33684201990e1629e0

For IPv6 Server mode with ssi-mode=FALSE

• Label = x5532 or ‘U2’ in ASCII

• IPv6 SIP = 0x20010cb0000000000fc0000000000abc or
2001:0cb0:0000:0000:0fc0:0000:0000:0abc

• Context6 = 0x000000001dc00000000020010cb0000000000fc0000000000abc

• Kdf_fixed6 = 0x553200000000001dc00000000020010cb0000000000fc0000000000abc0160

• SDK = 0xb59002ad3e6a9ae5864878730070f8916e43e5011acaa4be3504256185f24d97

• IVMask = 0x209a3d29581028fb0da2749e

3.7.9 Replay Protection

It is necessary to detect when a packet has been replayed on the network, through either normal retry

mechanisms or a malicious actor observing and playing back a packet. Replay protection will be handled

at the layers above this protocol.

Informative Text:

Both ROD and RUD use a dynamic connection protocol. This is similar to 0-RTT in that it is susceptible

to replay attack. The UET PDS specification uses a mechanism to keep track of close information to

ensure connection-open is not replayed. For existing PDCs the following applies:

• Reliable ordered delivery (ROD) – Replay protection is inherent in the in-order protocol (reject

old PSNs), and no additional processing is required. Please see PDS specification for

connection creation replay protection — specifically, the connection setup replay in section

3.5.8.2.1.

• Reliable unordered delivery for non-idempotent operations (RUD) – Apply-once semantic can

be used for replay protection. Please see PDS specification for connection creation replay

protection — specifically, the connection setup replay in section 3.5.8.2.1

• Reliable unordered delivery for idempotent operations (RUDI) – Due to the idempotent

nature of this transport, replay protection at the transport layer is not possible and NOT

provided by TSS. Replay protection MAY be achieved by adding a nonce at the application

layer. Another solution is to rely on rekeying to minimize attack window. Finally, RUDI MAY be

disabled.

• Unreliable and unorder delivery (UUD) – Application solution or epoch-based rejection MAY

be used.

 437

Copyright © 2025 Ultra Ethernet ConsortiumTM. All rights reserved.

3.7.10 Epoch-based packet rejection

A key epoch can be used to reject old frames in the network. The epoch is carried in the TSC field in the

packet and the SDME controls when the epoch is incremented.

If epoch-based rejection is enabled (epochBasedRejection) then packets with older epochs MUST be

dropped and the sdiXXInLatePkts counter MUST be incremented. The number of older epochs accepted

is defined by rxMaxEpochLifetime. Parameters epochBasedRejection and rxMaxEpochLifetime MAY be

global parameters OR stored in SDKDB per SDI.

Mathematical operations on wrapping unsigned sequence numbers (integers) can be done by a variety

of methods, some of which are described in IETF RFC 1982 [48], which considers the wrap conditions.

The intent is to reject epochs lower (older) then the current epoch.

The following pseudo code summarizes the check using a wrap subtract function that implements the

wraparound sequence math from IETF RFC 1982 [48]:

if(epochBasedRejection == TRUE) &&

(wrapSubtract(SDI[pkt.tss.SDI].current_epoch – pkt.tss.tsc.epoch) >

rxMaxEpochLifetime){

 drop packet and sdiXXInLatePkts[pkt.tss.SDI]++

}

3.7.11 TSS Packet Processing

UET defines two types of encapsulations. The first is carried directly (i.e., natively) over IP and requires a

UET protocol number in the IP header. The second format defines a UDP encapsulation, where a FEP

configured UDP port number is used to specify UET transport.

An overview of the two encapsulations is depicted in Figure 3-111.

 438

Copyright © 2025 Ultra Ethernet ConsortiumTM. All rights reserved.

When using native IP encapsulation, the first header of the IP payload is the PDS entropy header, and

the next header is the TSS header. When using UDP/IP encapsulation, the first header of the UDP

payload is the TSS header. The PDS header implicitly always follows the TSS header (i.e., no next header

field is present in the TSS header). The following section describes how these headers are constructed.

The length of the encapsulated payload, L, includes the UET header, UET payload, and UET trailer. The

length is included within the ipv4.total_length, ipv6.payload_length or udp.length field depending on

how the length field is encoded in the packet encapsulations shown in Figure 3-112, Figure 3-113, and

Figure 3-114.

Figure 3-111 - UET Secure Transport Packets

 439

Copyright © 2025 Ultra Ethernet ConsortiumTM. All rights reserved.

The header layout for native IP transport is shown in Figure 3-112.

Figure 3-112 - TSS with Native IPv4 Transport

 440

Copyright © 2025 Ultra Ethernet ConsortiumTM. All rights reserved.

The header layout for IPv6 native transport is shown in Figure 3-113.

Figure 3-113 - TSS with Native IPv6 Transport

 441

Copyright © 2025 Ultra Ethernet ConsortiumTM. All rights reserved.

For networks that retain UDP encapsulation, a specific destination UDP port indicates the packet is a

UET packet. Figure 3-114 depicts UDP encapsulation:

Table 3-90 defines the UET TSS header fields and the default field values.

Table 3-90 - TSS Headers Fields

Field Size (bits) Note

type 5 Header type, this MUST be set to UET_TSS

sp 1 Set if SSI header present in packet

r 1 reserved

an 1 Association number

sdi 24 Secure Domain Identifier

ssi 32 Source identifier within an SC (optional) based on SP=1

tsc 64 Time-stamp counter (16b epoch, 48b counter)

UET entropy header, TSS header, PDS header, SES header, UET payload, and ICV MUST fit completely

within a maximum payload defined by the transport (Payload MTU). This implies all the listed

components MUST be completely contained within a single packet.

Figure 3-114 - TSS with UDP Encapsulation

 442

Copyright © 2025 Ultra Ethernet ConsortiumTM. All rights reserved.

3.7.11.1 Packet Encryption

This section describes the encryption and decryption of packets. A reference for the packet encryption is

in the UE reference provider git repo in the crypto directory <https://github.com/ultraethernet/uet-ref-

prov/tree/main/crypto>.

3.7.11.1.1 Authentication and Confidentiality Offsets

The extent of the authentication and confidentiality depends on the use case and threat model. The

authentication offset (Aoff) defines the start of the AAD. The cipher offset (Coff) is used to delineate the

boundary between authenticated data (AAD) and the ciphertext. Aoff and Coff are returned from an

SDKDB lookup. The AAD is the contiguous set of bytes in the packet referenced by the Aoff and Coff

offsets. Aoff and Coff are both greater than or equal to 0 and therefore cannot overlap. Aoff is an offset

from the start of the UET header towards the start of the packet, and Coff is an offset from the start of

the UET header towards the end of the packet. See Figure 3-111 for more details on the relative offsets.

Note the two lengths reflected in the GMAC portion of AES-GCM is the length of the AAD (A) and

ciphertext (C). The AAD length is the byte distance between locations in the packet determined by Aoff

and Coff. The ciphertext length is the byte distance between the location in the packet determined by

Coff and the remainder of the UET payload.

The AAD MUST include all fields used in the security solution. For example, if the ip.src_addr field is

used in the KDF, then ip.src_addr MUST be part of the AAD. The most secure solution SHOULD configure

the Coff such that only the TSS header is exposed and the rest of the PDS, SES, UET payload is encrypted.

3.7.11.1.2 IV Generation

There are several ways of creating the IV from the TSC and fields in the packet. Table 3-91 describes how

the IV is generated.

Table 3-91 - IV Construction

IV Packet Type ssi-mode tss.sp Kdf modes

tss.ssi||tss.tsc IPv4 TRUE TRUE (0b1) All

ip.src_addr||tss.tsc IPv4 FALSE FALSE (0b0) All

ERROR/Not Valid IPv4 TRUE FALSE (0b0) -

ERROR/Not Valid IPv4 FALSE TRUE (0b1) -

tss.ssi||tss.tsc IPv6 TRUE TRUE (0b1) All

ERROR/Not Valid IPv6 TRUE FALSE (0b0) -

ERROR/Not Valid IPv6 FALSE TRUE (0b1) -

tss.sdi||tss.tsc IPv6 FALSE FALSE (0b0) Direct mode not supported

Note:
The tss.tsc field referenced in this table is the concatenation of the tss.tsc.epoch and tss.tsc.counter fields
shown in the TSS header diagrams

TSC generation is specified in section 3.7.5.6. Once the IV is created, it is then XORed with the IVMask

from the SDKDB or KDF before it is used by cipher engine. The error cases in Table 3-91 are used to catch

https://github.com/ultraethernet/uet-ref-prov/tree/main/crypto
https://github.com/ultraethernet/uet-ref-prov/tree/main/crypto

 443

Copyright © 2025 Ultra Ethernet ConsortiumTM. All rights reserved.

misconfiguration between the ssi-mode in the SDKDB and the packet. The TSS implementation MUST

detect the IV error cases in Table 3-91 and drop the packet and increment the sdiXXInInvalid.

3.7.11.1.3 ICV Calculation

The integrity check value (ICV) MUST be calculated over the AAD and ciphertext. The ICV MUST be

appended to the end of the packet. For AES-GCM the ICV length MUST be 16B. Packets that fail

authentication MUST be dropped and the sdiXXInAuthFailPkts counter MUST be incremented. Trimmed

packets will fail authentication, but MAY be used as a congestion signal per the limitations described in

section 3.7.2.4.2.

When calculating the ICV for UDP packets the udp.checksum field is set to zero before the ICV

calculation is made.

3.7.11.2 Packet Transmission

• Packets are received from the PDS with security and link information.

• Packets that bypass the TSS are assumed to be UE packets that are not using TSS services and

MUST be passed to the link unmodified. The outPPRxEncryptionBypassPkts packet counter

MUST be incremented.

• SDKDB information is retrieved using the SDI.

o If the SDKDB is not valid the packet is dropped and the ifPPOutErroredPkts counter is

incremented.

• Direct KDF mode.

o The SDK from SDKDB is used directly to encrypt packet.

• KDF client-server mode.

o DestSSI or destination IP addresses is used in the KDF to construct the SDK using server

mode KDF.

o The epoch from SDKDB.current_epoch is used in KDF.

• KDF cluster mode.

o SrcSSI or ip.src_addr is used in KDF to construct the SDK based on SDKDB ssi-mode field.

o Rekey is calculated and used in KDF (see section 3.7.5.2).

o The epoch from SDKDB.current_epoch is used in KDF.

• UET TSS header is added.

o The tss.type field is set to UET_TSS.

o tss.sdi and tss.an are set to SDKDB.SDI and SDKDB.TxActiveAN.

o The tss.ssi field is populated based on the SDKDB.ssi-mode. If the ssi-mode is TRUE then

the tss.ssi field is populated in the packet with SrcSSI and the tss.sp field is set to 0b1.

Otherwise, the tss.ssi field is not populated, and the tss.sp field is set to 0.

o TSC is generated.

▪ The tss.tsc.epoch portion is copied from SDKDB.current_epoch.

▪ If the tss.tsc.counter wrapped or is greater than invokeFatalTheshold the packet

MUST be dropped and the sdiXXOutInvokeFail counter is incremented.

 444

Copyright © 2025 Ultra Ethernet ConsortiumTM. All rights reserved.

▪ If the tss.tsc.counter is greater than invokeWarnThreshold, then the SDME

SHOULD be informed.

• The packet is encrypted and ICV appended to frame according to the process in section 3.7.11.1.

o The IV is determined according to construction rules in Table 3-91.

o The Aoff, Coff, and SDK fields are used in encryption.

• The SDKDB statistics are updated as follows:

o sdiXXOutAuthPkts is incremented when the packet is successfully encrypted and sent.

• For any condition where the packet cannot be sent (e.g., invalid SDI, invalid SDKDB parameters),

the secure transport MUST ensure that unencrypted plaintext is not sent on the wire, that the

packet is dropped, and the ifPPOutErroredPkts counter is incremented.

3.7.11.3 Packet Reception

• The packet is received from link layer with a valid FCS and with any additional link information.

• The UET TSS header is processed as follows:

o If the tss.type field is not UET_TSS, then the packet bypassed encryption and MUST be

sent to PDS without modification. The rx_auth flag MUST NOT be set and the

inPPRxEncryptionBypassPkts counter MUST be incremented.

o If the tss.type field is UET_TSS then packet is processed by TSS before being sent to PDS.

o The tss.sp field indicates if SSI is present.

o The tss.an and tss.sdi fields are extracted from packet to form the security association.

• An SDKDB look-up is performed using tss.an and tss.sdi from TSS header.

o If an SDKDB entry is not found, then the packet MUST be dropped and the

ifPPInErroredPkts counter MUST be incremented.

o RxActiveAN is retrieved from the SDKDB.

o Validation of the tss.an field against RxActiveAN is performed as follows:

▪ If RxActiveAN = 0b00 then the packet MUST be dropped.

▪ If RxActiveAN = 0b01 and tss.an = 0 then the packet MUST be dropped.

▪ If RxActiveAN = 0b10 and tss.an = 1 then the packet MUST be dropped.

▪ If RxActiveAN = 0b11 the then the packet is allowed to continue.

If the packet is dropped, then the sdiXXInInvalidSa counter MUST be incremented and a

lastAN error indication MUST be sent to PDS.

o Once tss.an has been processed, the SDKi is selected from the SDKDB (SDKiAN0 or

SDKiAN1).

o If SDKDB.encap-type does not match the encapsulation of the receive packet or if Aoff

or Coff are invalid, the packet MUST be dropped and the sdiXXInInvalid counter MUST

be incremented.

o Any other SDKDB errors (invalid key, etc.) detected MUST cause the packet to be

dropped and the sdiXXInInvalid counter MUST be incremented.

o If the SSI mode in the packet (tss.sp) does not match the SDKDB ssi-mode field, then the

packet is dropped and sdiXXInInvalid counter incremented.

 445

Copyright © 2025 Ultra Ethernet ConsortiumTM. All rights reserved.

• If kdf-mode is Direct-KDF.

o The selected SDKi is used directly in the cipher operation for the packet.

• If kdf-mode is KDF cluster/client-server.

o The selected SDKi is used in the KDF operation for the packet.

o tss.ssi or ip.src_addr is used in KDF to construct SDK based on SDKDB.ssi-mode field.

o Rekey is calculated based on tss.tsc.counter and used in the KDF (see section 3.7.5.2).

o The epoch from tss.tsc.epoch is used in the KDF.

• Epoch-based rejection.

o SDKDB.current_epoch is compared to tss.tsc.epoch according to rules in section 3.7.10.

If the check fails, the packet MUST be dropped and the sdiXXInLatePkts counter MUST

be incremented.

• Packet Decryption.

o The IV is created per Table 3-91 and XORed with the IVMask from the SDKDB or from

the output of the KDF before it is used in the cipher.

o The AAD and ciphertext are constructed based on Aoff and Coff from the SDKDB per

section 3.7.11.1.1.

o The packet is decrypted according to the process in section 3.7.11.1.

o The ICV from the UET trailer is used to authenticate packet according to the process in

section 3.7.11.1.3.

▪ Packets that fail authentication MUST be dropped and the sdiXXInAuthFailPkts

counter MUST be incremented.

▪ If the sdiXXInAuthFailPkts > authFailThreshold then the authentication failure

threshold had been exceeded, and the packet MUST be dropped and the SDME

MUST be notified. Note that the sdiXXInAuthFailPkts counters increments for all

enabled AN (RxActiveAN). An implementation MUST reset this counter after a

key rotation is complete.

▪ Packets that pass authentication MUST be passed to PDS with rx_auth set to

TRUE and the sdiXXInAuthPkts counter MUST be incremented.

▪ If an encrypted trimmed packet is received it cannot be authenticated, but the

beginning of the packet can be decrypted. An implementation MAY chose

packet drop the packet or pass it to the PDS with the rx_auth set to FALSE. The

reception of a trimmed packet MUST NOT increment the sdiXXInAuthFailPkts

counter.

• The SDKDB statistics are updated as follows:

o The sdiXXInAuthPkts counter is updated for frames that are properly authenticated

(described in the Packet Decryption list item above).

o Packets bypassing the receive crypto process (e.g., pds.type=UET_PDS) MUST cause the

inPPRxEncryptionBypassPkts counter to be incremented, and when passed to PDS the

rx_auth flag MUST be set to FALSE.

 446

Copyright © 2025 Ultra Ethernet ConsortiumTM. All rights reserved.

3.7.12 Statistics, Parameters, and Events

Table 3-92 describes the counters and statistics that MUST be supported. Counters MUST initialize to

zero and wrap when their bit width is exceeded. These counters MUST be provided to the management

entity within the FEP. These are modeled after the Ethernet MIB counters [44]. All counters MUST be 64

bits when presented to the SDME.

Table 3-92 - TSS Security Counters

Counter Description Units Scope IMP

sdiXXInAuthPkts Number of successfully received, decrypted, and
authenticated (pass authentication) packets.

packets SDI M

sdiXXInAuthFailPkts Number of received packets that fail
authentication and are not trimmed.

packets SDI M

sdiXXInInvalid Number of received packets with errors. packets SDI M

sdiXXInInvalidSa Number of received packets dropped due to an
inactive or invalid security association.

packets SDI M

sdiXXInLatePkts Received packets dropped/rejected based on
epoch-based rejection.

packets SDI O

sdiXXOutInvokeFail The number of transmit packets dropped because
invoke limit is reached.

packets SDI M

sdiXXOutAuthPkts Number of authentication and encrypted packets
transmitted. This is also the number of
invocations of the SDK for the TxActiveAN.

packets SDI M

ifPPOutErroredPkts Packets with invalid information from PDS and
cannot be mapped to a secure domain. These
packets MUST be dropped and not sent on wire.

packets PORT M

ifPPInErroredPkts Packets received with invalid security information
and cannot be mapped to secure domain. These
packets have a UET TSS header.

packets PORT M

inPPRxEncryptionBypassPkts Packets that are received with a UET PDS header
where the type is not UET_TSS. These packets
MUST bypass encryption and authentication and
be presented to PDS.

packets PORT M

outPPRxEncryptionBypassPkts UET PDS packets sent that bypass encryption and
authentication. These packets are passed to the
link layer unmodified.

packets PORT M

sdiXXInBindingFailurePkts Received packets that fail the SES binding check. packets SDI M

Note:

• XX is the SDI number and PP is the port number.

• M=mandatory, O=Optional if feature is not supported but mandatory if it is implemented.

Table 3-93 describes various parameters used in this specification.

Table 3-93 - TSS Security Parameters

Parameter Description Scope Imp

invokeWarnThreshold Invoke warning limit SDI/Global M

invokeFatalTheshold Invoke fatal limit SDI/Global M

authFailThreshold When sdiXXInAuthFailPkts is greater than
this value, packets for the SDI are dropped.

SDI/Global M

 447

Copyright © 2025 Ultra Ethernet ConsortiumTM. All rights reserved.

Parameter Description Scope Imp

ssi-mode A boolean value that indicates how to
identify the SSI. A value of TRUE means use
the SSI. A value of FALSE means use the
source IP address.

SDI/Global O

rxMaxEpochLifetime Max lifetime for epoch-based rejection SDI/Global O

epochBasedRejection Enable for epoch-based rejection (dropping) SDI/Global O

Rekey_Mask Rekey mask used to generate Rekey SDI/Global O

Rekey_Shift Rekey shift used to generate Rekey SDI/Global O

maxSDI Maximum number of supported SDIs Global M

baseSDI Base SDI number, provisioned by SDME Global M

kdfModes Supported KDF modes (0bxx1 – direct, 0bx1x
– cluster, 0b1xx – client-server)

Global/Mask M

maxCoff Maximum Coff configuration SDI/Global M

maxAoff Maximum Aoff configuration SDI/Global M

Note:

• M=mandatory, O=Optional

Table 3-94 describes the events or errors the TSS layer can generate.

Table 3-94 - TSS Security Events/Errors

Event Description Scope Imp

invokeWarn Invoke warning limit SDI M

invokeFatal Invoke fatal limit SDI M

authFail When sdiXXInAuthFailPkts is greater than this
value, packets for the SDI are dropped

SDI M

Note:

• M=mandatory, O=Optional

3.8 References

[1] T. Hoefler, D. Roweth, K. Underwood, B. Alverson, M. Griswold, V. Tabatabaee, M. Kalkunte, S.
Anubolu, S. Shen and A. Kabbani, "Datacenter ethernet and rdma: Issues at hyperscale," arXiv
preprint arXiv:2302.03337, 2023.

[2] IETF RFC 6040, "Tunnelling of Explicit Congestion Notification," 2010. [Online]. Available:
https://datatracker.ietf.org/doc/html/rfc6040.

[3] B. Rothenberger, K. Taranov, A. Perrig and T. Hoefler, "{ReDMArk}: Bypassing {RDMA} security
mechanisms," in 30th USENIX Security Symposium (USENIX Security 21), 2021.

[4] IETF RFC 3692, "Assigning Experimental and Testing Numbers Considered Useful," 2004.
[Online]. Available: https://www.rfc-editor.org/rfc/rfc3692.html.

[5] R. Brightwell, W. W. Schonbein, K. Pedretti, K. S. Hemmert, A. B. Maccabe, R. E. Grant, B. W.
Barrett, K. Underwood, R. Riesen and T. Hoefler, "The Portals 4.3 Network Programming
Interface," 2022.

[6] P. Grun, S. Hefty, S. Sur, D. Goodell, R. D. Russell, H. Pritchard and J. M. Squyres, "A Brief
Introduction to the OpenFabrics Interfaces - A New Network API for Maximizing High

https://datatracker.ietf.org/doc/html/rfc6040
https://www.rfc-editor.org/rfc/rfc3692.html

 448

Copyright © 2025 Ultra Ethernet ConsortiumTM. All rights reserved.

Performance Application Efficiency," in 2015 IEEE 23rd Annual Symposium on High-
Performance Interconnects, 2015.

[7] Z. Liang, J. Lombardi, M. Chaarawi and M. Hennecke, "DAOS: A Scale-Out High Performance
Storage Stack for Storage Class Memory," in Supercomputing Frontiers, 2020.

[8] R. Brightwell and K. Underwood, "Evaluation of an eager protocol optimization for MPI," in
European Parallel Virtual Machine/Message Passing Interface Users’ Group Meeting, 2 3.

[9] T. Bonato, A. Kabbani, D. De Sensi, R. Pan, Y. Le, C. Raiciu, M. Handley, T. Schneider, N. Blach,
A. Ghalayini, D. Alves, M. Papamichael, A. Caulfield and T. Hoefler, "SMaRTT-REPS: Sender-
based Marked Rapidly-adapting Trimmed & Timed Transport with Recycled Entropies," 2 April
2024. [Online]. Available: https://arxiv.org/abs/2404.01630v1.

[10] Y. Le, R. Pan, P. Newman, J. Blendin, A. Kabbani, V. Jain, R. Sivaramu and F. Matus, "STrack: A
Reliable Multipath Transport for AI/ML Clusters," 21 July 2024. [Online]. Available:
https://arxiv.org/abs/2407.15266.

[11] V. Olteanu, H. Eran, D. Dumitrescu, A. Popa, C. Baciu, M. Silberstein, G. Nikolaidis, M. Handley
and C. Raiciu, "An edge-queued datagram service for all datacenter traffic," in 19th USENIX
Symposium on Networked Systems Design and Implementation (NSDI 22), Renton, WA, 2022.

[12] T. Bonato, A. Kabbani, A. Ghalayini, M. Papamichael, M. Dohadwala, L. Gianinazzi, M. Khalilov,
E. Achermann, D. De Sensi and T. Hoefler, "REPS: Recycled Entropy Packet Spraying for
Adaptive Load Balancing and Failure Mitigation," 31 July 2024. [Online]. Available:
https://arxiv.org/abs/2407.21625.

[13] Zats, A. Iyer, G. Ananthanarayanan, R. Katz, I. Stoica and A. Vahdat, "FastLane: Agile Drop
Notification for Datacenter Networks," UC Berkeley Tech Report, UCB/EECS-2013-173, 2013.

[14] IETF RFC 3168, "The Addition of Explicit Congestion Notification (ECN) to IP," 2001. [Online].
Available: https://www.rfc-editor.org/rfc/rfc3168.html.

[15] IEEE Std 802.1Q-2022, "IEEE Standard for Local and Metropolitan Area Networks – Bridges and
Bridged Networks," 2022. [Online]. Available:
https://ieeexplore.ieee.org/document/10004498.

[16] C. Guo, H. Wu, Z. Deng, G. Soni, J. Ye, J. Padhye and M. Lipshteyn, "RDMA over commodity
ethernet at scale," in Proceedings of the 2016 ACM SIGCOMM Conference, 2016.

[17] IETF RFC 8257, "Data Center TCP (DCTCP): TCP Congestion Control for Data Centers," 2017.
[Online]. Available: https://www.rfc-editor.org/rfc/rfc8257.

[18] Y. Zhu, H. Eran, D. Firestone, C. Guo, M. Lipshteyn, Y. Liron, J. Padhye, S. Raindel, M. H. Yahia
and M. Zhang, "Congestion control for large-scale RDMA deployments," ACM SIGCOMM
Computer Communication Review, pp. 523-536, 2015.

[19] G. Kumar, N. Dukkipati, K. Jang, H. M. Wassel, X. Wu, B. Montazeri, Y. Wang, K. Springborn, C.
Alfeld, M. Ryan, D. Wetherall and A. Vahdat, "Swift: Delay is simple and effective for
congestion control in the datacenter," in SIGCOMM '20: Proceedings of the Annual conference
of the ACM Special Interest Group on Data Communication on the applications, technologies,
architectures, and protocols for computer communication, 2020.

[20] B. Montazeri, Y. Li, M. Alizadeh and J. Ousterhout, "Homa: A receiver-driven low-latency
transport protocol using network priorities," in Proceedings of the 2018 Conference of the
ACM Special Interest Group on Data Communication, 2018.

https://arxiv.org/abs/2404.01630v1
https://arxiv.org/abs/2407.15266
https://arxiv.org/abs/2407.21625
https://www.rfc-editor.org/rfc/rfc3168.html
https://ieeexplore.ieee.org/document/10004498
https://www.rfc-editor.org/rfc/rfc8257

 449

Copyright © 2025 Ultra Ethernet ConsortiumTM. All rights reserved.

[21] P. X. Gao, A. Narayan, G. Kumar, R. Agarwal, S. Ratnasamy and S. Shenker, "pHost: Distributed
near-optimal datacenter transport over commodity network fabric," in Proceedings of the 11th
ACM Conference on Emerging Networking Experiments and Technologies, 2015.

[22] G. Chen, Y. Lu, B. Li, K. Tan, Y. Xiong, P. Cheng, J. Zhang and T. Moscibroda, "MP-RDMA:
Enabling RDMA With Multi-Path Transport in Datacenters," IEEE/ACM Transactions on
Networking, vol. 27, no. 6, pp. 2308-2323, 2019.

[23] IETF RFC 8684, "TCP Extensions for Multipath Operation with Multiple Addresses," 2020.
[Online]. Available: https://www.rfc-editor.org/rfc/rfc8684.html.

[24] A. Singh, Load-balanced routing in interconnection networks, Stanford University, 2005

[25] J. Kim, W. J. Dally, S. Scott and D. Abts, "Technology-Driven, Highly-Scalable Dragonfly
Topology," ACM SIGARCH Computer Architecture News, vol. 36, no. 3, pp. 77-88, 2008.

[26] P. Geoffray and T. Hoefler, "Adaptive Routing Strategies for Modern High Performance
Networks," in 2008 16th IEEE Symposium on High Performance Interconnects, 2008.

[27] De Sensi, S. Di Girolamo, K. H. McMahon, D. Roweth and T. Hoefler, "An In-Depth Analysis of
the Slingshot Interconnect," in SC20: International Conference for High Performance
Computing, Networking, Storage and Analysis, 2020.

[28] A. Dixit, P. Prakash, Y. C. Hu and R. R. Kompella, "On the impact of packet spraying in data
center networks," in 2013 Proceedings IEEE INFOCOM, 2013.

[29] C. Raiciu, S. Barre, C. Pluntke, A. Greenhalgh, D. Wischik and M. Handley, "Improving
datacenter performance and robustness with multipath TCP," in Proceedings of the ACM
SIGCOMM 2011 Conference, Toronto, Ontario, Canada, 2011.

[30] P. Cheng, F. Ren, R. Shu and C. Lin, "Catch the whole lot in an action: Rapid precise packet loss
notification in data center," in 11th USENIX Symposium on Networked Systems Design and
Implementation (NSDI 14), 2014.

[31] M. Handley, C. Raiciu, A. Agache, A. Voinescu, A. W. Moore, G. Antichi and M. Wójcik, "Re-
architecting datacenter networks and stacks for low latency and high performance," in
Proceedings of the Conference of the ACM Special Interest Group on Data Communication,
2017.

[32] HPCS, "HPC Challenge," [Online]. Available: https://hpcchallenge.org/hpcc/. [Accessed 08 05
2025].

[33] K. Taranov, B. Rothenberger, A. Perrig and T. Hoefler, "{sRDMA}--Efficient {NIC-based}
Authentication and Encryption for Remote Direct Memory Access," in 2020 USENIX Annual
Technical Conference (USENIX ATC 20), 2020.

[34] GitHub, "google/psp psp-open-source project," 2021. [Online]. Available:
https://github.com/google/psp.

[35] A. Luykx and K. G. Paterson, "Limits on authenticated encryption use in TLS," Cryptology ePrint
Archive, 2024.

[36] NIST SP 800-38D, "Recommendation for Block Cipher Modes of Operation: Galois/Counter
Mode (GCM) and GMAC," 2007. [Online]. Available:
https://nvlpubs.nist.gov/nistpubs/Legacy/SP/nistspecialpublication800-38d.pdf.

https://www.rfc-editor.org/rfc/rfc8684.html
https://hpcchallenge.org/hpcc/
https://github.com/google/psp
https://nvlpubs.nist.gov/nistpubs/Legacy/SP/nistspecialpublication800-38d.pdf

 450

Copyright © 2025 Ultra Ethernet ConsortiumTM. All rights reserved.

[37] NSA CNSA Suite 2.0, "CNSA Suite 2.0 and Quantum Computing FAQ," 2024. [Online]. Available:
https://media.defense.gov/2022/Sep/07/2003071836/-1/-1/0/CSI_CNSA_2.0_FAQ_.PDF.

[38] NIST SP 800-131A Rev. 2, "Transitioning the Use of Cryptographic Algorithms and Key Lengths,"
March 2019. [Online]. Available:
https://nvlpubs.nist.gov/nistpubs/SpecialPublications/NIST.SP.800-131Ar2.pdf.

[39] A. Bozhko, "draft-irtf-cfrg-aead-properties-09 - Properties of AEAD Algorithms," 11 10 2024.
[Online]. Available: https://www.ietf.org/archive/id/draft-irtf-cfrg-aead-properties-09.html.

[40] NIST SP 800-108r1 (Revision 1, Update 1), "Recommendation for Key Derivation Using
Pseudorandom Functions," 2024. [Online]. Available:
https://nvlpubs.nist.gov/nistpubs/SpecialPublications/NIST.SP.800-108r1-upd1.pdf.

[41] NIST FIPS-197, "Advanced Encryption Standard (AES)," 2001. [Online]. Available:
https://csrc.nist.gov/files/pubs/fips/197/final/docs/fips-197.pdf.

[42] NIST SP 800-38B, "Recommendation for Block Cipher Modes of Operation: the CMAC Mode for
Authentication," 2016. [Online]. Available:
https://nvlpubs.nist.gov/nistpubs/SpecialPublications/NIST.SP.800-38B.pdf.

[43] NIST CAVP, "Cryptographic Algorithm Validation Program," NIST Computer Security Resource
Center, 2025. [Online]. Available: https://csrc.nist.gov/Projects/Cryptographic-Algorithm-
Validation-Program/Key-Derivation.

[44] IETF RFC 3635, "Definitions of Managed Objects for the Ethernet-like Interface Types," 2003.
[Online]. Available: https://datatracker.ietf.org/doc/html/rfc3635.

[45] IETF RFC 9001, "Using TLS to Secure QUIC," May 2021. [Online]. Available: https://www.rfc-
editor.org/rfc/rfc9001.html.

[46] V. T. Hoang, S. Tessaro and A. Thiruvengadam, "The multi-user security of GCM, revisited: Tight
bounds for nonce randomization," in Proceedings of the 2018 ACM SIGSAC Conference on
Computer and Communications Security, 2018.

[47] IETF RFC 8645, "Re-keying Mechanisms for Symmetric Keys," August 2019. [Online]. Available:
https://datatracker.ietf.org/doc/html/rfc8645.

[48] IETF RFC 1982, "Serial Number Arithmetic," August 1996. [Online]. Available:
https://datatracker.ietf.org/doc/html/rfc1982.

[49] M. Bellare, R. Ng and B. Tackmann, "Nonces Are Noticed: AEAD Revisited," in Advances in
Cryptology – CRYPTO 2019, Springer, 2019, pp. 235-265.

[50] P. Rogaway and T. Shrimpton, "A Provable-Security Treatment of the Key-Wrap Problem," in
Advances in Cryptology - EUROCRYPT 200, Berlin, Heidelberg, 2006.

[51] T. Shrimpton, "A Characterization of Authenticated-Encryption as a Form of Chosen-Ciphertext
Security," 2004. [Online]. Available: https://eprint.iacr.org/2004/272.

[52] IETF RFC 3385, “Internet Protocol Small Computer System Interface (iSCSI) Cyclic Redundancy
Check (CRC)/Checksum Considerations,” September 2 2. Online . Available:
https://datatracker.ietf.org/doc/rfc3385/.

https://media.defense.gov/2022/Sep/07/2003071836/-1/-1/0/CSI_CNSA_2.0_FAQ_.PDF
https://nvlpubs.nist.gov/nistpubs/SpecialPublications/NIST.SP.800-131Ar2.pdf
https://www.ietf.org/archive/id/draft-irtf-cfrg-aead-properties-09.html
https://nvlpubs.nist.gov/nistpubs/SpecialPublications/NIST.SP.800-108r1-upd1.pdf
https://csrc.nist.gov/files/pubs/fips/197/final/docs/fips-197.pdf
https://nvlpubs.nist.gov/nistpubs/SpecialPublications/NIST.SP.800-38B.pdf
https://csrc.nist.gov/Projects/Cryptographic-Algorithm-Validation-Program/Key-Derivation
https://csrc.nist.gov/Projects/Cryptographic-Algorithm-Validation-Program/Key-Derivation
https://datatracker.ietf.org/doc/html/rfc3635
https://www.rfc-editor.org/rfc/rfc9001.html
https://www.rfc-editor.org/rfc/rfc9001.html
https://datatracker.ietf.org/doc/html/rfc8645
https://datatracker.ietf.org/doc/html/rfc1982
https://eprint.iacr.org/2004/272
https://datatracker.ietf.org/doc/rfc3385/

 451

Copyright © 2025 Ultra Ethernet ConsortiumTM. All rights reserved.

4 UE Network Layer

4.1 Packet Trimming

Network switches store packets in buffers prior to forwarding them on busy egress ports. Available

buffer memory in modern switches is scarce as it is typically implemented as SRAM and is limited by chip

area. If the buffer is unable to accommodate an arriving packet, a switch either drops the packet or

signals the upstream port to pause the flow of traffic. Both solutions are known to have performance

issues.

This specification defines a mechanism that responds to buffer shortage in switches: In short, switches

trim the packet payload and use a different traffic class to forward the resulting header to the

destination.

This specification focuses only on sending the trimmed packet to the destination. Sending a trimmed

packet back to the source, as proposed in [2] , [4] is not part of this specification.

Informative text: Motivation
In modern data centers, switch buffers are under pressure for a few reasons. Chip bandwidth is
doubling every 18 months, but chip cost/area and power consumption are not scaling equivalently,
constraining the total amount of buffer available. Certain datacenter traffic patterns, on the other
hand, are synchronized and often involve line-rate bursts from multiple senders to the same
destination (a pathology called incast), placing pressure on limited switch buffers.
Today, switches commonly operate in two modes: best effort and lossless.
In best-effort mode, when a packet arrives and it does not fit in the available buffer on the switch, the
packet is dropped. This approach simplifies the handling of switch buffer overload scenarios but poses
challenges for transport protocols, which must detect lost packets and handle their retransmission.
In single-path transport protocols, this typically involves setting a threshold for out-of-order received
packets—such as TCP’s three duplicate ACKs—to determine if a packet has been lost. This works if the
dropped packet does not happen at the tail of a transmission; in such cases probes may be needed to
avoid expensive retransmit timeouts.
For a packet-spraying transport such as UET, detecting packet loss using an out-of-order degree
threshold is more challenging. Packets may be buffered on congested paths and arrive significantly
later, necessitating a large out-of-order degree threshold to prevent spurious retransmissions. For
packet-spraying transports, packet loss detection can still use probes, sent on each possible path, but
this comes at a higher cost.
In lossless mode, when a packet arrives and the receive buffer utilization exceeds a threshold, the
switch sends a PFC message on the ingress port where the packet was received, causing the upstream
switch to pause further transmission until the receive buffer has sufficient space to store packets.
Lossless mode has the advantage of reducing packet loss to a minimum (loss will generally occur only
due to bit errors uncorrected by Ethernet FEC or when the PFC headroom fills up), but it brings its
own problems: congestion spreading, tree saturation, and a risk of deadlocks (e.g. see [1] for a
description of some of the issues encountered in a production network).

Packet trimming is useful functionality that can improve packet loss detection. Packet trimming MUST

only be performed on valid IP packets that fail buffer admission checks. Conceptually, packet trimming

normally occurs at the point of buffer admission, after switch ingress processing has validated the L2

 452

Copyright © 2025 Ultra Ethernet ConsortiumTM. All rights reserved.

frame and the L3 header, and the switch next hop lookup has found a valid egress port for the packet.

However, this depends on switch-architecture.

Packet trimming helps transports that accept trimmed packets and use the information in these packets

to enable fast retransmission of the original packets.

Packet trimming uses at least two categories of differentiated service codepoints (DSCPs) that are

configured by the network operator: The first category is for packets that are eligible for trimming

(called TRIMMABLE). and the second is for packets that have been trimmed (TRIMMED). Only packets

belonging to the TRIMMABLE category can be trimmed. Each category of DSCPs MUST include at least

one value. Example DSCP values from the trimmable category are {1,2,3} and from the trimmed

category are {4,5,6}; however, this spec does not place any constraints on the values of the DSCPs used.

For each network device (generically called switch) that supports trimming, the network operator MUST

associate (i.e., configure a mapping) a DSCP_TRIMMED codepoint with each DSCP_TRIMMABLE

codepoint. For instance, in the example above, we could have the following mappings: {1->4; 2->5; 3-

>6}. Multiple trimmable codepoints can be mapped to the same trimmed codepoint, if necessary.

The first step of trimming involves reducing the IP payload length to a length larger than or equal to the

MIN_TRIM_SIZE parameter. MIN_TRIM_SIZE is a lower bound, and it depends on both the transport

protocols used in the network as well as the tunneling protocols, if any. The actual trimmed IP payload

size MAY be influenced by architecture-specific constraints (e.g., switch cell size), and it MUST be larger

than or equal to MIN_TRIM_SIZE to allow the transport to detect the identity of the trimmed packet. For

instance, in the context of UE, MIN_TRIM_SIZE should be large enough to ensure the trimmed packet

contains the parts of the PDS header that include the PSN, PDC identifiers and any tunnel encapsulation

identification fields (e.g., VXLAN header - if present). MIN_TRIM_SIZE is a network-wide configuration

parameter that depends on the transport and tunneling/virtualization protocols (if any) used in the

network. Guidelines on how to select MIN_TRIM_SIZE are provided in Table 4-1.

When an incoming packet with a DSCP that is DSCP_TRIMMABLE fails buffer admission, the switch MUST

trim the incoming packet. The trimmed packet size MUST NOT be larger than the original packet size.

When the incoming packet’s IP payload length is smaller than MIN_TRIM_SI E and buffer admission

fails, the switch MAY treat the packet as trimmed (without updating its length but updating its DSCP, as

below), or it MAY drop the packet.

Trimming aims to reduce the amount of information carried by the network in overload scenarios: It

reduces the size of the data packets by dropping their payload, turning them into trimmed packets.

Trimming is most effective when it is applied to large data packets (e.g., 4 KB), because it reduces the

data rate significantly (e.g., on the order of 4 KB/MIN_TRIM_SIZE) while enabling single RTT loss

detection. Conversely, trimming packets just fractionally larger than MIN_TRIM_SIZE provides little data

reduction and can even be detrimental if a large fraction of bandwidth is used by trimmed packets. To

disable trimming for smaller packets, transport protocols SHOULD mark such packets as non-trimmable

by using an appropriate DSCP.

 453

Copyright © 2025 Ultra Ethernet ConsortiumTM. All rights reserved.

After trimming, the switch MUST set the DSCP header field in the IP header to the corresponding

DSCP_TRIMMED codepoint associated with the DSCP_TRIMMABLE codepoint in the original packet. This

allows the endpoint to detect that the packet was trimmed and will signal to downstream processing

that the packet was trimmed.

After trimming, the trimmed packet MUST be a valid IP packet; thus, the switch MUST update the IP

total length field to reflect the new size and MUST update the IP header checksum to ensure subsequent

switches do not inadvertently drop the resulting packet. The Ethernet frame check sequence field MUST

also be updated.

The trimmed packet MUST be treated as a new incoming packet for DSCP_TRIMMED for any subsequent

processing within the switch performing trimming, which means that it MUST obey buffer admission

rules for the queue associated with DSCP_TRIMMED codepoint on the appropriate egress port. If buffer

admission fails for the queue associated with DSCP_TRIMMED, the normal procedure for queue

overflow should be followed (e.g., typically the packet will be dropped).

The following pseudocode describes switch behavior when trimming IPv4 / IPv6 packets:

// A switch has two queues per port: queue_trimmable and queue_trimmed.

// queue_trimmable and queue_trimmed SHOULD be mapped to different physical

// queues. While not recommended, queue_trimmable and queue_trimmed MAY be

// mapped to the same queue, but with smaller drop thresholds for TRIMMABLE

// packets.

OnRX(pkt): //switch ingress pipeline processing

if pkt.IP.DSCP == DSCP_TRIMMED: //already trimmed packets

 if (queue_trimmed.size < queue_trimmed.drop_threshold):

 enqueue(pkt,queue_trimmed)

 else:

 drop(pkt)

else if pkt.IP.DSCP == DSCP_TRIMMABLE:

 if queue_trimmable.size < queue_trimmable.drop_threshold:

 //queue_trimmable is the relevant queue associated with

DSCP_TRIMMABLE

 enqueue(pkt,queue_trimmable)

 else: //trim the packet

 trim(pkt)

 if (queue_trimmed.size < queue_trimmed.drop_threshold):

 enqueue(pkt,queue_trimmed)

 else:

 drop(pkt)

else:

 //all other packets - normal processing applies:

 //e.g. enqueue or drop on failed admission checks, etc.

trim(pkt):

 pkt.IP.DSCP = DSCP_TRIMMED

 PKT_TRIM_SIZE = IP payload size after trimming; must be at least

MIN_TRIM_SIZE.

 if (pkt.IP.version == 4)://IPv4 processing

 pkt.IP.payload = pkt.IP.payload[0:PKT_TRIM_SIZE]

 454

Copyright © 2025 Ultra Ethernet ConsortiumTM. All rights reserved.

 pkt.IP.TotalLength = PKT_TRIM_SIZE + IP.HeaderLength * 4

 update(pkt.IP.HeaderChecksum)

 else if (pkt.IP.version == 6): //IPv6 processing

 pkt.IP.payload = pkt.IP.payload[0:PKT_TRIM_SIZE]

 pkt.IP.PayloadLength = PKT_TRIM_SIZE

 //the frame FCS must be recomputed to transmit after trimming.

 pkt.Ethernet.FCS = ...

The TTL processing of the trimmed packet is the exact same behavior of the non-trimmed packet.

The buffer admission thresholds for both trimmable and trimmed packets in the pseudocode above are

given as static thresholds for simplicity. However, dynamic buffer admission thresholds SHOULD also be

supported for both trimmable and trimmed packets.

While a packet with a DSCP_TRIMMED codepoint SHOULD follow the same path through the network as

the associated DSCP_TRIMMABLE packet, switches MAY select different paths for trimmed packets to

the same destination.

While packet trimming is very useful to ensure single RTT loss detection and thus to trigger fast

retransmission, there is no guarantee that for each packet failing buffer admission checks a trimmed

packet will be delivered to the destination. This is because trimmed packets are still subject to packet

loss at the trimming switch, at subsequent switches along the path, or at the destination. Thus,

transport protocols are required to implement loss detection mechanisms (e.g., timeouts) to use as a

backstop when a packet is lost and an associated drop notification is not delivered to the receiver.

Informative text: Rationale for Trimming Design
Packet trimming is a form of drop notification; packet switches have long had monitoring capabilities
to at least record packet drops, typically by sending the first 64B of the dropped packet to a
configured monitor. When a drop happens, the drop notification can be sent to the packet receiver or
sender instead, to speed up loss recovery.
An initial proposal that integrated drop notification as a part of the dataplane was the FastLane work
from Berkeley [4] . Here, when a packet fails buffer admission, a notification is sent to the packet’s
source. This approach, also called back-to-sender (BTS), delivers faster notification to the sender, but
it is more complex to implement especially when encapsulation (e.g., VXLAN) is used. Another
relevant work in this space is the IEEE draft on Source Flow Control (SFC, P802.1Qdw) that targets a
broader scope and includes back-to-sender and source flow control [7] . Standardizing the BTS mode
of operation is not addressed in this specification.
The Cut Payload paper is the first proposal that suggested sending the drop notification to the
receiver instead [3] . Sending the notification to the receiver is simpler to support in switches, as it
involves only editing the packet length and the DSCP field. It also has the advantage that it enables
near-optimal incast behavior via receiver credit scheduling as proposed by pHost [5] , NDP [2] , and
Homa [6] .
With Cut Payload, when a certain buffer admission threshold has been passed, the incoming packet’s
payload is trimmed and the packet enqueued in the same queue. The packet is otherwise left
unchanged. Cut Payload has the advantage of requiring a single traffic class, but it has the drawback
that it can lead to congestion collapse under some extreme scenarios: When packets are arriving

 455

Copyright © 2025 Ultra Ethernet ConsortiumTM. All rights reserved.

faster in the congested queue than the drain rate of their (trimmed) headers, in steady state the
network will carry just headers, and no useful data.
An evolution of Cut Payload called packet trimming was proposed in the NDP paper [2] . The key
difference is that trimmed packets are placed into a separate traffic class. Because the associated
queue is typically empty, a first benefit is that trimmed packets bypass data packets and arrive quickly
at the destination, enabling them to request fast retransmission. Fast retransmission enables the safe
configuration of aggressively small buffer thresholds for data packets, typically at around 1
bandwidth-delay product.
A second benefit of utilizing two traffic classes is to restrict the bandwidth available to trimmed
packets, preventing congestion collapse. Fair-queueing allows trimmed packets to consume no more
than 50% of the bandwidth, while aggressively prioritizing the headers, which are significantly smaller
in size. For example, approximately 60 headers can be forwarded for every 4 KB MTU data packet.
WDRR with 25% of the bandwidth allocated to trimmed packets is also a good configuration option,
at the expense of moderate trimmed packet loss in large incasts.

4.1.1 Interactions with explicit congestion notification

Admitted packets with a DSCP_TRIMMABLE codepoint may be subject to ECN marking if configured by

the network administrator. ECN configuration is therefore orthogonal to trimming for trimmable

packets.

A switch SHOULD NOT perform ECN marking on trimmed packets. This applies to the packets trimmed at

the switch or arriving with a DSCP_TRIMMED codepoint. Because trimming does not change the ECN

bits (see paragraph above), and trimmed packets are not subject to ECN marking, the trimmed packets

carry the ECN bits of the original data packet. The original ECN bits are useful for congestion control.

CMS section 3.6.17 provides guidance on appropriate ECN configuration for UET.

4.1.2 Where can trimming be enabled?

Trimming requires that the destination can identify a trimmed packet and process it accordingly.

Networks SHOULD prevent destinations that do not support trimming from receiving trimmed packets.

Such packet reception may result in undesirable behavior (e.g., a trimmed packet passing header

validation checks and then being processed by the upper layers as a regular packet). This implies that

trimming is appropriate for backend, datacenter, or enterprise networks where the network operator

has knowledge of trimming support and can control DSCP_TRIMMABLE codepoint assignment. If a

destination is within the public Internet, it is not possible to know whether the receiver supports

trimming; therefore, trimmed packets SHOULD NOT be forwarded outside the backend, datacenter, or

enterprise network.

4.1.3 Interactions with upper protocols

Packet trimming SHOULD NOT change any upper layer header fields beyond the outer IP header.

When a trimmed packet is given to the destination FEP or a switch, it MUST have a DSCP_TRIMMED

codepoint regardless of any intermediate representations or encapsulations used in the network. When

the trimmed packet uses IPv4, the header checksum field MUST be valid.

 456

Copyright © 2025 Ultra Ethernet ConsortiumTM. All rights reserved.

Trimmed packets are typically consumed by upper layer protocols to ensure fast retransmission of lost

packets. As such, these protocols MUST be trimming-aware when trimming is enabled and MUST be

able to identify the original packet based on the trimmed packet they received. To enable this

identification, MIN_TRIM_SIZE MUST be set to a value large enough to provide enough information for

the upper layer protocol to identify the original packet that was trimmed.

For example, to support trimming with UET, MIN_TRIM_SIZE MUST be configured to a value that

ensures that, after trimming, all the headers up to and including the PDS request/response header are

kept, to preserve path entropy (for load balancing), the tunnel encapsulation information (if present -

for host transport demultiplexing), as well as the PSN and PDC identifiers (to identify the packet).

When multiple encapsulation types are simultaneously used within the same network, the

MIN_TRIM_SIZE value MUST be set to the maximum size needed to preserve all relevant transport

headers. Switches MAY dynamically determine the appropriate MIN_TRIM_SIZE based on the

encapsulation type of each packet.

Table 4-1 summarizes the requirements for MIN_TRIM_SIZE.

Table 4-1 - Trim Size Requirements for Various Transport Protocols14

Transport protocol Transport layer fields to be kept after trimming MIN_TRIM_SIZE

Ultra Ethernet Transport/IP Entropy header (4 B), PDS request header (16 B) 20 B

Ultra Ethernet
Transport/UDP/IP

UDP (8 B), PDS request header (16 B) 24 B

UET/IPv4 over VXLAN UDP (8 B), VXLAN (8 B), Ethernet (14 B), IP (20 B), entropy
header (4 B), PDS request header (16 B)

70 B

UET/UDP/IPv4 over VXLAN UDP (8 B), VXLAN (8 B), Ethernet (14 B), IPv4 (20 B), UDP
(8 B), PDS request header (16 B)

74 B

UET/UDP/IPv6 over VXLAN UDP (8 B), VXLAN (8 B), Ethernet (14 B), IPv6 (40 B), UDP
(8 B), PDS request header (16 B)

94 B

The numbers in Table 4-1 make several assumptions about the header stack of received packets. For

example, the table assumes security is not enabled for UET. If security is enabled, the UET security

header sits before the PDS header; thus the MIN_TRIM_SIZE must be increased with the size of the UET

security header (16 B). The table assumes the inner packet carried within a VXLAN tunnel does not

include VLAN tags. Additionally, the table assumes no IP options exist, and other headers have no

optional extensions.

4.1.4 Mapping DSCPs to traffic classes for Ultra Ethernet transport

Tables in section 3.6.4.7 provide a mapping of DSCP values to traffic classes for UET. The traffic classes

are generically named TC_low, TC_med, and, TC_high, and their use depends upon the type of UET

packet and whether the network is best-effort or lossless. Implementations are free to map DSCPs to

additional traffic classes; however, the mapping is intended to maintain the independent queuing and

14 When IP version is not specified, the value applies to both IPv4 and IPv6.

 457

Copyright © 2025 Ultra Ethernet ConsortiumTM. All rights reserved.

processing of the different packet types as specified in section 3.6.4.7 of the congestion management

sublayer chapter.

4.1.4.1 Single instance of UET per network

As specified in the congestion management section 3.6.4.7, UET RECOMMENDS the use of three traffic

classes for each UET PDC: low priority for UET data traffic (TC_low), medium priority for trimmed data

packets (TC_med), and high priority for UET control traffic (TC_high). Optionally, trimmed data packets

can use the TC_high traffic class if only two traffic classes are available. The priorities of the traffic

classes described here are relative to one another and not necessarily relative to other traffic classes

used by non-UET traffic.

UET requires at least two DSCPs, one for data packets called DSCP_ TRIMMABLE and one for control

packets called DSCP_CONTROL. Switches MUST be configured to map packets with DSCP_TRIMMABLE to

the TC_low traffic class and DSCP_ CONTROL to the TC_high traffic class (see 3.6.4.7of CMS).

If trimming is enabled, UET data packets SHOULD be marked as trimmable by setting the DSCP field to a

value from the trimmable category (e.g., see section 4.1 with respect to DSCP_TRIMMABLE).

Switches MUST place trimmed packets into a different traffic class than untrimmed data packets to

ensure rapid delivery to the destination. Trimmed and control packets SHOULD be placed in separate

traffic classes, TC_med and TC_high respectively.

The codepoint configured for DSCP_TRIMMED MUST be distinct from DSCP_TRIMMABLE.

The codepoint configured for DSCP_TRIMMED MUST be different from DSCP _CONTROL. This enables

the receiver to easily detect trimmed packets and allows the implementation of different drop

thresholds in the switches for the TC_med traffic class, thus protecting the control traffic from excessive

trimmed traffic.

For DSCPs from the trimmed category (see section 4.1), it is also useful if the receiver can distinguish

between incast (last hop) trims and non-last hop trims.

A unique DSCP called DSCP_TRIMMED_LAST_HOP SHOULD be set on packets that are trimmed at the

last hop switch (e.g. top-of-rack (TOR)) and are destined to directly connected hosts (e.g., TOR

downlinks). In such cases, packets with DSCP_TRIMMED_LAST_HOP are mapped to the TC_med or the

TC_high traffic class if only two TCs are available.

In summary, for a single UET instance, three traffic classes are RECOMMENDED and between three and

four DSCPs are used, depending on DSCP availability. The recommended number of DSCPs is four:

DSCP_TRIMMABLE for data and trimmable packets, DSCP_CONTROL for control packets,

DSCP_TRIMMED for trimmed packets, and DSCP_TRIM_LASTHOP for last hop trimmed packets.

4.1.4.2 Multiple instances of UET per network

In some circumstances, two isolated instances of UET may be running in the same network but using

different traffic classes. In this case, the single-instance UET model described above can be extended. To

 458

Copyright © 2025 Ultra Ethernet ConsortiumTM. All rights reserved.

extend the traffic class mapping for the multiple instance case, additional DSCP values for

DSCP_TRIMMABLE can be used, called DSCP_TRIMMABLE1 and DSCP_TRIMMABLE2, which are mapped

to two different lower-priority traffic classes.

A shared higher-priority traffic class SHOULD be used for the control traffic of both instances.

Alternatively, deployments MAY choose to use separate traffic classes, if available, to isolate control

traffic for each UET instance.

Using a single traffic class for control traffic avoids overusing scarce traffic classes in the network. This,

however, reduces isolation between UET instances, because one instance with excessive control traffic

may reduce performance for another instance.

In the case where a common DSCP_CONTROL codepoint is used for the control traffic of multiple

instances, the DSCP_TRIMMED codepoint SHOULD be mapped to a different medium-priority or high-

priority traffic class. When traffic classes are scarce, trimmed packets MAY be also mapped to the

higher-priority traffic class, and packets other than DSCP_CONTROL packets SHOULD have a lower drop

threshold to reduce the chance that bursts of trimmed packets lead to control packet loss.

When using a single DSCP for all control packets and another DSCP for trimmed packets from multiple

UET instances, the DSCPs can be used to correctly identify trimmed packets. However, the target FEP

cannot rely on the DSCP field to demultiplex between trimmed packets belonging to different UET

transport instances.

With this approach, when running N UET instances, the network will be configured to have N + 2 traffic

classes and N+3 DSCPs: one codepoint for each of the N data packet codepoints mapping to the N data

traffic classes (lower priority); one codepoint for control packets mapping to the control traffic class

(higher priority); and one codepoint for trimmed and one for trimmed last-hop packets, mapping to the

trimmed traffic (medium priority).

The alternative is to use a separate set of traffic classes for each UET instance. This provides better

isolation between the control and trimming traffic for the instances of UET transport at the expense of

using additional traffic classes. For example, when a sufficient number of traffic classes are available, a

straightforward approach is for two UET instances to utilize four distinct codepoints for trimmed

packets: DSCP_TRIMMED1, DSCP_TRIMMED_LAST_HOP1, DSCP_TRIMMED2, and,

DSCP_TRIMMED_LAST_HOP2. One pair of codepoints are configured for each UET instance, and the

codepoints are mapped to the respective medium priority traffic classes.

In total, if the network has N UET instances, it will use N*3 traffic classes and a minimum of N*4 DSCPs.

This approach is expensive, both in the number of traffic classes used and the number of codepoints

used, but offers the best isolation.

 459

Copyright © 2025 Ultra Ethernet ConsortiumTM. All rights reserved.

4.1.5 Mapping DSCPs to traffic classes for other transports

The DSCPs used in packet trimming can be mapped to traffic classes in multiple ways, depending on the

availability of traffic classes, the requirements of the host transport and applications that utilize the

trimming information, and the operator’s requirements.

To implement cut payload [3] -style behavior, both DSCP_TRIMMABLE and DSCP_TRIMMED codepoints

SHOULD be mapped to the same traffic class in the network. The drop threshold for packets with

DSCP_TRIMMABLE SHOULD be set to a lower value than the drop threshold for packets with

DSCP_TRIMMED, as shown in Figure 4-1; otherwise, all trimmed packets may be dropped.

To implement NDP [2] -style behavior, DSCP_TRIMMABLE and DSCP_TRIMMED codepoints SHOULD be

mapped to two traffic classes (DSCP_TRIMMABLE to the TC_low traffic class and DSCP_TRIMMED to the

TC_high traffic class). The two traffic classes SHOULD be configured to share capacity in a weighted

deficit round-robin manner (e.g., fair queueing or 2:1 WDRR for class B). The result of this mapping is

that data packets from transports that support packet trimming are carried on the TC_low traffic class,

while the resulting headers (trimmed packets) are carried on the TC_high traffic class from the point

they are trimmed to their destination. This approach enables, at the cost of using two traffic classes

instead of one, faster delivery of trimmed packets and, with appropriate queue scheduling, can bound

the total bandwidth used by trimmed packets to a fraction of the link capacity. This removes the

possibility of congestion collapse.

4.1.6 Security considerations

In a zero-trust security model, networking infrastructure is not considered a trusted entity from the

endpoint’s perspective. A trimmed packet MAY allow the receiver to gain additional information from

the trimmed packet and affords rapid handling of the congestion information.

In the context of UET, trimming a packet prevents authentication, because portions of the packet are

removed including the authentication tag (the ICV). However, it MAY be possible to decrypt the trimmed

packet under some circumstances (for instance when the cipher used is AES in counter mode).

In the context of the receiver, processing of unauthenticated encrypted trims MUST NOT: (a) cause a

change of state of the connection, beyond what an attacker can achieve via ECN marking or dropping

packets, or (b) cause data from the trimmed packet to be accepted or subsequent data to be rejected. In

particular, the arrival of a trimmed packet MUST NOT cause a congestion response or retransmission to

take place beyond what would have happened if the packet was dropped. In response to receiving a

trimmed packet, a responder SHOULD send a signal (e.g., UET NACK) to the requestor indicating that the

request requires retransmission.

Figure 4-1 - Drop Threshold Settings

 460

Copyright © 2025 Ultra Ethernet ConsortiumTM. All rights reserved.

4.1.7 References

[1] C. Guo, H. Wu, Z. Deng, G. Soni, J. Ye, J. Padhye and M. Lipshteyn, "RDMA over commodity

ethernet at scale," in Proceedings of the 2016 ACM SIGCOMM Conference, 2016.

[2] M. Handley, C. Raiciu, A. Agache, A. Voinescu, A. W. Moore, G. Antichi and M. Wójcik, "Re-

architecting datacenter networks and stacks for low latency and high performance," in

Proceedings of the Conference of the ACM Special Interest Group on Data Communication, 2017.

[3] P. Cheng, F. Ren, R. Shu and C. Lin, "Catch the whole lot in an action: Rapid precise packet loss

notification in data center," in 11th USENIX Symposium on Networked Systems Design and

Implementation (NSDI 14), 2014.

[4] D. Zats, A. P. Iyer, G. Ananthanarayanan, R. H. Katz, I. Stoica and A. Vahdat, "FastLane: Agile drop

notification for datacenter networks," Dept. EECS, Univ. California at Berkeley, Berkeley, CA,

USA, Rep. UCB/EECS-2013-173, 2013.

[5] P. X. Gao, A. Narayan, G. Kumar, R. Agarwal, S. Ratnasamy and S. Shenker, "pHost: Distributed

near-optimal datacenter transport over commodity network fabric," in Proceedings of the 11th

ACM Conference on Emerging Networking Experiments and Technologies, 2015.

[6] B. Montazeri, Y. Li, M. Alizadeh and J. Ousterhout, "Homa: A receiver-driven low-latency

transport protocol using network priorities," in Proceedings of the 2018 Conference of the ACM

Special Interest Group on Data Communication, 2018.

[7] IEEE P802.1Qdw, "Source Flow Control," 2022. [Online]. Available:

https://1.ieee802.org/tsn/802-1qdw/.

[8] IETF RFC 2119, "Key words for use in RFCs to Indicate Requirement Levels," 1997. [Online].

Available: https://www.rfc-editor.org/rfc/rfc2119.

https://1.ieee802.org/tsn/802-1qdw/
https://www.rfc-editor.org/rfc/rfc2119

 461

Copyright © 2025 Ultra Ethernet ConsortiumTM. All rights reserved.

5 UE Link Layer
The Link Layer Working Group is responsible for defining UE specifications that operate at and support

the link layer. These optional-to-implement specifications enhance performance and reliability of the

link layer while also simplifying configuration. The features defined by the UE link layer specifications

can operate with, and in some cases work as an alternative to, existing Ethernet link functionality.

The following sections describe the UE link layer specifications in detail:

1. Section 5.1 Link layer retry (LLR), which reduces the impact on latency when a packet is lost due

to imperfect links. LLR requires only a single-link round-trip time to determine loss and restart

the flow of packets.

2. Section 5.2 Credit-based flow control (CBFC) is an alternative mechanism to priority-based flow

control (PFC) flow control. Rather than sending PFC indications when a receive buffer is

approaching full, a CBFC receiver periodically sends buffer space updates (credits) to its link

partner. This allows the partner to preferentially send traffic on traffic classes with available

buffer space.

3. Section 5.3 Link negotiation allows UE devices supporting optional UE link layer features to

automatically determine if the link partner is capable of operating with the same mutually

supported UE link layer features. Link negotiation defines procedures and managed objects that

operate on top of existing IEEE Std 802.1AB (LLDP) implementations that are widely deployed.

 462

Copyright © 2025 Ultra Ethernet ConsortiumTM. All rights reserved.

5.1 Link Layer Retry (LLR)

The impact of delay on efficiency becomes more significant as network link speeds, utilization, and scale

increase. Latency-sensitive workloads are negatively impacted by the delays created from the traditional

end-to-end approach of retransmitting lost packets. Local error handling at the link layer has proven

valuable in scale-out HPC networks, such as those used in exascale systems. The UE specification

provides a link layer retry (LLR) capability for Ethernet.

The LLR mechanism is frame-based. Each frame passed to the transmit LLR from the MAC client is

assessed for eligibility for LLR. If the MAC client does not desire LLR for the frame, or if it is otherwise

classified as LLR-ineligible, then the frame is sent as a standard Ethernet frame. If the frame is LLR-

eligible, then the LLR TX assigns a sequence number and stores the frame in a replay buffer for possible

retransmission if the link partner does not receive the frame.

The sequence number for each LLR-eligible frame passed from the LLR to the MAC is placed into the

preamble prepended by the MAC. The link partner sends acknowledgements (LLR_ACKs) for LLR-eligible

frames that are successfully received, and these LLR_ACKs are used to free space in the replay buffer.

Negative acknowledgements (LLR_NACKs) are used to signal when a missing LLR-eligible frame is

detected (due to receipt of a subsequent LLR-eligible frame). Timeouts are used to guarantee that LLR-

eligible frames will be replayed if an LLR_NACK is lost or if a replay is corrupted and there is no LLR_ACK

to indicate progress.

The receive MAC delivers LLR-eligible frames and LLR-ineligible frames to the LLR layer. For each LLR-

eligible frame, the MAC relays the sequence number of the LLR-eligible frame extracted from the

preamble. The LLR checks that the sequence number of the LLR-eligible frame is the next expected

MEDIUM

PRESENTATION

APPLICATION

SESSION

TRANSPORT

NETWORK

DATA LINK

PHYSICAL

OSI
REFERENCE

MODEL
LAYERS

MDI

PHY

MAC – MEDIA ACCESS CONTROL

MAC CONTROL (OPTIONAL)

LLC (LOGICAL LINK CONTROL) OR OTHER MAC CLIENT

HIGHER LAYERS

ETHERNET
LAYERS

RECONCILIATION

xGMII*

LLR (LINK LEVEL RETRY) (OPTIONAL)

*xGMII includes CGMII/200GMII/400GMII/800GMII

Figure 5-1 - Architectural position of LLR.

 463

Copyright © 2025 Ultra Ethernet ConsortiumTM. All rights reserved.

sequence number. The LLR discards LLR-eligible frames that are not expected and returns an LLR_NACK

to the link partner to indicate that a frame has been lost.

During normal operation, the LLR receiver periodically sends LLR_ACKs that acknowledge the most

recent successfully received frame. When an out-of-sequence frame is received, a single LLR_NACK is

sent to indicate the error. No further LLR_ACKs or LLR_NACKs are sent until the frame with the expected

sequence number is successfully received.

LLR provides lossless link operation for data from the Ethernet LLC/MAC client layer. In the standard

IEEE layering model, LLR is located between the LLC/MAC client layer and MAC control layer. LLR is

above the MAC control layer because the sending of pause frames from the MAC control layer is not

blocked by LLR while it is performing a replay operation. However, it should be noted that the reception

of pause frames does not stop the replay of previously sent data frames by LLR and acts only on new

data frames (LLR-ineligible or LLR-eligible) from the LLC/MAC client layer. In this respect, showing the

LLR above the MAC control layer is slightly misleading, and care should be taken when implementing the

pause mechanism. Priority-based flow control (PFC) frames interact with LLR in the same way as pause

frames.

The correct MAC control pause behavior is achieved by bypassing the MAC control request and

information interfaces around the LLR. Requests to send pause frames are made to the MAC control

layer directly from the LLC/MAC client and are made irrespective of the LLR’s current state. Similarly,

received pause frame indications are passed around the LLR to the LLC/MAC client and do not affect the

LLR operation.

MAC:MA_DATA.request

MAC

MAC:MA_DATA.indication

MAC Control

LLR:MA_DATA.indication

LLR

LLR:MA_DATA.request

MAC client

MA_CONTROL.indication

MA_CONTROL.request

MCF:MA_DATA.indication

MCF:MA_DATA.request

LLR

Figure 5-2 - MAC Control interface connectivity.

 464

Copyright © 2025 Ultra Ethernet ConsortiumTM. All rights reserved.

Because received pause frames stop only new MAC client data being passed to the LLR and do not stop

LLR replay data, it is important that the maximum amount of data held in the replay buffer not be much

greater than the bandwidth-delay product for the link15. If the LLR replay buffer were to contain

significantly more data than the bandwidth-delay product, then pause would not operate as expected. A

configuration is provided in the LLR to limit the maximum amount of data held in the replay buffer.

5.1.1 Frame structure

The UE LLR specification introduces a new modified frame preamble, usable with both IPv4 and IPv6

addressing to support link layer retry (LLR). When UE features such as LLR are not in use, UE link frames

are indistinguishable from standard IEEE 802.3 Ethernet frames.

All frames MUST begin with the 8-byte UE link frame preamble defined in section 5.1.1.1.

5.1.1.1 UE Link frame preamble

The UE link frame preamble is shown in Table 5-1. LLR-ineligible frames carry the standard preamble.

LLR-eligible frames are indicated by the 0x7 in Byte 1. For those frames, the LLR sequence number is

placed in bytes 1-3, using a 20-bit sequence number. With minimum 64-byte frames at 800 Gbit/sec, this

allows for a round-trip time of over 500 µs. The longest RTT is expected to be much less than 5 µsec, but

this field width allows for link speed increases in the future.

The remaining bytes (4-6) match those of LLR-ineligible frames.

Table 5-1 - MII Format for UE Link Frame Preamble

Frame type Byte

0

Byte

1

Byte

2

Byte

3

Byte

4

Byte

5

Byte

6

Byte

7

LLR-ineligible 0xFB 0x55 0x55 0x55 0x55 0x55 0x55 0xD5

LLR-eligible 0xFB [3:0] = 0x7
[7:4] =
frame_seq[19:16]

frame_seq[15:8] frame_seq[7:0] 0x55 0x55 0x55 0xD5

The UE link frame preamble (start block) uses the same block type field as specified in IEEE Std 802.3-

2 22, clause 82.2.3.3, with sync header set to 2’b1 and control block field of x 8, as shown in Table

5-2. Both the block type field and octets D1 through D7 are transmitted from least-significant bit to most-

significant bit. For example, an LLR-eligible frame with frame_seq[19:0]=0x4A2D3 would result in the

following preamble being transmitted:

10_00011110_11100010_01000101_11001011_10101010_10101010_10101010_10101011

15 The process for buffer sizing, accounting for the link bandwidth-delay product, is outside the scope of this
specification and should be performed by the implementer.

 465

Copyright © 2025 Ultra Ethernet ConsortiumTM. All rights reserved.

Table 5-2 - 64B/66B Block Format for UE Link Frame Preamble

Input Data

Sy
n

c
Block Payload

 Bit Position: 0 1 2 65

Control Block Format Block
Type
Field

S₀ D₁ D₂ D₃ D₄ D₅ D₆ D7 10 0x78 D₁ D₂ D₃ D4 D₅ D₆ D7

LLR-ineligible 10 0x78 0x55 0x55 0x55 0x55 0x55 0x55 0xD5

LLR-eligible 10 0x78 <3:0> = 0x7
<7:4> =

frame_seq<19:16>

frame_seq
<15:8 >

frame_seq
<7:0>

0x55 0x55 0x55 0xD5

5.1.2 Interface modifications

The transmit path interface from the MAC client to the LLR (MCF:MA_DATA.request) requires two

additional fields to support UE link operation.

Table 5-3 - MAC Client to LLR Transmit Path Additional Fields

Field Name Description

frame_desire_llr Indicates the desire for the frame to be sent as LLR-eligible.
Values: TRUE (LLR-desired), FALSE (Default transmission)

frame_bad Indicates that the frame payload data is bad.
This is used to ensure that errors are correctly propagated to the link partner but
will not trigger an LLR replay.

The transmit path interfaces from the LLR to the MAC control (LLR:MA_DATA.request) and from the

MAC control to the MAC (MAC:MA_DATA.request) each require three additional fields to support LLR

operation.

Table 5-4 - LLR to MAC Control to MAC Transmit Path Additional Fields

Field Name Description

frame_type Indicates the type of frame.
Values: LLR_ELIGIBLE, LLR_INELIGIBLE

poison_fcs Indicates that the MAC should send the frame with a poisoned FCS.
A poisoned FCS ensures that errors are correctly propagated to the link partner
but will not trigger an LLR replay.

llr_field The LLR-related control fields to be placed into the preamble of LLR_ELIGIBLE
frames by the MAC; consists of a 20-bit sequence number for the frame.

The LLR_INELIGIBLE frame type is used to send IEEE Std 802.3 format frames without any LLR protection.

Pause and PFC frames are always sent as LLR_INELIGIBLE. The LLR_ELIGIBLE frame type is used to send

IEEE 802.3 format frames with LLR protection.

 466

Copyright © 2025 Ultra Ethernet ConsortiumTM. All rights reserved.

The receive path interfaces from the MAC to the MAC Control and from the MAC Control to the LLR

each require three additional fields to support LLR operation.

Table 5-5 - MAC to MAC Control to LLR Receive Path Additional Fields

Field Name Description

frame_type Indicates the type of frame.
Values: LLR_ELIGIBLE, LLR_INELIGIBLE

fcs_status Indicates the status of the frame’s FCS.
Values: GOOD, POISONED, BAD
An FCS status of BAD allows the LLR to send an LLR_NACK to trigger a replay. An
FCS status of POISONED will not trigger the sending of an LLR_NACK but will
ensure that the error is propagated.

llr_field The LLR related control fields that are extracted from the preamble of
LLR_ELIGIBLE frames by the MAC.

The receive path interface from the LLR to the MAC client (MCF:MA_DATA.indication) requires one

additional field to support UE link operation.

Table 5-6 - LLR to MAC Client Receive Path Additional Field

Field Name Description

frame_bad Indicates that the frame payload data is bad. Frames received with either a
poisoned or bad FCS will set the frame_bad flag TRUE.

5.1.3 LLR Operation

The LLR has two modes of operation: OFF and ON. The OFF mode of operation disables LLR functionality

and removes its effects from the IEEE layering model so that a port behaves as an IEEE 802.3 standard

port. The ON mode of operation enables the LLR mechanism and provides lossless link-level behavior for

LLR-eligible frames, while providing IEEE 802.3 standard behavior for LLR-ineligible frames.

When the LLR mode is OFF, all frames are passed through the TX LLR from the MAC client to the MAC

control layer and are not stored in the replay buffer or assigned a sequence number. When the LLR

mode is OFF, all frames are passed through the RX LLR from the MAC control layer to the MAC client

layer without any frames being filtered.

When the LLR mode is ON, the LLR mechanism is active. All LLR-ineligible frames are passed through the

TX LLR from the MAC client to the MAC control layer and are not stored in the replay buffer or assigned

a sequence number, while all LLR-eligible frames are handled as described in the following sections.

When the LLR mode is ON, unexpected (sequence number missed or sequence number duplicated) LLR-

eligible frames are filtered by the RX LLR, while expected LLR-eligible frames and LLR-ineligible frames

(not terminated by the MAC control layer) are passed through the RX LLR to the MAC client layer

without being filtered.

 467

Copyright © 2025 Ultra Ethernet ConsortiumTM. All rights reserved.

5.1.3.1.1 Control Ordered Set

The LLR uses special Control Ordered Sets (CtlOS) to send control messages to the link partner when it is

in the ON mode. The PCS periodically inserts CtlOS into the data stream in a manner that is oblivious to

the data frames being sent (i.e., CtlOS can be sent pre-emptively). This limits the maximum latency for

sending control messages to the link partner and provides a guaranteed bandwidth for those control

messages.

Note that support for these CtlOS must be present in the MAC and in the PCS and RS of the physical

layer. This includes supporting the additional Control Ordered Sets described below, with indicated data

fields. That data needs to be communicated from/to the LLR layer. Lastly, the PCS must support the

existence of CtlOS in the block stream, including during frame data. See the UE PHY specification for

additional details.

There are four types of CtlOS that the LLR needs to send and receive:

Table 5-7 - LLR Control Ordered Sets

CtlOS Type Description

LLR_ACK LLR frame acknowledgement.

LLR_NACK LLR frame negative acknowledgement.

LLR_INIT Sent to initialize the next_rx_seq state in the link partner.

LLR_INIT_ECHO Sent to indicate that an LLR_INIT CtlOS has been received and processed and that the
station is ready to receive LLR frames.

In addition to the standard 802.3-defined Sequence ordered sets, the UE LLR specification defines a

Control Ordered Set (CtlOS) for purposes of LLR messaging. The corresponding 64B/66B block formats

are shown in Table 5-8 — which matches the format of Figure 82-5 - 64B/66B block formats in IEEE Std

802.3-2022.

Table 5-8 - UE LLR Link Control Ordered Set 64B/66B Block Format

Input Data

Sy
n

c
Block Payload

 Bit Position: 0 1 2 65

Control Block Format Block
Type
Field

O₀ D₁ D₂ D₃ D₄ D₅ D₆ D7 10 D0 D₁ D₂ D₃ O0 D4[7:4] D₅ D₆ D7

LLR_ACK 10 0x4B 0x01 ack_nack_seq
<19:4>

0x6 ack_nack_seq <3:0> 0 0 0

LLR_NACK 10 0x4B 0x02 ack_nack_seq
<19:4>

0x6 ack_nack_seq <3:0> 0 0 0

LLR_INIT 10 0x4B 0x03 init_seq <19:4> 0x6 init_seq <3:0> init_data<15:0> 0

LLR_INIT_ECHO 10 0x4B 0x04 init_seq <19:4> 0x6 init_seq <3:0> init_data<15:0> 0

 468

Copyright © 2025 Ultra Ethernet ConsortiumTM. All rights reserved.

The UE LLR Link Control Ordered Set feature uses the same block type field as specified in IEEE 802.3-

2 22, clause 82.2.3. , with sync header set to 2’b1 , and control block field of x4B, and O code set to

0x6. Octets D1 through D3 and D5 through D7; the O code; and the upper four bits of octet D4 are all

transmitted from least-significant bit to most-significant bit. For example, an LLR_ACK with

ack_nack_seq[19:0]=0x12345 would result in the following CtlOS being transmitted:

 10_11010010_10000000_01001000_00101100_01101010_00000000_00000000_00000000.

For the LLR signaling CtlOS, D1 is set to the CtlOS message type. Four different message types are

supported and are identified by the value of D1: LLR_ACK, LLR_NACK, LLR_INIT, and LLR_INIT_ECHO (see

section 5.1.9 for more detail on the purpose of these messages). The 20-bit message sequence number

is carried in D2 (sequence number bits <19:12>), D3 (sequence number bits <11:4>), and D4[7:4]

(sequence number bits <3:0>). In addition, the LLR_INIT and LLR_INIT_ECHO types carry init data bits

<15:8> in D5 and bits <7:0> in D6. For example, an LLR_INIT with init_seq[19:0]=0x8A72C and

init_data[15:0]=0x4DE1 would result in the following CtlOS being transmitted:

10_11010010_11000000_01010001_01001110_01100011_10110010_10000111_00000000.

LLR_ACK/LLR_NACK Control Ordered Set should be transmitted periodically (according to

ctlos_target_spacing) to ensure an adequate frequency of communication between stations, with the

appropriate sequence number corresponding to the most recently processed received frame.

Implementations may deviate (for any given interval between successive Control Ordered Set) from the

target spacing, but the LLR_TX MUST transmit the CtlOS LLR_ACK / LLR_NACK at a rate between a

maximum rate of once every 400 bytes and a minimum rate of once every 17296 bytes16 (unless the

ACK/NACK transmit state machine is in the NACK_SENT state). To mitigate the impact on per-frame

switch latency, a CtlOS SHALL NOT be inserted among the first 256 bytes of a frame. Similarly, two CtlOS

within the same frame MUST be spaced apart by at least 2 kB of data so that underrun can be managed

on cut-through switches.

5.1.4 LLR configuration

The LLR REQUIRES certain configuration registers to be accessible to management software for the

purposes of configuring and controlling its operation. The llr_mode_local and llr_mode_remote are

enabled from the link negotiation process. The llr_mode_local is set when negotiation determines that

both ends of a link support LLR. The llr_mode_remote is set when negotiation receives indication from

the remote end of the link that its llr_mode_local has been set to ON.

Table 5-9 - LLR Configuration Registers

Variable name Description

llr_mode_local Configures the mode of operation of the LLR. Once this is set, an LLR_INIT may
be received.

16 Allowing a minimum rate of once every 17296 bytes provides a tolerance of up to 400+512 bytes beyond the
maximum configurable CtlOS_target_spacing value of 16384 bytes. The extra 912 bytes represents the cumulative
impact of implementation factors that can delay the specific point at which CtlOS is inserted into the stream, such
as insertion of a CtlOS from another function as well as avoiding a CtlOS within the first 256 bytes of a frame.

 469

Copyright © 2025 Ultra Ethernet ConsortiumTM. All rights reserved.

Variable name Description

Values: OFF, ON

llr_mode_remote Configures the mode of operation of the LLR. Once this is set, LLR_INIT may be
sent.
Values: OFF, ON

outstanding_seq_max A configuration for the maximum permitted value of outstanding_seq.
Values: 0 to 524288
The absolute maximum permitted value for outstanding_seq_max is 524288,
which is equivalent to consuming half of the total sequence number space.
An implementation is permitted to support a significantly lower maximum for
outstanding_seq_max than the absolute maximum value. Setting this register to
a value that is greater than an implementation’s own maximum is not allowed.

outstanding_data_max A configuration for the maximum permitted value of outstanding_data.
This SHOULD be set to the bandwidth delay product for the link to ensure
correct operation of the pause and PFC mechanisms.

replay_timer_max A configuration to set the value of replay_timer at which replay_timer_expired
is set and a replay is initiated.
Values: 0 to 65535 ns with a resolution better than 10 ns.

replay_ct_max A configuration to set the maximum number of times a replay is performed
before the LLR mechanism gives up and enters the FLUSH state. A value of 255
(i.e., all-ones) is used to indicate that there is no maximum.
Values: 0 to 255

pcs_lost_status_timer_max The value at which the pcs_lost_status_timer is considered to have expired. See
pcs_lost_status_timer and pcs_lost_status_timer_expired.
Values: 0 to 4.29 s with a resolution better than 100 ns.

data_age_timer_max The value at which the data_age_timer is considered to have expired. See
data_age_timer and data_age_timer_expired.
Values: 0 to 4.29 s with a resolution better than 100 ns.

llr_init_behavior Configures the behavior of the TX LLR when the TX state machine is in the INIT
state.
Values: DISCARD, BLOCK, BEST_EFFORT

llr_flush_behavior Configures the behavior of the TX LLR when the TX state machine is in the
FLUSH state.
Values: DISCARD, BLOCK, BEST_EFFORT

re_init_on_discard Configures the behavior in the event of an LLR replay failure.
Values: TRUE, FALSE
When the value is TRUE, then the LLR will attempt to re-initialize.
When the value is FALSE, then the LLR will wait for management intervention.

ctlos_target_spacing A configuration indicating the target number of bytes between transmission of
successive LLR_ACK / LLR_NACK CtlOS. Values 400 to 16384 with suggested
value 2048.

 470

Copyright © 2025 Ultra Ethernet ConsortiumTM. All rights reserved.

5.1.5 LLR transmit path operation

The LLR TX path is controlled by the state machine shown in Figure 5-3.

In addition to the state machine, the LLR TX path maintains the following variables to control its

operation, as shown in Table 5-10:

Table 5-10 - LLR TX Path Variables

Variable name Description

init_echo_sent The init_echo_sent variable is used by the ACK/NACK transmit state machine
shown in Figure 5-4 and pulses each time a valid LLR_INIT_ECHO Control
Ordered Set is sent (see 5.1.6).

tx_seq The sequence number to be used in the frame_seq field (of the frame
preamble) for the next LLR frame to be transmitted. Set to 0 whenever
llr_mode_remote is changed. Incremented by 1 at the end of each LLR frame
that is transmitted when llr_mode_remote is ON. The value wraps from all
ones to all zeros.
A 20-bit variable with values: 0 to 1048575

INIT

ADVANCE

llr_mode_remote == ON

init_echo_received

replay_done

FLUSH

re_init_on_discard

REPLAY

!pcs_lost_status_timer_expired &
!data_age_timer_expired &

(nack_received |
(replay_timer_expired &

!replay_ct_is_max))

pcs_lost_status_timer_expired |
data_age_timer_expired |
(replay_timer_expired &

replay_ct_is_max)

LLR_OFF

reset |
llr_mode_remote == OFF

Figure 5-3 - LLR transmit state machine.

 471

Copyright © 2025 Ultra Ethernet ConsortiumTM. All rights reserved.

Variable name Description

acked_seq Stores the sequence number acknowledged in the most recent successfully
received LLR_ACK or LLR_NACK. Set to all ones whenever llr_mode_remote is
changed. Set to init_seq-1 when an LLR_INIT CtlOS is sent.
A 20-bit variable with values: 0 to 1048575

outstanding_seq Contains the number of unacknowledged frames that have been transmitted.
The variable is determined as follows:

outstanding_seq = ((tx_seq – 1) – acked_seq) mod 1048576

A 20-bit variable with values: 0 to 524287

outstanding_data Contains the total amount of data (in bytes) for the unacknowledged frames.

nack_received Set to TRUE when an LLR_NACK is received. Set to FALSE when an LLR_ACK is
received. Also set to FALSE when in the LLR_OFF or INIT state or upon entry to
the REPLAY state.

replay_timer A timer used to initiate a replay in the event that an LLR_NACK is lost or a
replay is not successful.
The rules governing the operation of the replay_timer are as follows:
1) The replay_timer is set to zero and held at zero whenever

outstanding_seq is zero.
2) The replay_timer is activated (if not already) when the end of a new LLR

frame is transmitted.
3) The replay_timer is activated (if not already) when the end of a replay

frame is transmitted.
4) The replay_timer is set to zero when an LLR_ACK is received that is

acknowledging some frames held in the replay buffer. If the
outstanding_seq is non-zero after the LLR_ACK has been processed, the
replay timer is activated; otherwise it is held at zero (see rule 1).

5) The replay_timer is set to zero when an LLR_NACK is received. The
replay_timer is then held at zero until a replay commences (it will be
reactivated at the end of the first replay frame as described in rule 3). If
an LLR_ACK is received before the replay commences, then the replay
timer is activated again if the resulting outstanding_seq is non-zero (see
rule 4).

6) If the replay_timer reaches replay_timer_max, it has expired. It is then set
to zero and held at zero until a replay commences (it will be reactivated at
the end of the first replay frame as described in rule 3). If an LLR_ACK is
received before the replay commences, then that LLR_ACK should be
acknowledging some unacknowledged frames in the replay buffer. The
replay timer will then be activated again if the resulting outstanding_seq
is non-zero (see rule 4).

The replay timer SHOULD have a resolution better than 10 ns. The size of the
replay_timer should allow the timer to count 10x the expected LLR round trip
time for its intended use case. As an example, for links up to 500 m, a 16-bit
nanosecond timer is sufficient.

replay_timer_expired Set to one when the replay_timer reaches replay_timer_max.
It is set to zero when the state machine enters the REPLAY or FLUSH states. It
is also set to zero if an LLR_ACK is received that is acknowledging some
unacknowledged frames in the replay buffer.

replay_ct A count of the number of times a replay has been performed without receiving
an LLR_ACK for some unacknowledged frames.
It is incremented by one each time that the REPLAY state is exited.

 472

Copyright © 2025 Ultra Ethernet ConsortiumTM. All rights reserved.

Variable name Description

It is set to zero whenever an LLR_ACK is received for some unacknowledged
frames.
It is set to zero in the INIT state.

replay_ct_is_max Set to TRUE when the replay_ct is greater than or equal to the replay_ct_max
configuration value. If the replay_ct_max value is all ones, then
replay_ct_is_max is never set TRUE.

pcs_lost_status_timer A timer used to progress the LLR transmit state machine into the FLUSH state
when the PCS_status has been FALSE for too long (even if there are no
unacknowledged frames).
The rules governing the operation of the pcs_lost_status_timer are as follows:
1) The pcs_lost_status_timer is set to zero and stopped whenever the LLR

state is LLR_OFF, INIT, or FLUSH.
2) The pcs_lost_status_timer is activated whenever the PCS_status is FALSE.
3) If the pcs_lost_status_timer reaches pcs_lost_status_timer_max, it has

expired. It is then held at pcs_lost_status_timer_max until the LLR
transmit state machine enters the FLUSH state, at which point it will be
set to zero.

The pcs_lost_status_timer SHOULD have a resolution better than 100 ns. The
size of the pcs_lost_status_timer should allow the timer to count to 4 seconds.
A value of 0 causes immediate expiration of the timer. Support for non-zero
values is optional.

pcs_lost_status_timer_expired Set to TRUE when the pcs_lost_status_timer equals
pcs_lost_status_timer_max.

data_age_timer A timer used to time how long data has been resident in the replay buffer
without any forward progress being made on acknowledging the data.
The data_age_timer is an approximate measure of the age of the data in the
replay buffer without requiring an implementation to timestamp each frame.
Expiry of the data_age_timer will result in the data held in the replay buffer
being discarded.
The purpose of the data_age_timer is to discard data that is too old,
regardless of the number of replays that may have been performed. In
particular, it can be used if the replay_ct_max is set to all ones.
The rules governing the operation of the data_age_timer are as follows:
1) The data_age_timer is set to zero and stopped whenever outstanding_seq

is zero.
2) The data_age_timer is activated (if not already) when the end of a new

LLR frame is transmitted.
3) The data_age_timer is set to zero when an LLR_ACK or LLR_NACK is

received that is acknowledging some frames held in the replay buffer. If
outstanding_seq is non-zero after the LLR_ACK/LLR_NACK has been
processed, then the data_age_timer is activated; otherwise it is held at
zero (see rule 1).

4) If the data_age_timer reaches data_age_timer_max, it has expired. It is
then held at data_age_timer_max until the LLR state machine enters the
FLUSH state or is reset by rules 1 or 3 being met.

The data_age_timer SHOULD have a resolution better than 100 ns. The size of
the data_age_timer SHOULD allow the timer to count to 4 seconds.

data_age_timer_expired Set TRUE when the data_age_timer is equal to data_age_timer_max.

LLR_status Indicates the link status pertaining to LLR-eligible frames.

 473

Copyright © 2025 Ultra Ethernet ConsortiumTM. All rights reserved.

Variable name Description

When the llr_mode_remote is OFF, LLR_status takes the same value as
PCS_status (i.e., PCS_status is passed through the LLR to the management
agent unchanged).
When the llr_mode_remote is ON, LLR_status takes the value of TRUE when
the state machine is in the ADVANCE or REPLAY states, and it takes the value
of FALSE when in all other states. The LLR link stays up during LLR replays that
are occurring over a PCS loss of status (loss of alignment) event.

The TX LLR handles LLR-desired frames passed to it from the MAC client in the manner described below.

Three styles of behavior are permitted:

• DISCARD: The LLR takes LLR-desired frames from the MAC client and discards them without

passing them to the MAC control layer. These discards are counted in the tx_discards

counter.

• BLOCK: The LLR does not take any LLR-desired frames from the MAC client and effectively

blocks data transmission of LLR-desired frames from the higher layers. This mode of

operation guarantees lossless data delivery but might have undesirable effects on the higher

layers.

• BEST_EFFORT: The LLR takes LLR-desired frames from the MAC client and passes them to

the MAC control layer in the same manner as if the llr_mode_remote were OFF. That is, the

frames are not placed in the LLR replay buffer or assigned a sequence number, and the

frame_type is set to LLR_INELIGIBLE.

When the TX state machine is in the LLR_OFF state, then the TX LLR uses the BEST_EFFORT style for TX

LLR-desired frames. When the TX state machine is in the INIT state, then the TX LLR uses the

llr_init_behavior configuration to control how it handles TX LLR-desired frames. When the TX state

machine is in the FLUSH state, then the TX LLR uses the llr_flush_behavior configuration to control how

it handles TX LLR-desired frames. When the TX state machine is in the ADVANCE or REPLAY state, then

the TX LLR handles LLR-desired frames as follows:

• The TX LLR will not accept a new LLR-desired frame for transmission from the MAC client if

the state machine is not in the ADVANCE state.

• The TX LLR will not accept a new LLR-desired frame for transmission from the MAC client if

the outstanding_seq value is greater than or equal to outstanding_seq_max (where

outstanding_seq_max is <= 524288). Note that an implementation is not required to

support 524288 unacknowledged frames and may have an outstanding_seq_max value that

is considerably less than 524288. The maximum number of outstanding_seq that an

implementation supports will depend on the implementation’s sublayer delays, the

intended link length to be supported, and the minimum frame size that the implementation

supports.

• The TX LLR will not accept a new LLR-desired frame for transmission from the MAC client if

the outstanding_data value is greater than or equal to the outstanding_data_max. This is to

 474

Copyright © 2025 Ultra Ethernet ConsortiumTM. All rights reserved.

ensure the correct operation of the pause and PFC mechanisms by limiting the maximum

amount of data that can be replayed to the same amount as the bandwidth-delay product

for the link.

• The TX LLR will not accept a new LLR-desired frame for transmission from the MAC client if

there is not sufficient space in the replay buffer to store the entire LLR-eligible frame. The

LLR is not permitted to truncate LLR-eligible frames when it has run out of replay buffer

space. The size of the replay buffer is implementation-dependent and should be sized based

on the implementation’s sublayer delays and intended link length to be supported.

• When an LLR_NACK is received, the nack_received variable is set to TRUE. The TX LLR

completes the transmission of any frame (LLR-eligible or LLR-ineligible) that it is in the

middle of transmitting. It then transitions to the REPLAY state, where a replay of the LLR-

eligible frames held in the replay buffer is performed. Expiry of the replay_timer if the

replay_ct is less than replay_ct_max will also transition the state machine to the REPLAY

state.

Expiry of the replay_timer when the replay_ct equals replay_ct_max (if replay_ct_max is not 255 (i.e.,

all-ones)) will transition the state machine to the FLUSH state.

When in the FLUSH state, the LLR discards all frames held in the replay buffer without transmitting

them. The state machine will then transition to the INIT state if the re_init_on_discard control is TRUE.

5.1.6 Transmission of LLR_ACKs/LLR_NACKs

LLR_ACKs and LLR_NACKs are sent using Control Ordered Set (see Table 5-8). Transmitted LLR_ACKs and

LLR_NACKs contain a sequence number (ack_nack_seq) that is the sequence number of the most recent

successfully received LLR-eligible frame. A successfully received LLR-eligible frame is defined as one that

has an fcs_status of GOOD or POISONED and for which expected_frame is TRUE.

Once an LLR_INIT_ECHO has been sent by the local LLR, LLR_ACKs are periodically sent to the link

partner to indicate the sequence number of the most recent successfully received LLR-eligible frame.

Reception of an LLR-eligible frame with an unexpected sequence number (regardless of the value of

fcs_status), or reception of an LLR-eligible frame with the expected sequence number and an fcs_status

of BAD, will result in the sending of a single LLR_NACK. No further LLR_ACKs or LLR_NACKs will be sent

until an LLR-eligible frame is received with the expected sequence number and an fcs_status of GOOD or

POISONED. At that point, the sending of LLR_ACKs is resumed.

Implementation Note:

If a receiver drops an LLR-eligible frame and would also drop its retransmission (e.g., due to exceeding

the MTU), the LLR protocol expects the receiver to treat the original frame as correctly received to

prevent retransmission.

 475

Copyright © 2025 Ultra Ethernet ConsortiumTM. All rights reserved.

When the ACK/NACK transmit state machine is in the SEND_ACKS state, the LLR will send an LLR_ACK

that contains next_rx_seq – 1 whenever there is an opportunity to send a Control Ordered Set (subject

to the CtlOS transmission priority rules).

When the ACK/NACK state machine is in the SEND_NACK state, the LLR will send a single LLR_NACK at

the next opportunity (subject to the CtlOS transmission priority rules), then transition to the NACK_SENT

state.

No LLR_ACKs or LLR_NACKs are sent in the NACK_SENT state.

5.1.7 LLR receive path operation

The LLR receive path maintains the variables shown in Table 5-11 to control its operation.

Table 5-11 - LLR RX Path Variables

Variable name Description

init_echo_received The init_echo_received variable is used by the LLR transmit state machine shown in
Figure 5-3 and pulses each time a valid LLR_INIT_ECHO Control Ordered Set is
received (see 5.1.9.1.2).

OFF

SEND_
ACKS

(llr_mode_local == ON)
&& init_echo_sent

reset | (llr_mode_local == OFF)

SEND_
NACK

NACK_
SENT

missing_frame ||
expected_frame_bad

expected_frame_ok

nack CtlOS sent

Figure 5-4 - ACK/NACK transmit state machine.

 476

Copyright © 2025 Ultra Ethernet ConsortiumTM. All rights reserved.

Variable name Description

next_rx_seq The expected sequence number of the next LLR-eligible frame to be received.
It is set to the value contained in the LLR_INIT Control Ordered Set when an LLR_INIT
Control Ordered Set is received; it is incremented by one each time a LLR frame is
received that has an fcs_status of GOOD or POISONED and for which expected_frame
is TRUE.

next_rx_seq_vld Indicates that the value in next_rx_seq is valid.
Set to FALSE whenever the ACK/NACK transmit state machine enters the OFF state.
Set to TRUE when llr_mode_local is ON and an LLR_INIT Control Ordered Set has been
received.

frame_seq The sequence number for the LLR-eligible frame that is being processed.
A 20-bit variable with values: 0 to 1048575

expected_frame Is TRUE when the sequence number of a received LLR-eligible frame is the next
expected sequence number. The variable is determined as follows:
expected_frame = next_rx_seq_vld && (frame_seq == next_rx_seq)

expected_frame_ok Pulses TRUE when an LLR-eligible frame is received with an fcs_status of GOOD or
POISONED and expected_frame is TRUE.

expected_frame_bad Pulses TRUE when an LLR-eligible frame is received with an fcs_status of BAD and
expected_frame is TRUE.

duplicate_frame Is TRUE when the sequence number of a received LLR-eligible frame indicates that the
frame has already been successfully received.
(I.e., when the frame_se is ‘behind’ the next_rx_se)
duplicate_frame = next_rx_seq_vld && !expected_frame &&
 ((next_rx_seq – frame_seq) <= 524288)

missing_frame Is TRUE when the sequence number of a received LLR-eligible frame indicates that a
frame has been lost.
(I.e., when the frame_se is ‘ahead’ of next_rx_se)
missing_frame = next_rx_seq_vld && !expected_frame && !duplicate_frame

When llr_mode_local is ON, LLR-eligible frames are filtered by the RX LLR if expected_frame is FALSE.

5.1.8 Received ACK/NACK processing

The ack_nack_seq of received LLR_ACKs (or LLR_NACKs) should either match an unacknowledged frame

that is held in the replay buffer or be equal to acked_seq. This can be done by applying the following

equation:

ack_nack_seq_ok = (((tx_seq -1) – ack_nack_seq) mod 1048576 <= 524288) &&

 ((ack_nack_seq – acked_seq) mod 1048576 < 524288)

If ack_nack_seq_ok is FALSE, then the ack_nack_seq value is an error and the rx_ack_nack_seq_error

counter is incremented.

If ack_nack_seq_ok is TRUE and ack_nack_seq is not equal to acked_seq then the LLR_ACK/LLR_NACK is

acknowledging some frames in the replay buffer. The replay buffer can remove all the frames up to and

including the frame whose sequence number is the ack_nack_seq. The variable acked_seq is then

loaded with ack_nack_seq.

 477

Copyright © 2025 Ultra Ethernet ConsortiumTM. All rights reserved.

If an LLR_NACK is received, the nack_received variable is set to TRUE. When an LLR_ACK is received, the

nack_received variable is set to FALSE. The nack_received variable is also set to FALSE when the state

machine is in the INIT state or upon entry to the REPLAY state.

5.1.9 Control Ordered Set transmission and reception

5.1.9.1.1 LLR_INIT CtlOS

The LLR_INIT CtlOS is sent periodically when the LLR transmit state machine is in the INIT state. This

allows for the loss of the LLR_INIT or LLR_INIT_ECHO CtlOS due to link errors. The CtlOS contains an

init_seq value that is equal to the tx_seq variable. When an LLR_INIT CtlOS has been sent, a subsequent

LLR_INIT CtlOS is sent after at least four times the number of ctlos_target_spacing bytes have been

transmitted. This provides other CtlOS an opportunity to be transmitted while allowing for the loss of

the LLR_INIT or LLR_INIT_ECHO CtlOS due to link errors. The init_data field may optionally be used by

implementations to compute the link round trip time. The receiver MUST echo that value back, so that it

MAY carry a timestamp or identifier for determining the link delay.

The use of init_data by the sender is optional; its function is opaque to the receiver. A sender can use it

to determine link round-trip time or can use other means. Alternatively, the outstanding_data_max

could be set based on the bandwidth delay product for the link plus the PFC activation times, as

described in IEEE Std 802.1Q-2022 Annex N, to ensure correct operation of the PAUSE and PFC

mechanisms.

When an LLR_INIT CtlOS is received, the LLR receiver sets its next_rx_seq variable to the value in

init_seq and sets the next_rx_seq_vld variable to TRUE. An LLR_INIT_ECHO CtlOS is also scheduled for

transmission, echoing back the init_seq and the init_data from the LLR_INIT.

5.1.9.1.2 LLR_INIT_ECHO CtlOS

The LLR_INIT_ECHO CtlOS is sent when llr_mode_local is set to ON and the LLR receives an LLR_INIT

CtlOS from the link partner. The LLR_INIT_ECHO CtlOS contains a copy of the init_seq and init_data

values that were received in the LLR_INIT CtlOS. When an LLR_INIT_ECHO CtlOS is received, the value

contained in init_seq is compared to tx_seq. If the values are equal, the init_echo_received is pulsed,

which will transition the LLR transmit state machine out of the INIT state. Loss of LLR_INIT_ECHO CtlOS is

tolerated. During initialization, LLR_INIT CtlOS is sent repeatedly, and an LLR_INIT_ECHO CtlOS is sent in

response to each LLR_INIT CtlOS.

5.1.9.1.3 LLR_ACK CtlOS

The LLR_ACK CtlOS is sent when the ACK/NACK state machine is in the SEND_ACKS state. The LLR_ACK

CtlOS contains the ack_nack_seq value that is equal to next_rx_seq – 1.

When an LLR_ACK CtlOS is received, it is processed as described in section 5.1.8. If an LLR_ACK is lost,

the next LLR_ACK will update the ack_seq, allowing the send buffer to be properly emptied. Thus a lost

LLR_ACK might stress the send buffer capacity, but as a rare event it should not affect performance

significantly.

 478

Copyright © 2025 Ultra Ethernet ConsortiumTM. All rights reserved.

5.1.9.1.4 LLR_NACK CtlOS

The LLR_NACK CtlOS is sent when the ACK/NACK state machine is in the SEND_NACK state. The

LLR_NACK CtlOS contains the ack_nack_seq value that is equal to next_rx_seq – 1.

When an LLR_NACK CtlOS is received, it is processed as described in section 5.1.8. If an LLR_NACK is lost,

the transmitter continues sending new frames (rather than promptly starting retransmission). That data

will be discarded until the replay_timer expires and replay is initiated.

5.1.9.1.5 Control Ordered Set transmission priority

LLR Control Ordered Set is selected for transmission based on the priority shown in Table 5-12:

Table 5-12 - Control Ordered Set Transmission Priority

Transmission Priority Control Ordered Set

Highest LLR_INIT_ECHO

 LLR_INIT

Lowest LLR_ACK or LLR_NACK

There is no priority difference between LLR_ACKs and LLR_NACKs, as the LLR should never be

attempting to send an LLR_NACK at the same time as an LLR_ACK. If credit-based flow control is also

active, the CBFC CtlOS should be lowest priority (i.e., below LLR_ACK/LLR_NACK).

5.1.10 Error propagation

There are certain error scenarios where the LLR must indicate that the data in an LLR-eligible frame is

bad without provoking the link partner to send an LLR_NACK and trigger a replay. These scenarios

include cut-through switch architectures and the occurrence of multi-bit RAM errors (e.g., in the LLR

replay RAM). In these cases, an LLR replay will not result in the delivery of correct data, as the data

stored in the replay buffer is irrecoverably corrupted.

To provide the ability to indicate that the data in an LLR-eligible frame is bad without triggering a replay,

the MAC poisons the FCS of transmitted LLR-eligible frames. The FCS is poisoned by applying an XOR of

0xAAAAAAAA. The LLR sets the poison_fcs flag on the transmit interface to the MAC to indicate that it

wishes the FCS to be poisoned. When the MAC receives an LLR-eligible frame with a poisoned FCS, it

indicates this by setting the fcs_status field on the receive interface to POISONED.

LLR-eligible frames received with an fcs_status of POISONED are treated by the RX LLR in the same

manner as LLR-eligible frames received with an fcs_status of GOOD: An LLR-eligible frame with an

expected sequence number and an fcs_status of POISONED will not trigger a replay and will increment

next_rx_seq.

5.1.11 Counters

The counters shown in Table 5-13 are defined for LLR.

 479

Copyright © 2025 Ultra Ethernet ConsortiumTM. All rights reserved.

Table 5-13 - LLR counters

Counter Description

tx_init_ctl_os A count of the number of LLR_INIT Control Ordered Sets transmitted.

tx_init_echo_ctl_os A count of the number of LLR_INIT_ECHO Control Ordered Sets transmitted.

tx_ack_ctl_os A count of the number of LLR_ACK Control Ordered Sets transmitted.

tx_nack_ctl_os A count of the number of LLR_NACK Control Ordered Sets transmitted.

tx_discard A count of the number of LLR-eligible frames discarded by the LLR TX when the TX
state machine is in the INIT state and the llr_init_behavior is set to DISCARD, or
when the TX state machine is in the FLUSH state and the llr_flush_behavior is set
to DISCARD.

tx_ok A count of the number of LLR-eligible frames transmitted with a good FCS.

tx_poisoned A count of the number of LLR-eligible frames transmitted with a poisoned FCS.

tx_replay A count of the number of times that the transmitter exited the REPLAY state (i.e.,
completed a replay operation).

rx_init_ctl_os A count of the number of LLR_INIT Control Ordered Sets received.

rx_init_echo_ctl_os A count of the number of LLR_INIT_ECHO Control Ordered Sets received.

rx_ack_ctl_os A count of the number of LLR_ACK Control Ordered Sets received.

rx_nack_ctl_os A count of the number of LLR_NACK Control Ordered Sets received.

rx_ack_nack_seq_error A count of LLR_ACK/LLR_NACK sequence number errors. The counter is
incremented each time an LLR_ACK or LLR_NACK is received for which
ack_nack_seq_ok is FALSE.

rx_ok A count of the number of LLR-eligible frames received with a good FCS.

rx_poisoned A count of the number of LLR-eligible frames received with a poisoned FCS.

rx_bad A count of the number of LLR-eligible frames received with a bad FCS.

rx_expected_seq_good A count of the number of LLR-eligible frames received with a good FCS that had
the expected sequence number.

rx_expected_seq_poisoned A count of the number of LLR-eligible frames received with a poisoned FCS that
had the expected sequence number.

rx_expected_seq_bad A count of the number of LLR-eligible frames received with a bad FCS that had the
expected sequence number.

rx_missing_seq A count of the number of LLR-eligible frames received that had a sequence
number that indicated a missing LLR-eligible frame in the sequence (irrespective
of FCS status).

rx_duplicate_seq A count of the number of LLR-eligible frames received that had a duplicate
sequence number (irrespective of FCS status).

rx_replay A count of the number of times that the receiver has detected the start of a
replay.

 480

Copyright © 2025 Ultra Ethernet ConsortiumTM. All rights reserved.

5.2 Credit-based Flow Control

This specification defines the protocols, procedures, and message formats that enable credit-based flow

control (CBFC) on a per-priority basis on a UE full duplex link (see section 6.1.2).

CBFC is an alternative to the IEEE 802.1Q-2022 [6] standard priority-based flow control (PFC), which is

intended to eliminate frame loss due to buffer congestion at the receiver. When either CFBC or PFC are

enabled on a link, the IEEE 802.3 [1] PAUSE mechanism must not be enabled. The choice to use PFC or

CBFC should be based on the need for lossless packet delivery and the relative advantages of each

mechanism (see 5.2.2).

While CBFC can replace PFC, the protocol is designed to allow for possible simultaneous operation with

PFC to manage multiple chip resources.

CBFC is an optional link layer feature in a UE network defined for an individual full-duplex point-to-point

connection.

5.2.1 Lossless Packet Delivery Use Cases

Network applications require reliable packet delivery. Ethernet fabrics can be lossless or best effort. In

best-effort fabrics, reliable packet delivery is guaranteed by an end-to-end reliable transport protocol,

but the hop-by-hop links are best effort where packet drops due to congestion are allowed.

The UE Transport (UET) layer is defined to provide end-to-end reliable packet delivery in a best-effort

network by utilizing the following components:

• Packet retransmission from the source.

• Support for out-of-order packet arrival at the receiver.

• Congestion control to limit packet drop probability in switches.

Congestion and the resulting lack of buffer space in switches is the main reason for packet drops in best-

effort Ethernet networks.

In a lossless fabric, the hop-by-hop propagation of a packet is lossless via a suitable link-level flow

control scheme. At the Link Layer, lossless packet transmission between link partners can be controlled

by permitting packet transmission only if there is buffer space available at the receiver by utilizing link-

level flow control. PFC and CBFC are two ways of achieving lossless packet delivery on a hop-by-hop

basis to achieve a lossless Ethernet fabric. Lossless fabrics remove the need for end-to-end

retransmissions and the delays associated with them.

Link-layer lossless packet delivery on a per-priority basis can also be useful in many situations. Small

networks and lower loads can benefit from link-level flow control by simplifying network management

and endpoint configuration and their buffer requirements. Link-level flow control may be preferable in

certain network topologies such as Torus or Dragonfly as well HPC and AI applications with short

messages. Link-level flow control may also be preferable for certain traffic classes with short control or

command messages at a low rate.

 481

Copyright © 2025 Ultra Ethernet ConsortiumTM. All rights reserved.

By providing CBFC on a per-traffic-class basis, congestion control resources and buffer space can be used

only for the traffic classes that can benefit from link-level flow control.

5.2.2 CBFC and PFC Relative Advantages

CBFC has several advantages over standard PFC, including:

• For guaranteed delivery, CBFC can enable more lossless VCs with the same amount of burst

absorption buffer.

• The sender knows the credit usage by each VC and can use this information for scheduling, load

balancing, and adaptive routing.

• CBFC is not as sensitive as PFC to cable length, frame size, or response time of the sender. If

cable delay is underestimated, PFC can have buffer overflows and dropped packets, but with

CBFC the link would only be underutilized.

• For virtual channels that do not require full throughput, CBFC can simply allocate fewer credits

and thus require less buffer space than PFC.

PFC still has certain advantages over CBFC, which include:

• XOFF-XON flow control is simpler to implement than credit-based flow control.

• PFC can enable more sharing and efficient usage of burst absorption buffer across ports.

• PFC is better able to manage multiple resources within a priority class.

• PFC provides full use of the link bandwidth (no messaging overhead) when no flow control

events are occurring.

5.2.3 CBFC Feature List

CBFC supports the following features:

• Support for up to 32 VCs per port.

• Flexible assignment of lossless and best effort VCs.

• Lossless packet delivery for each lossless VC.

• Enables receiver port buffer sharing across VCs.

• Forward progress guarantee (deadlock avoidance) for each VC (see section 5.2.5.2).

• Configurable credit units.

• Resiliency to packet loss and CBFC message loss.

• CBFC and PFC together can manage multiple switch resources.

o CBFC can be used to manage one resource (e.g., the main input buffer).

o PFC can be used to manage another resource such as a second buffering point and/or

another per-packet resource.

 482

Copyright © 2025 Ultra Ethernet ConsortiumTM. All rights reserved.

5.2.4 CBFC Overview

5.2.4.1 General Overview

Figure 5-5 - Basic Packet Data and Credit Update Sequence

The sender keeps track of the available buffer space at the receiver in units of credits, and its packet

scheduler is allowed to schedule a packet for transmission from a lossless VC queue only when enough

buffer space, in credits, is available at the receiver. CBFC messages are used for the return of credits

from the receiver to the sender. Credit generation at the receiver is based on port buffer availability in

the receiver.

5.2.4.2 Cyclic Counters for Tracking Credits with Resiliency

Cyclic counters that always increment, with “wrap-around,” are used for resiliency while tracking credits

at both the sender and receiver. These cyclic counters wrap around at the modulus of the width of the

counter. For example, if a counter is implemented as 10-bit counter with values 0-1023, when

incrementing by N, the new value would be:

Cnew = (Cold + N) mod 210

To reliably compare two cyclic counter values to determine which is greater, the two counters must

have a difference of less than half the counter’s maximum value. This is illustrated in Figure 5-6 for an

example of a 10-bit counter with the value 768. A second counter with a value in the range 256-767 is

less than 768. A counter in the range 769-1023 or 0-255 is greater than 768. Note that the range of

0-255 can represent the values 1024-1279. If one of two counters is always guaranteed to be greater

than the other, then the full range can be used.

 483

Copyright © 2025 Ultra Ethernet ConsortiumTM. All rights reserved.

Figure 5-6 - Cyclic Counter Example

The basic CBFC credit mechanism has two counters:

1. The number of credits “consumed” (CC) is incremented as packets are transmitted at the sender

and placed into the receiver’s data buffer. Both sender and receiver track the number of credits

consumed.

2. The number of credits “freed” (CF) by the receiver is incremented as packets are drained out of

its input buffer. As credits are freed by the receiver, the receiver must inform the sender of the

number of freed credits to allow the sender to transmit additional packets.

In addition to the CC and CF counters, the sender uses per-port and per-VC credit limits (CL) to limit the

packets on lossless VCs sent to the receiver to only the amount it can absorb into its buffer. The credit

limits are initialized to the number of credits available at the receiver before data transmission starts.

The credit limits are used only at the sender.

Both the sender and receiver track both credits consumed and credits freed in cyclic counters that are

periodically synchronized between the link partners. By always incrementing the counter values, a lost

credit freed message as well as lost packets, which can result in credit leakage, can be automatically

accounted for with the next synchronization message.

5.2.5 CBFC Operation

5.2.5.1 Overview

CBFC is a link-layer function defined only for a pair of full-duplex MACs connected by one point-to-point

link. shows an example of CBFC within a standard Ethernet Physical Layer model. Although CBFC is

defined mainly at the data link layer, it requires some modifications in the standard MAC, RS, and PCS

sublayers to correctly forward CBFC CtlOS messages between the link partners. See the UE PHY

specification for additional details regarding the changes needed to these sublayers.

 484

Copyright © 2025 Ultra Ethernet ConsortiumTM. All rights reserved.

Figure 5-7 - Architectural Position of CBFC in Ethernet Functional Layer Model

5.2.5.2 Configuration Parameters and Initialization

Several configuration parameters must be initialized at both the sender and receiver with compatible

values for correct operation. These configuration parameters are shown in Table 5-14.

Table 5-14 - Configuration Parameters and Initialization

Configuration Parameter Description

CreditSize The number of bytes represented by each credit. This must be a function of the size

of the receiver’s buffer allocation unit, or “cell size.”

NumVCs The number of virtual channels supported on the link. 1 ≤ NumVCs ≤ 32.

TotalCredits The total number of credits available at the receiver. Must be set to a positive value

based on the receiver’s buffer size.

VC_CreditLimit[x] The maximum number of credits allowed for VC[x].

PktOvhd The number of bytes required on a per-packet basis as overhead in the receiver’s

input buffer. The total number of bytes re uired at the receiver’s buffer for a single

packet equals PktOvhd + (frame size in bytes) rounded up to the credit size. This

total size is used to determine the number of credits required to transmit a packet.

If a part of each packet is not stored in the receiver’s input buffer, for example, the

CRC may be stripped before storing, then PktOvhd may be a negative value.

The number of credits is a function of the receiver’s buffer implementation. CBFC supports two methods

of setting credit limits:

 485

Copyright © 2025 Ultra Ethernet ConsortiumTM. All rights reserved.

• The receiver sets a single value for the total credit limit (TotalCredits). It is then up to the sender

to distribute these credits among the lossless VCs.

• The receiver sets each VC’s credit limit (VC_CreditLimit x), and the sender must adhere to these

limits on a per-VC basis.

Mixing the two methods is not allowed; for example, if the receiver sets the VC_CreditLimit[x] for some

lossless VCs, then it must set the VC_CreditLimit[x] for all lossless VCs and leave the TotalCredits

parameter at zero. When the receiver sets the TotalCredits parameter instead of individual VC limits, the

sender should distribute the total number of credits across the lossless VCs in an implementation-

specific manner. This allows a variety of per-VC credit limit implementations with combinations of

dedicated and shared VC credit limits. Note that per-VC credit limits are required to guarantee non-

blocking behavior between lossless VCs.

In addition to the configuration parameters listed in Table 5-14, a mapping of packet header fields to VC

number must be configured at the sender and receiver so that they assign the same VC number to any

given packet. At a minimum, a mapping to VC numbers from the mac.vlan.pcp_dei and ip.dscp header

fields as well as any subset of these fields MUST be supported. The mapping from packet header values

to VC number may be configured by upper-layer network management software or through the CBFC

lossless VC initialization process (see section 5.2.8).

Virtual channels and PFC traffic classes must be mapped consistently with respect to lossless traffic

classes at the network level. The exact mapping mechanisms are an implementation-specific feature and

beyond the scope of this specification.

5.2.5.3 CBFC Cyclic Counters and State Variables

Sender cyclic counters (required) are shown in Table 5-15.

Table 5-15 - Sender Cyclic Counters

Counter Description

S_VC_CC[x] Sender credits consumed by VC[x], where x = 0 to (NumVCs -1). An S_VC_CC counter is

incremented by the number of credits required for a packet when the packet is transmitted

by the sender.

S_VC_CF[x] Sender credits freed by VC[x], where x = 0 to (NumVCs -1). An S_VC_CF counter is updated

when a CBFC CF_Update message is received from the link partner.

Receiver cyclic counters (required) are shown in Table 5-16.

Table 5-16 - Receiver Cyclic Counters

Counter Description

R_VC_CC[x] Receiver credits consumed by VC[x] where x = 0 to (NumVCs -1). R_VC_CC counters are

updated when a packet is received on the link and when a CBFC CC_Update message is

received from the sender.

 486

Copyright © 2025 Ultra Ethernet ConsortiumTM. All rights reserved.

Counter Description

R_VC_CF[x] Receiver credits freed by VC[x], where x = 0 to (NumVCs -1). An R_VC_CF counter is

incremented as buffer space is made available for additional packet reception.

All cyclic counters wrap around at the modulus of the width of the counter. For example, S_VC_CC[x] is

implemented as 20-bit counter. When incrementing by N credits, the new value would be:

S_VC_CC[x] = (S_VC_CC[x] + N) mod 220

For ease of understanding and readability, the rest of this specification does not show the modulus

operation when performing additions or comparisons to these cyclic counters, and they appear as

always-increasing values.

State variables are shown in Table 5-17.

Table 5-17 - Sender State Variables

State Variable Description

S_P_CL Sender port credit limit. S_P_CL is initialized to the total number of credits available when

set by the receiver (TotalCredits).

S_P_CU Sender port credits in use counter. S_P_CU is incremented by the number of credits used

for packets as they are transmitted by the sender, and it is decremented as credits are

returned to the sender.

S_VC_CL[x] Sender credit limit for VC[x]. Set either directly during initialization with a value specified

by the receiver or by the sender after distributing TotalCredits among the lossless VCs.

S_VC_CU[x] Sender credits in use for VC[x]. This variable is equal to S_VC_CC[x] – S_VC_CF[x].

Table 5-18 - Counter and Variable Widths and Initialization

Counter Position # of instances Width (bits) Initial Value

S_P_CL Sender 1 20 TotalCredits

S_P_CU Sender 1 20 0

S_VC_CL[x] Sender NumVCs 20 ≤ n ≤ TotalCredits

S_VC_CU[x] Sender NumVCs 20 0

S_VC_CC[x] Sender NumVCs 20 0

S_VC_CF[x] Sender NumVCs 15 0

R_VC_CC[x] Receiver NumVCs 20 0

R_VC_CF[x] Receiver NumVCs 15 0

Note:

• NumVCs is implementation-dependent, but an implementation SHALL support at least one lossless VC for
the CBFC mechanism to be enabled.

• The width of the S_P_CL, S_P_CU, S_VC_CL[x], and S_VC_CU[x] counters MUST support the per-VC CC
counter width of 20 bits. These counters are not visible externally.

 487

Copyright © 2025 Ultra Ethernet ConsortiumTM. All rights reserved.

CF and CC counter size is determined by the frequency of update messages as well as the round-trip

time (RTT) between link partners and the size of the receiver's dedicated input buffer. To support a

reach of 500 m, with approximate RTT = 5 µs and credit size of 64 B, then 7.8k credits can be in flight at

800 GE. A counter of 15 bits (up to 16k) for the per-VC credit freed cyclic credit counters is needed.

CC_Update messages are meant to be much less frequent than CF_Update messages and use little link

bandwidth. CC counters of 20 bits support 219 credits. For a credit size of 64 B, CC counters of 20 bits can

support a buffer size of up to 32 MB between updates. For CC_Update messages to use less than 0.01%

of link bandwidth they need to be able to represent up to 800000 bytes of data, well within the 32 MB

limit, leaving room for future faster port speeds.

5.2.5.4 CBFC Point-to-Point Messages

Two message types are supported for communication between link partners:

• CF_Update – Credit freed counter update from receiver to sender. The purpose of this message

is to return credits to the sender so they can be reused to transmit additional packets.

• CC_Update – Credit consumed counter update from sender to receiver. The purpose of this

message is to recapture possible “leaked” credits resulting from packet drops due to link errors

such as uncorrectable FEC errors or packet CRC errors.

Table 5-19 - CBFC Message Types

Message Direction Format Frequency Content

CF_Update Receiver-to-Sender CtlOS (8 B) High Two R_VC_CF[x] counter values

CC_Update Sender-to-Receiver Packet (64 B) Low Up to 16 S_VC_CC[x] counter values

The exact format of each CBFC message is described in section 5.2.6.

 488

Copyright © 2025 Ultra Ethernet ConsortiumTM. All rights reserved.

5.2.5.5 Packet and CBFC Message Sequence

Figure 5-8 - Packet and CBFC Message Sequence with Counter Updates

5.2.5.6 Sender Operations

5.2.5.6.1 Packet Transmission Credit Check

To select a packet from a lossless VC for transmission and to make counter updates, the number of

credits required for the packet must first be computed:

pktSize = size of the Ethernet frame in bytes

pktCredits = roundup((pktSize + PktOvhd) ÷ CreditSize)

A packet can be selected for transmission in the following cases:

• When the receiver sets individual per-VC credit limits:
S_VC_CU[x] + pktCredits ≤ S_VC_CL[x]

OR

 489

Copyright © 2025 Ultra Ethernet ConsortiumTM. All rights reserved.

• When the receiver sets the TotalCredits limit:
S_P_CU + pktCredits ≤ S_P_CL

Additional per-VC limits are not precluded when checking the S_P_CL, but the only requirement is that

the S_P_CL limit shall be observed.

The credit limit check does not preclude cut-through operation. If the number of credits available is

sufficient to transmit a packet of the maximum size, then the packet may be selected for transmission as

soon as the first bytes of the packet are ready for transmission.

Transmission of packets for best-effort VCs do not require this credit check and do not consume credits.

5.2.5.6.2 Packet Transmission Counter Updates

When a packet is selected for transmission from a lossless VC, these counter updates are made:

S_P_CU = S_P_CU + pktCredits

S_VC_CC[x] = S_VC_CC[x] + pktCredits

S_VC_CU[x] = S_VC_CU[x] + pktCredits

Where x is the VC number of the scheduled packet.

5.2.5.6.3 CF_Update Message Reception

When the sender receives a CF_Update message with a valid R_VC_CF[x] value, these counter updates

are made:

credits_returned = R_VC_CF[x] – S_VC_CF[x]

S_P_CU = S_P_CU – credits_returned

S_VC_CU[x] = S_VC_CU[x] – credits_returned

S_VC_CF[x] = R_VC_CF[x]

5.2.5.6.4 CC_Update Message Generation

CC_Update packet(s) MUST be generated periodically to cover all lossless VCs (note that VCs 0 to 15 and

VCs 16 to 31 are contained in two separate CC_Update packets). The main purpose for the CC_Update is

to recover any leaked credits due to packet drops caused by link errors (uncorrectable FEC errors or

packet CRC errors).

If a data packet is discarded due to link errors, the sender’s S_VC_CC x counter was already

incremented by the number of credits required. But since the receiver never receives the discarded

packet, it would never return the credits to the sender in a CF_Update message. This is known as “credit

leakage.” The CC_Update message is a means for the sender to inform the receiver of the number of

credits it thinks it has consumed, thus allowing the receiver to make any necessary counter corrections

and reclaim any leaked credits. The receiver makes corrections to its credit counters, and eventually the

sender’s S_VC_CF, S_VC_CU, and S_P_CU are also updated.

 490

Copyright © 2025 Ultra Ethernet ConsortiumTM. All rights reserved.

The CC_Update packet contains up to 16 of the sender’s S_VC_CC x counter values carried in a 64-byte

Ethernet packet. The S_VC_CC[x] values in the CC_Update packet MUST include all credits consumed for

packets transmitted prior to the CC_Update packet and MUST NOT include any credits for packets to be

transmitted after the CC_Update packet.

A configurable time interval MUST be provided between generation of CC_Update messages

(CC_msg_timer).

5.2.5.7 Receiver Operations

5.2.5.7.1 Packet Reception Counter Updates

When a packet is received, the VC number of the packet is determined (mapped) from packet header

fields. The number of credits required by the packet is calculated in the same way that was done at the

sender. Once calculated the receiver updates the VC credits consumed.

pktSize = size of the Ethernet frame in bytes

pktCredits = roundup((pktSize + PktOvhd) ÷ CreditSize)

R_VC_CC[x] = R_VC_CC[x] + pktCredits

Whether the packet is written into the receiver’s input buffer or accorded cut-through operation,

possibly bypassing the receiver’s data buffer, the R_VC_CC x counter must be updated as shown in the

pseudocode above. If the packet is cut through without utilizing any buffer resources, the VC’s credit

freed counter must also be immediately updated as shown in section 5.2.5.7.2.

5.2.5.7.2 Input Buffer Drain and Counter Updates

When a packet is removed from the receiver’s input buffer or is cut through, the packet’s VC number is

used to update the credit-freed counter by the packet’s credit usage:

pktSize = size of the Ethernet frame in bytes

pktCredits = roundup((pktSize + PktOvhd) ÷ CreditSize)

R_VC_CF[x] = R_VC_CF[x] + pktCredits

At this point, the R_VC_CF[x] is now eligible to be sent to the sender in the CF_Update message.

5.2.5.7.3 CF_Update Message Generation

CF_Update messages contain R_VC_CF[x] values from the receiver to the sender. They must be

generated based on either of two triggers:

• The R_VC_CF[x] was updated, and the CF_min_timer has expired.

• The CF_max_timer has expired.

The CF_min_timer is used to guarantee a minimum spacing between CF_Update messages to ensure

minimal bandwidth overhead is used for these messages.

The CF_max_timer is used to periodically update all R_VC_CF[x] values in case a previous CF_Update

message was lost.

 491

Copyright © 2025 Ultra Ethernet ConsortiumTM. All rights reserved.

See section 5.2.6.1 for the format of the CF_Update message.

5.2.5.7.4 CC_Update Message Reception

As described in section 5.2.5.6.4, CC_Update messages are periodically generated by the sender. When

the receiver receives one of these messages, it performs the following counter updates for all valid

S_VC_CC[x] values in the message.

For x = 0 to (NumVCs-1)

 LostCredits = S_VC_CC[x] – R_VC_CC[x]

 If (LostCredits > 0) then

 R_VC_CF[x] = R_VC_CF[x] + LostCredits

 R_VC_CC[x] = S_VC_CC[x]

end for

5.2.5.8 Handling Non-Ideal Credit Sizes (Informative)

Ideally, the CreditSize parameter should be set to the actual “cell size” of the receiver’s input buffer. This

makes maximum use of the buffer. However, this may not be possible if the sender and receiver do not

both support this ideal CreditSize. In this case, the next CreditSize less than the actual cell size that is

supported by both the sender and receiver should be used.

For example, if the input buffer size is 8000 bytes and the native cell size is 80 bytes, the buffer has 100

cells. Ideally, the sender and receiver would set the CreditSize=80 and TotalCredits=100. If the sender

does not support the CreditSize of 80, then the CreditSize may be set to 64 bytes. In this case, the

TotalCredits must still be set to 100 (not 125), because 100 packets of 64 B would fill the input buffer.

This makes an 8000-byte buffer no better that a 6400-byte buffer in terms of CBFC utilization. However,

the receiver can optimize the use of its 8000-byte buffer when receiving larger packets. If a packet is

received with size between 65 and 80 bytes, the sender will consume two credits; but at the receiver,

these packet sizes use only one cell, so one credit can be freed immediately without waiting for this

packet to be drained from the input buffer. Care must be taken to free only one additional credit when

the packet is eventually removed from the input buffer. The same difference in credits used versus cells

used happens if a packet is between 129 and 160 bytes where the sender consumes three credits, but

the packet only requires two cells, so one credit can be freed immediately. The difference between the

calculated credits and the actual cells used should be relatively easy to calculate at the receiver as

packets of any size arrive.

Another alternative is for the receiver to count credits consumed and freed based solely on its native

cell size. If the sender uses a conservative CreditSize (smaller than the actual cell size), there can be

some “credit leakage” depending on the packet sizes. CC_Update messages can be used to reclaim all

leaked cells. In this case, a smaller CC_msg_timer value is recommended.

Implementation Note:

If the number of LostCredits is ever less than zero, a serious error has occurred and SHOULD be

reported to the management entity.

 492

Copyright © 2025 Ultra Ethernet ConsortiumTM. All rights reserved.

5.2.6 CBFC Message Formats

5.2.6.1 CF_Update Message

The CF_Update message is one type of CtlOS message. See section 5.2.11 for the general CtlOS format

and requirements.

The CF_Update CtlOS contains two R_VC_CF[x] values, specified as CF1 and CF2, and has the format on

the xMII as defined in Table 5-20 and Table 5-21.

Table 5-20 - CF_Update CtlOS Message Format

Message
xMII Data

Lane 0 Lane 1 Lane 2 Lane 3 Lane 4 Lane 5 Lane 6 Lane 7

CF_Update 0x5C
Type=

0x10
D2 D3 D4[7:4] 0x6 D5 D6 D7

Note:

• Lane 0 contains the control character value for UE control ordered set.

• Lane 1 contains the CtlOS message type identifier.

• D2 – D7 contain the message data as defined in Table 5-21.

Table 5-21 - CF_Update CtlOS Data Field Definitions

xMII Data Field Msg Field name #bits Description

D2[7:3] CF1_VC_index[4:0] 5 CF1 VC number

{D2[2:0], D3[7:0], D4[7:4]} CF1_count[14:0] 15 R_VC_CF[CF1_VC_index] counter value

D4[3:0] reserved (O-code) 4 Set to 0x6

D5[7:3] CF2_VC_index[4:0] 5 CF2 VC number

{D5[2:0], D6[7:0], D7[7:4]} CF2_count[14:0] 15 R_VC_CF[CF2_VC_index] counter value

D7[3:0] Reserved 4
Set to ‘ ’ on transmit and ignored upon

reception.

The PCS sublayer must encode the CF_Update CtlOS as described in the UE PHY specification into a

64B/66B encoded block, passing all data from xMII lanes D1 to D7 to the 66-bit block.

5.2.6.2 CC_Update Messages

CC_Update messages are less frequent and take the form of an Ethernet packet. A single CC_Update

packet can contain 16 S_VC_CC[x] values for VC[0..15] or VC[16..31]. The UE message type field is used

to distinguish the two flavors of CC_Update packet.

 493

Copyright © 2025 Ultra Ethernet ConsortiumTM. All rights reserved.

Table 5-22 - CC_Update Message Packet Fields

Packet Field Name Size Description

MACDA MAC Destination Address 6 B
Set to 01-80-C2-00-00-01 or the 48-bit individual
address of the destination station

MACSA MAC Source Address 6 B
Set to the 48-bit individual address of the source
station.

Eth Type EtherType 2 B 0x8808

Opcode MAC Control Opcode 2 B 0xFFFE (Extension opcode)

CID Company ID 3 B UEC CID (FA-7A-CB)

Msg Type UE Message Type 1 B
0x01 = CC_Update for VC[0:15]
0x02 = CC_Update for VC[16:31]
All other values are reserved.

Data
16 per-VC Credits Consumed
values

40 B

16 CC counter values (20 bits each counter):
 S_VC_CC , S_VC_CC 1 , … S_VC_CC 15

or
{S_VC_CC[16], S_VC_CC[17], … S_VC_CC[31]}

FCS Frame Check Sequence 4 B CRC32

Note:

• This is a 64 B Ethernet frame.

• The S_VC_CC[x] value for any unused or best-effort VC SHALL be set to 0.

The values and format for the MACDA, MACSA, EtherType, and MAC control opcode fields ,as well as the

UEC CID, are chosen to be compatible with IEEE Std 802.3-2 22 Clause 31 “MAC Control” and its

Annexes [1]. It is recommended to make the MACDA, MACSA, and CID values configurable at both the

sender and receiver. Because the CC_Update packet is exchanged only between link partners, and not

forwarded, the MACDA and MACSA are not required to identify it. It can be identified solely by matching

the EtherType, Opcode, CID, and Msg Type combined with a good FCS.

 494

Copyright © 2025 Ultra Ethernet ConsortiumTM. All rights reserved.

Figure 5-9 - CC_Update Packet Format

5.2.7 MAC and MAC Control Layer Interfaces to CBFC

5.2.7.1 MAC Service Interface Additions

CBFC acts as a MAC client above the MAC control layer as shown in Figure 5-7.

5.2.7.2 MAC Insertion of CBFC Messages

The MAC layer must be modified to allow for CtlOS messages to preempt the transmission of in-progress

Ethernet data packets. This allows for regular and more frequent CF_Update messages than would

otherwise be possible. See section 5.2.11 for more information on CtlOS message handling.

The counter values contained in a CC_Update packet are related to the packets that are transmitted

prior to the CC_Update transmission. When CBFC generates a CC_Update packet, it must be delivered to

the MAC (or MAC control) layer using the MA_DATA.request interface to maintain its relative position to

other data packets when transmitted.

5.2.7.3 MAC Reception of CBFC Messages

When the MAC (or MAC control) receives a correctly formed CC_Update packet, it must be forwarded to

the upper layer MAC client on the MA_DATA.indication primitive for processing in strict packet order

relative to all other received data packets, because the payload counters are relative to the CC_Update

packet’s position to other packets on the physical link.

CF_Update CtlOS messages should be removed from the RX data path and forwarded directly to the

CBFC layer via the MA_CONTROL.indication primitive with the CF_Update counter values.

5.2.8 CBFC Initialization

The two end stations of a link, sender and receiver, must have several configurable parameters

initialized in a consistent manner for correct operation. Per-link features and parameters may be

Byte 0 Byte 1 Byte 2 Byte 3

0

4

8

12

16 Msg Type

20

24

28

32

36

40

44

48

52

56

60

for i = 0 or 16

OUI

FCS

S_VC_CC[i]

S_VC_CC[i+15]

Data

Eth-Type (0x8808) Opcode (0xFFFE)

MACDA

MACSA

 495

Copyright © 2025 Ultra Ethernet ConsortiumTM. All rights reserved.

configured either through management software or through an information exchange using the IEEE

Link Layer Discovery Protocol (LLDP) [5].

5.2.8.1 Network-Level Configuration

Higher-level network configuration establishes traffic class (TC) parameters for the entire network. The

following CBFC parameters are derived from the network TC parameters for each link based on the

capabilities of each link partner:

• NumVCs

o The number of VCs must be set identically at the sender and receiver.

o Sender.NumVCs == Receiver.NumVCs

• Lossless VC configuration

o VCs must be configured consistently as lossless or best effort at the sender and receiver.

• Lossless VC mapping

o Sender and receiver must be configured to map the same packet properties to the same

VC number.

The number of VCs, the mapping of packet fields to VC numbers, and the disposition of a VC as best-

effort or lossless must be configured consistently between the link partners: sender and receiver. Note

that the link partners may be configured differently in each direction of the link; the sender and receiver

of a single end station are independent of each other.

5.2.8.2 Link-Level Configuration

Switch and NIC chip buffer sizes and buffering structures such as the buffer cell size vary between

implementations. This makes parameters such as the credit size and number of credits a property of

each link and dependent on the receiver implementation.

Link-level negotiation can be used to establish these values between the link partners:

• CreditSize

o Determined by the receiver’s data buffer characteristics.

o Receiver: Initially set to the cell size of the port input buffer:

▪ Receiver.CreditSize = cell_size

▪ May adjust to the sender’s CreditSize after it is set (see 5.2.5.8).

o Sender: Ideally set to the same size as at the receiver, but if not possible, then:

▪ Sender.CreditSize ≤ Receiver.CreditSize (as close as possible)

• TotalCredits

o Determined by the receiver’s data buffer characteristics.

o Receiver:

▪ Receiver.TotalCredits = Receiver(Input buffer size) ÷ Receiver(cell size)

o TotalCredits at the sender must be set to the same number:

▪ Sender.TotalCredits = Receiver.TotalCredits

o When the receiver sets individual per-VC credit limits, TotalCredits is not used at the

sender.

 496

Copyright © 2025 Ultra Ethernet ConsortiumTM. All rights reserved.

• PktOvhd

o The size of the per-packet overhead is a function of the receiver buffer design and is set

to the size of additional space required at input buffer for each packet.

o Receiver:

▪ Receiver.PktOvhd = (additional per-packet buffer space).

o Sender: Ideally set to the same number as at the receiver but must be conservative if

not set to exactly the receiver’s value.

▪ Sender.PktOvhd ≥ Receiver.PktOvhd

• Per-VC credit limits

o When the receiver sets the TotalCredits limit:

▪ Distribution of the TotalCredits among the lossless VCs at the sender is an

implementation-dependent function. The sender’s implementation must

prevent blocking between VCs.

o When the receiver sets an individual VC_CreditLimit[x] for each lossless VC:

▪ The sender shall set each lossless VC credit limit, S_VC_CL[x], to honor the

receiver’s re uested limits.

While each link partner must be able to be configured by management software with these link-specific

parameters, it is also desirable to provide a link-level protocol to allow communication between link

partners to set up coordinated values for these parameters. UE link negotiation may be used for this

purpose.

5.2.8.3 CBFC Link Level Initialization Using UE Link Negotiation

When a port is reset, all VCs are initially set to best effort delivery. To establish lossless packet delivery,

lossless VCs must be initialized using the CBFC lossless VC initialization process through an exchange of

LLDP packets between the link partners. As shown in Figure 5-10, a VC’s disposition can later be changed

back to best effort through the lossless VC removal process without disturbing traffic on other VCs.

Figure 5-10 - Virtual Channel State

The UE link negotiation mechanism uses the IEEE Link Layer Discovery Protocol (LLDP) [5]to specify UE-

enabled features and exchange any necessary information between link partners to support those

 497

Copyright © 2025 Ultra Ethernet ConsortiumTM. All rights reserved.

features. The UE link negotiation specification describes LLDP packet formats for several link-layer

features including CBFC.

Each station advertises its capabilities to its link partner using LLDP packets. Parameter values are

encoded into “type, length, value” triplets (TLVs) inside the LLDP data unit (LLDPDU) of the LLDP frame.

The LLDP frame format and CBFC TLV formats are described in detail in the UE Link Negotiation

specification. Sections 5.2.8.3.1 and 5.2.8.3.2 discuss the main CBFC TLV fields needed for the CBFC

initialization process as described in section 5.2.8.4. Not all TLV fields are listed here; the Link

Negotiation specification provides the complete list of TLV fields.

LLDP packets transmitted during the lossless VC initialization process MUST NOT use any of the lossless

VCs being initialized.

5.2.8.3.1 CBFC Receiver TLV Fields

The CBFC TLV has two sections of receiver values: One section contains port information common across

all VCs, and the second section contains information fields specific to each VC.

CBFC TLV receiver port information fields are shown in Table 5-23.

Table 5-23 - CBFC TLV Receiver Port Information Fields

Information Field Description

R_NumVCs The total number of VCs supported by the receiver, both best effort and lossless (2-

32).

R_TotalCredits When non-zero, this field contains the total number of credits available at the

receiver. When zero, it indicates that separate per-VC credit limits are set by the

receiver (see R_VC_CreditLimit[x] in Table 5-24).

R_CellSize The receiver’s input buffer storage data unit size in bytes (ideal CreditSize).

R_PktOvhd The receiver’s per-packet buffer overhead. Stored as an eight-bit two’s complement

number of bytes, -16 to +127.

CBFC TLV receiver per-VC information fields are shown in Table 5-24.

Table 5-24 - CBFC TLV Receiver Per-VC Information Fields

Information Fields Description

R_VC_Want[x] Indicates the receiver wants to make VC[x] a lossless VC.

R_VC_RTR[x] Indicates the receiver is ready to receive lossless packets on VC[x] using CBFC credits.

R_VC_CreditLimit[x] Optional credit limit to be applied to VC[x] at the sender. Valid only when

R_TotalCredits=0.

R_PKTID_Sel[x] and

R_PKTID[x]

Optional fields to specify the VLAN.PCP/DEI or DSCP values to identify VC[x]. See the

Link Negotiation specification for the use of these fields.

 498

Copyright © 2025 Ultra Ethernet ConsortiumTM. All rights reserved.

5.2.8.3.2 CBFC Sender TLV Fields

The CBFC TLV sender information fields are shown in Table 5-25.

Table 5-25 - CBFC TLV Sender Information Fields

Information Fields Description

S_VC_RTS A 32-bit bitmap of all possible VCs supported by this sender. When the sender has

completed initialization of lossless VC[x] and is ready to send packets using credits,

S_VC_RTS[x] is set to one.

S_CreditSize The sender’s configured CreditSize. This value is set only after receiving the link

partner’s advertised R_CellSize.

S_PktOvhd The sender’s configured per-packet overhead. This value is set only after seeing the

link partner’s advertised R_PktOvhd. Stored as an eight-bit two’s complement

number of bytes, -16 to +127.

5.2.8.4 Lossless VC Initialization Process

Each end station requires two LLDP CBFC TLV databases, one for itself and one for its link partner. They

are referred to as the local LLDP database (and local TLV values) and the remote LLDP database (and

remote TLV values). A single end station may act as both a sender and receiver, but these functions do

not interact and must be configured separately. A CBFC local sender communicates only with the

remote receiver, and a local receiver communicates only with the remote sender. The lossless VC

initialization process may occur simultaneously and independently for each direction of traffic on a link.

The local sender’s TLV information depends on first receiving its remote receiver’s information. The local

sender SHALL NOT start sending packets using CBFC credits until both stations have completed

initialization, as indicated by the sender’s ready-to-send (RTS) and the receiver’s ready-to-receive (RTR)

bits in the respective LLDP databases.

 499

Copyright © 2025 Ultra Ethernet ConsortiumTM. All rights reserved.

Figure 5-11 - Lossless VC Initialization Process

The lossless VC initialization process follows these steps as shown in Figure 5-11:

1. CBFC receiver Initialization:

The CBFC management entity at the receiver initializes the receiver port for one or more lossless

VCs and initializes the TLV values in the local CBFC LLDP database.

• Local.R_NumVCs = total number of VCs supported on the link.

• Local.R_TotalCredits = (buffer size ÷ cell size) or 0 if setting individual VC credit limits.

• Local.R_CellSize = cell size of the receiver’s input buffer (receiver’s preferred CreditSize).

• Local.R_PktOvhd = per-packet buffer overhead (-16 to +127)

 500

Copyright © 2025 Ultra Ethernet ConsortiumTM. All rights reserved.

• For each VC[x] that the receiver wants to initialize as a lossless VC:

o Local.R_VC_Want[x] = 1

o Local.R_VC_RTR[x] = 0 (not yet ready to receive packets using credits)

o Reset the receiver’s VC x counters

▪ R_VC_CC[x] = 0

▪ R_VC_CF[x] = 0

o Optional:

▪ Local.R_VC_CreditLimit[x] = per-VC credit limit (or 0 if TotalCredits != 0)

▪ Local.R_PKTID_Sel[x] and R_PKTID[x]

2. LLDP packet is sent from receiver to sender with the receiver’s new TLV values and is used to

update the remote LLDP database at the sender.

3. CBFC sender Initialization:

CBFC management entity at the sender station, based on the remote LLDP database update,

initializes the CBFC sending port and local LLDP database.

• Set sender port configuration and parameters S_TotalCredits, S_CreditSize, S_PktOvhd

based on remote receiver’s LLDP values and its own supported feature set.

• For each VC[x] with Remote.R_VC_Want[x] == 1 and Local.S_VC_RTS[x] == 0:

o Distribute S_TotalCredits across all lossless VCs (set per-VC credit limits) or use

Remote.R_VC_CreditLimit[x] to set the per-VC credit limits.

o Disable transmission of all packets for VC[x].

o Reset the sender’s VC x counters17

▪ S_VC_CC[x] = 0

▪ S_VC_CF[x] = 0

▪ S_VC_CU[x] = 0

• Ensure observance of any new credit limits.

o If the receiver has set credit limits using port-based TotalCredits:

▪ Wait until S_P_CU ≤ S_P_CL

▪ Any additional implementation-specific credit limits must also be followed

accordingly.

o If the receiver has set credit limits using per-VC credit limits:

▪ Wait until S_VC_CU i ≤ S_VC_CL i , for all lossless VC i .

• Update TLV values in Local LLDP database:

o Local.S_CreditSize = S_CreditSize

o Local.S_PktOvhd = S_PktOvhd

o Local.S_VC_RTS[x] = 1 (for all VC[x] with Remote.R_VC_Want[x] == 1)

4. LLDP packet is sent from sender to receiver with the sender’s updated TLV values and is used to

update the remote LLDP database at the receiver.

5. CBFC receiver completes initialization:

CBFC management entity completes lossless VC initialization.

• For each VC[x] with remote.S_VC_RTS[x]==1 and local.R_VC_RTR[x]==0:

17 The port-based counter, S_P_CU, must be reset to zero only when the port is reset.

 501

Copyright © 2025 Ultra Ethernet ConsortiumTM. All rights reserved.

o Complete any necessary receiver configuration based on remote LLDP sender fields.

o Set Local.R_VC_RTR[x] = 1

6. LLDP packet is sent from receiver to sender with R_VC_RTR[x] flag(s) set.

7. Enable Lossless Traffic

• For each VC[x] with remote.R_VC_RTR[x]==1 and local.S_VC_RTS[x]==1:

o Enable transmission of packets for lossless VC[x] using CBFC credits.

When CBFC is used in a network, a link is likely to be initialized with one or two best-effort VCs and one

or two lossless VCs. Over time, additional traffic classes may be added to the network that require

additional lossless VCs to be configured. This can be accomplished while the link is active by restarting

the lossless VC initialization process and updating the R_VC_WANT, S_VC_RTS, and R_VC_RTR flags for

the new lossless VCs. The receiver per-port TLV values R_CellSize and R_PktOvhd must not be changed

when initializing additional lossless VCs while some lossless VCs are already active. The method of

setting the credit limits — setting TotalCredits or individual per-VC limits — must follow the method

chosen for previously established lossless VCs. The R_TotalCredits value may be increased when adding

additional lossless VCs.

5.2.8.5 Lossless VC Removal Process

A VC can be changed from lossless to best effort by following the lossless VC removal process. This

process is described in Figure 5-12. After a lossless VC is removed, it can remain unused or be used as a

best-effort VC.

 502

Copyright © 2025 Ultra Ethernet ConsortiumTM. All rights reserved.

Figure 5-12 - Lossless VC Removal Process

The lossless VC removal process follows these steps as shown in Figure 5-12:

1. CBFC receiver update

CBFC management entity updates the receiver to remove one or more lossless VCs and sets the

TLV values in the local CBFC LLDP database accordingly:

• Local.R_NumVCs = total number of VCs supported on the link

• Local.R_TotalCredits = original R_TotalCredits, or optionally a new R_TotalCredits value

• For each lossless VC[x] that the receiver wants to remove:

o Local.R_VC_Want[x] = 0

o Local.R_VC_RTR[x] = 1 (no change)

2. LLDP packet is sent from receiver to sender with the receiver’s new TLV values and is used to

update the remote LLDP database at the sender.

3. CBFC sender drains VC queues

CBFC management entity performs the following actions:

• For each VC[x] with Remote.R_VC_Want[x] == 0 and Local.S_VC_RTS[x] == 1:

 503

Copyright © 2025 Ultra Ethernet ConsortiumTM. All rights reserved.

o Stop enqueue of packets to VC[x] queues.

o Wait for VC[x] queues to drain.

• Set up CBFC sender configuration and parameters.

o Redistribute new TotalCredits to remaining lossless VCs or update all VC limits based

on new Remote.R_VC_CreditLimit[x].

• Ensure observance of any new credit limits.

o If the receiver has set credit limits using port-based TotalCredits:

▪ Wait until S_P_CU ≤ S_P_CL.

▪ Any additional implementation-specific credit limits must also be followed

accordingly.

o If the receiver has set credit limits using per-VC credit limits:

▪ Wait until S_VC_CU i ≤ S_VC_CL i , for all lossless VC i .

• Update local sender LLDP database:

o Local.S_VC_RTS[x]=0 (for all VC[x] with Remote.R_VC_Want[x] = 0)

4. LLDP packet is sent from sender to receiver with the sender’s new TLV values and is used to

update the remote LLDP database at the receiver.

5. CBFC receiver credit return

CBFC management entity performs the following actions:

• For each VC[x] with remote.S_VC_RTS[x] == 0 and local.R_VC_RTR[x] == 1:

o Wait for all VC x packets to drain from receiver’s buffer and all VC x credits to be

freed and returned using CF_Update CtlOS to the sender.

o Update the Local receiver LLDP database:

▪ Local.R_VC_RTR[x]=0.

6. LLDP packet is sent from receiver to sender with the receiver’s updated TLV values and is used

to update the remote LLDP database at the sender.

7. Remove lossless VC

CBFC management entity performs the following actions:

• For each VC[x] that has remote.R_VC_RTR[x] changed from 1 to 0, lossless VC[x] is now

removed and may be left unused or start operating as a best-effort VC, including

enqueue and dequeue of packets on a best-effort basis.

The receiver per-port TLV values R_CellSize and R_PktOvhd must not be changed when performing the

lossless VC removal process while other lossless VCs remain active, but it may be desirable to reduce the

R_TotalCredits value. A new R_TotalCredits value can be set by the receiver (shown as optional in step

#1 above), which propagates to the sender through the LLDP database update. Because the new lossless

VC credit limits are not immediately applied when set in step #1, the receiver must maintain the original

buffer space (and honor the previous TotalCredits limit) until the receiver sees the sender’s LLDP

database update as indicated by remote.S_VC_RTS[x]==0 in step #5. After this, the receiver can be sure

that the sender is using the new credit limits for any packets received.

 504

Copyright © 2025 Ultra Ethernet ConsortiumTM. All rights reserved.

5.2.9 Interactions Between CBFC, PFC, and LLR

When an LLR retransmission is triggered due to a lost packet, it creates several possible hazards that

could affect the CFBC credit counters due to:

a) Not all data packets are retransmitted by LLR. LLR considers packets either “retransmit eligible”

(LLR-eligible) or “retransmit ineligible” (LLR-ineligible). The LLR protocol requires that all LLR-

eligible packets are discarded at the receiver between the time of LLR-NACK generation and the

reception of the first retransmitted packet with the correct se uence number (call this the “LLR

discard window”). LLR-ineligible packets are accepted by the receiver during the LLR discard

window. The LLR protocol also requires the sender to retransmit only LLR-eligible packets within

an “LLR replay window”. An LLR replay is initiated at the sender upon reception of an LLR-NACK.

The LLR replay window includes the time to retransmit all LLR-eligible packets from the first non-

ACK’d packet up to the last LLR-eligible packet sent before the reception of the LLR-NACK.
Normal transmission of both LLR-eligible and LLR-ineligible packets resumes after the LLR replay

window.

b) The S_P_CU and S_VC_CC[x] counters are already incremented for all transmitted packets from

the time that the first lost packet is transmitted until the LLR-NACK is received at the sender, but

these packets are discarded at the receiver if they are LLR-eligible. The R_VC_CC[x] counters

must not be incremented for the discarded packets, since they will be updated later when the

packets are accepted during retransmission. This also means that the retransmission of LLR-

eligible packets during the LLR replay window must not update the S_VC_CC counters (again).

c) A CC_Update packet may have been in-flight during the “LLR discard window”. The sender’s

S_VC_CC x and the receiver’s R_VC_CC x counters can become uncorrelated due to the

dropping of LLR-eligible packets during the LLR discard window. Therefore, CC_Update packets

received during the LLR discard window must always be dropped and must not cause any

changes to the R_VC_CC[x] counters.

Because LLR and CBFC are independent features, any given packet can have any combination of LLR

eligibility and CBFC lossless behavior when both features are enabled. These combinations are

summarized for data packets in Table 5-26 along with the actions required at the receiver during the LLR

discard window and at the sender during the LLR replay window.

Table 5-26 - LLR and CBFC Combined Handling for Data Packets

Type Packet properties
Receiver handling in LLR

discard window

Sender handling in LLR

replay window

A LLR-ineligible and CBFC Best Effort

Packet is accepted.

No update to receiver’s

CBFC counters.

Packet is not replayed.

B LLR-ineligible and CBFC Lossless

Packet is accepted.

CBFC counters are

updated as usual.

Packet is not replayed.

 505

Copyright © 2025 Ultra Ethernet ConsortiumTM. All rights reserved.

Type Packet properties
Receiver handling in LLR

discard window

Sender handling in LLR

replay window

C LLR-eligible and CBFC Best Effort1

Packet is discarded.

No update to receiver’s

CBFC counters.

Packet is replayed.

No update to sender’s

CBFC counters.

D LLR-eligible and CBFC Lossless

Packet is discarded.

No update to receiver’s

CBFC counters.

Packet is replayed.

No update to sender’s

CBFC counters.

Note:

• CBFC best-effort packets (types A and C) never update any CBFC counters.

• CBFC lossless counters are updated when the packet is first transmitted before the LLR re-transmission is

triggered, and therefore must not be updated again during replay.

Packets of type B can also cause a mismatch between the CC counters of the sender and receiver if the

CC_Update message is replayed. CC_Update packets do not follow the regular rules for the handling of

LLR-eligible or LLR-ineligible data packets. They must always be discarded by the receiver during the LLR

discard window (like LLR-eligible packets), but should not be replayed (like LLR-ineligible packets). Any

lost CBFC message is taken care of by the CBFC protocol; therefore, CC_Update packets are not required

to be LLR-eligible. The four types of data packets in Table 5-26, (A, B, C, and D) are used in Figure 5-13 to

illustrate an example of the combined LLR and CBFC handling during an LLR re-transmission event. In

this example, the CC_Update packet is LLR-ineligible (not replayed) but must be discarded by the

receiver during the LLR discard window.

 506

Copyright © 2025 Ultra Ethernet ConsortiumTM. All rights reserved.

Figure 5-13 - Example of LLR and CBFC Interaction – General Case

It is worth noting that when both CBFC and LLR are enabled, all CBFC lossless packets are likely to also

be LLR-eligible; this is a common case. When this is true, there are no packets of type B (LLR-ineligible

and CBFC Lossless), and the CC_Update packet may be configured as LLR-eligible. This has two

advantages:

• The CC_Update packet follows the usual LLR rules during the LLR discard window and is simply

discarded as an LLR-eligible packet.

• The replay of the CC_Update packet produces a correct CC counter comparison and recovers

any leaked credits rather than waiting for the next CC_Update interval (which may also hit an

LLR replay event).

Figure 5-14 illustrates the case where there are no type B packets, and the CC_Update packets are

configured to be LLR-eligible.

 507

Copyright © 2025 Ultra Ethernet ConsortiumTM. All rights reserved.

Figure 5-14 - Example of LLR and CBFC Interaction with LLR-eligible CC_Update Packet

For correct operation when both LLR and CBFC are enabled, the following rules are applied:

1. During the LLR replay window, the S_VC_CC[x] and S_P_CU counters must not be updated when

retransmitting packets, because they were already counted when first transmitted.

2. During the LLR discard window, the R_VC_CC[x] counters must not be updated for LLR-eligible

packets that are discarded. They will be counted when they are retransmitted and accepted at

the receiver.

3. During the LLR discard window, any received CC_Update packet must be discarded whether

marked as LLR-eligible or LLR-ineligible. This prevents incorrect updates to the R_VC_CC[x]

counters, because previously discarded LLR-eligible packets make the CC counter checks invalid.

4. During the LLR discard window, any correctly received CF_Update CtlOS must still be used to

update the S_VC_CF[x] counters.

5. PFC control packets must be LLR-ineligible.

6. PFC control packets must belong to a best-effort VC.

7. During the LLR discard window, any correctly received PFC packet must still be acted upon. PFC

control packets do not affect retransmission of LLR-eligible packets during the LLR replay

window (see LLR specification) and affect only subsequent initial packet transmissions.

 508

Copyright © 2025 Ultra Ethernet ConsortiumTM. All rights reserved.

8. By default, all CC_Update packets shall be configured as LLR-ineligible and CBFC best effort.

CC_Update packets do not use credits and are not replayed.

• Exception: CC_Update packets may be marked as LLR-eligible and replayed during the LLR

replay window only if CBFC is configured on the link such that all CBFC lossless packets are

also LLR-eligible.

9. During the LLR replay window, no new CC_Update packet shall be transmitted.

It is recommended that packets belonging to CBFC lossless VCs also be LLR-eligible to guard against any

packet loss when both features are enabled.

5.2.10 Compliance Requirements

5.2.10.1 CreditSize Parameter

The receiver’s input buffer is typically divided into cells, and the cell size (in bytes) is the input buffer

allocation unit. Packets smaller than the cell size, or larger packet sizes that are not evenly divisible by

the cell size, end up wasting some buffer space: the “cell tax.” To make optimal use of the receiver’s

input buffer, the CreditSize parameter should be set to the buffer cell size. However, requiring all

implementations of CBFC to support any CreditSize in the sender logic is overly burdensome, and the

CBFC mechanism works even if the CreditSize is not set to this “optimal” value. Implementations should

support their own native cell size of the port input buffer but are not required to support all possible

CreditSize values. See section 5.2.5.8 for information on handling non-ideal CreditSize values at the

sender and receiver.

CBFC requires support for a minimal set of CreditSize values, on powers of 2:

• 32, 64, 128, 256, 512, 1024 and 2048 bytes

In addition, to make better use of the credit mechanism and buffer storage, it is recommended to also

support values at 8 B intervals from 32 B to 64 B, 16 B intervals from 64 B to 128 B, 32 B intervals from

128 B to 256 B, 64 B intervals from 256 B to 512 B, 128 B intervals from 512 B to 1024 B, and 256 B

intervals from 1024 B to 2048 B.

Additional recommended CreditSize values:

• 40, 48, 56, 80, 96, 112, 160, 192, 224, 320, 384, 448, 640, 768, 896, 1280, 1536, and 1792.

Finer granularity is always better and is encouraged. The programmed CreditSize at the sender must be

conservative with respect to the receiver’s actual input buffer cell size, such that the programmed

CreditSize ≤ (receiver’s cell size).

5.2.10.2 Packet Overhead

An implementation shall support the packet overhead parameter, PktOvhd, in the range from -16 to

+127 bytes. An implementation may use a PktOvhd value quantized to a granularity greater than one

byte if it is conservative with respect to the receiver’s actual per-packet overhead buffer requirement,

such that the programmed PktOvhd ≥ (actual receiver packet overhead).

 509

Copyright © 2025 Ultra Ethernet ConsortiumTM. All rights reserved.

5.2.10.3 Compliance Requirements Summary

Table 5-27 - Conformance Requirements

Item Requirement Required Value(s)

Configuration Parameters

Minimum number of VCs
Must be able to support at least this
number of VCs.

2 (one lossless VC and
one best-effort VC)

Maximum number of VCs
CBFC does not support more than 32
VCs (2 ≤ NumVCs ≤ 32)

The maximum number of VCs
supported is implementation-specific up
to 32 lossless VCs.

Number of lossless VCs
Must support a configurable number
of lossless VCs up to NumVCs.

1 ≤ n ≤ NumVCs

VC mapping
All VCs must be configurable as either
lossless or best effort.

CreditSize

Must support a configurable
CreditSize, in bytes. More granularity
than the required values is suggested
(see section 5.2.10.1).

CreditSize  {32, 64, 128, 256, 512,

1024, 2048}

TotalCredits
Must support a configurable total
number of credits
 (determined by receiver).

1 ≤ TotalCredits ≤ (219-1)

VC_CreditLimit[x]
Must support a configurable credit
limit for each lossless VC[x].

1 ≤ VC_CreditLimit x ≤ TotalCredits

PktOvhd
Must be able to support a configurable
size of packet overhead in bytes.

-16 ≤ PktOvhd ≤ 12

Link Level Messages

CF_Update format
Must support CF_Update CtlOS format
as defined in section 5.2.6.1.

CF_min_timer

Receiver must support a configurable
minimum time (bytes) between
CF_Update CtlOS (applied to updated
R_VC_CF[x] values).

CF_min_timer ≥ 8 B of wire time

CF_max_timer

Receiver must support a configurable
average maximum time (bytes)
between CF_Update CtlOS (for all
R_VC_CF[x] values).

16 kB to 1 MB with minimum
granularity of 16 kB

CC_Update format
Must support CC_Update packet
format as defined in section 5.2.6.2.

CC_msg_timer
Must support a configurable period for
CC_Update packet generation by the
sender.

1 µs ≤ CC_msg_timer ≤ 25 ms

Counters

S_P_CL Sender Port Credit Limit ≤ S_P_CL ≤ (220 – 1)

S_VC_CL[x] Sender VC Credit Limit ≤ S_VC_CL x ≤ (220 – 1)

S_VC_CC[x] Sender VC Credits Consumed ≤ S_VC_CC x ≤ (220 – 1)

S_VC_CF[x] Sender VC Credits Freed ≤ S_VC_CF x ≤ (215 – 1)

R_VC_CC[x] Receiver VC Credits Consumed ≤ R_VC_CC x ≤ (220 – 1)

 510

Copyright © 2025 Ultra Ethernet ConsortiumTM. All rights reserved.

Item Requirement Required Value(s)

R_VC_CF[x] Receiver VC Credits Freed ≤ R_VC_CF x ≤ (215 – 1)

VC mapping

VLAN mapping

Must support a flexible mapping of
{VLAN.PCP, VLAN.DEI} to
 VC number for full range or any subset
of PCP/DEI.

DSCP mapping
Must support a flexible mapping of
ip.dscp to VC number for full range or
any subset of DSCP.

5.2.11 Control Ordered Sets (CtlOS) in UE Link Layer

The CtlOS is a message mechanism utilized by the credit-based flow control (CBFC) and link layer retry

(LLR) features. The general format is extensible to future link-level features as well. It is an 8-byte

message encoded as an ordered set in the 64b/66b PCS encoding with an O-code value to distinguish it

from standard IEEE Std 802.3 [1]sequence ordered sets.

5.2.11.1 Control Ordered Sets Format

Control ordered sets use a control character of 0x5C on the xMII bus between the MAC/RS and PCS. This

distinguishes them from the standard sequence ordered sets, which use a control character of 0x9C.

Table 5-28 - CtlOS Format on xMII

Ordered
Set

Lane 0
(D0, control
character)

Lane 1
(D1)

Lane 2
(D2)

Lane 3
(D3)

Lane 4
(D4)

Lane 5
(D5)

Lane 6
(D6)

Lane 7
(D7)

CtlOS 0x5C Type D2 D3 {D4[7:4], 0x6} D5 D6 D7

The CtlOS type field is used to encode the CtlOS message type. Table 5-29 defines all UE CtlOS message

type values. Each CtlOS message has 5.5 bytes in D2-D7 for message-specific information.

Table 5-29 - UE CtlOS Message Type Values

UE Feature CtlOS Msg type value (D1)

LLR

ACK 0x01

NACK 0x02

INIT 0x03

INIT_ECHO 0x04

CBFC CF_Update 0x10

The PCS 64B/66B encoding must be modified to translate an xMII Lane 0 control character of 0x5C to the

block type of 0x4B with an O-code value of 0x6. This definition supports both IEEE sequence ordered

 511

Copyright © 2025 Ultra Ethernet ConsortiumTM. All rights reserved.

sets and the new control ordered sets within the same structure. See the UE PHY specification for

additional details.

Table 5-30 - Modified 64B/66B PCS Encoding for Ordered Sets

Input

data
Sync [2:9] [10:17] [18:25] [26:33] [34:37] [38:41] [42:49] [50:57] [58:65]

Ordered

Set
‘b1 0x4B D1 D2 D3 O-code D4[4:7] D5 D6 D7

Note:

• O-code value is 0x0 for sequence ordered sets and 0x6 for UE control ordered sets.

5.2.11.2 Link Layer and MAC CtlOS Insertion Rules

The following rules govern the insertion of CtlOS messages into the TX data stream.

• CtlOS must always be 8-byte aligned with the xMII control code in lane 0.

• CtlOS are allowed to preempt a packet except:

o Within the first 256 bytes of a packet.

• A packet that is preempted by a CtlOS must continue transmission of data immediately

following the CtlOS.

• CtlOS must be limited to less than 2% of link bandwidth.

o Enforced by guaranteeing a minimum distance of at least 400 B between two CtlOS.

• CtlOS should use less than 0.5% of link bandwidth under usual circumstances.

o Spacing of approximately 1600 bytes between two CtlOS.

Guaranteed spacing between two CtlOS has several advantages, including simplifying the RX CtlOS

handling logic. The minimum spacing rules must be observed even if there are no packets in transit and

the CtlOS would be separated only by IDLE characters.

5.2.12 CBFC Message Examples (Informative)

5.2.12.1 CBFC CF_Update Message

CBFC CF_Update messages are formatted as an 8-byte CtlOS on the xMII as described in section 5.2.6.1.

In the following example, the CF_Update message contains the R_VC_CF counter values for two lossless

VCs. The first VC, number 4, has an R_VC_CF value of 123, and the second VC, number 11, has an

R_VC_CF value of 14203. As described in Table 5-21, this corresponds to CF1_VC_index=4,

CF1_count=123 (0x7B), CF2_VC_index=11, and CF2_count=14203 (0x377B). The CF_Update CtlOS is

formatted on the xMII as shown in Figure 5-15.

 512

Copyright © 2025 Ultra Ethernet ConsortiumTM. All rights reserved.

Figure 5-15 - CF_Update Message Example

Each data byte on the xMII interface is transmitted from LSBit to MSBit, and from TXD<0> to TXD<63>.

5.2.12.2 BFC CC_Update Message

CBFC CC_Update messages are formatted as a 64-byte Ethernet frame as described in section 5.2.6.2

and contain the S_VC_CC counter values for 16 VCs. For this example, the CC_Update fields have values

as described below, which are formatted into eight data transfers of 8 bytes each on the xMII interface,

as shown in Figure 5-16. Note that the frame data transfers are preceded by a single xMII transfer with

the preamble+SFD and are followed by a single xMII transfer with the terminate (/T/) control character

and seven idle (/I/) control characters.

This example uses these field values as defined in Table 5-22:

• MACDA = 01-80-C2-00-00-01

• EtherType = 0x8808 and Opcode = 0xFFFE

• CID = 0xFA7ACB

• CC_Update packet type = 0x01

The MACSA field is normally the MAC address of the source port as specified in section 5.2.6.2. The

value used here is for this example only:

• MACSA = 0A-0B-0C-0D-0E-0F

The 16 S_VC_CC values for this example are shown in decimal and hexadecimal format in Table 5-31.

Table 5-31 - CC_Update Message - Counter values

VC #
S_VC_CC
(decimal)

S_VC_CC (hex)

VC #
S_VC_CC
(decimal)

S_VC_CC (hex)

0 800008 0xC3508 8 100100 0x18704

1 100001 0x186A1 9 200200 0x30E08

2 200002 0x30D42 10 300300 0x4950C

3 300003 0x493E3 11 400400 0x61C10

4 400004 0x61A84 12 500500 0x7A314

5 500005 0x7A125 13 600600 0x92A18

6 600006 0x927C6 14 700700 0xAB11C

7 700007 0xAAE67 15 800800 0xC3820

MII Fields:

bit position: 7 6 5 4 3 2 1 0 7 6 5 4 3 2 1 0 7 6 5 4 3 2 1 0 7 6 5 4 3 2 1 0 7 6 5 4 3 2 1 0 7 6 5 4 3 2 1 0 7 6 5 4 3 2 1 0 7 6 5 4 3 2 1 0

CF_Update fields:

example (dec):

example (hex):

example (bin): 0 1 0 1 1 1 0 0 0 0 0 1 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 1 1 1 1 0 1 1 0 1 1 0 0 1 0 1 1 0 1 1 0 1 1 1 0 1 1 1 1 0 1 1 0 0 0 0

MII Fields:

MII bytes:

TXD<0> to <63>: 0 0 1 1 1 0 1 0 0 0 0 0 1 0 0 0 0 0 0 0 0 1 0 0 1 1 1 0 0 0 0 0 0 1 1 0 1 1 0 1 1 1 0 1 1 0 1 0 1 1 1 0 1 1 1 0 0 0 0 0 1 1 0 1

CF2_count <rsvd>Control Character Type CF1_VC CF1_count O-code CF2_VC

D0 D1 D2 D3 D4 D5 D6 D7

14203 0

0x5C 0x10 0x4 0x007B 0x6 0xB 0x377B 0x0

92 16 4 123 6 11

TXD<0:63>

D6 D7

0x5C 0x10 0x20 0x07 0xB6 0x5B 0x77 0xB0

D0 D1 D2 D3 D4 D5

 513

Copyright © 2025 Ultra Ethernet ConsortiumTM. All rights reserved.

Figure 5-16 shows the CC_Update frame format, followed by the example hexadecimal data, followed by

the eight data transfers on the xMII bus (TXD<0:63>) for the above example values.

Figure 5-16 - CC_Update Message Example

Each data byte on the xMII interface, with the exception of the FCS, is transmitted from LSBit to MSBit

and from TXD<0> to TXD<63>.

5.2.13 References

[1] IEEE Std 802.3-2022, "IEEE Standard for Ethernet," 2022. [Online]. Available:

https://ieeexplore.ieee.org/document/9844436.

[2] IEEE Std 802.3db-2022, "IEEE Standard for Ethernet - Amendment 3: Physical Layer

Specifications and Management Parameters for 100 Gb/s, 200 Gb/s, and 400 Gb/s Operation

over Optical Fiber using 100 Gb/s Signaling," 2022. [Online]. Available:

https://ieeexplore.ieee.org/document/9988984.

[3] IEEE Std 802.3ck-2022, "IEEE Standard for Ethernet Amendment 4: Physical Layer Specifications

and Management Parameters for 100 Gb/s, 200 Gb/s, and 400 Gb/s Electrical Interfaces Based

on 100 Gb/s Signaling," 2022. [Online]. Available:

https://ieeexplore.ieee.org/document/9999414.

[4] IEEE Std P802.3df-2024, "IEEE Standard for Ethernet - Amendment 9: Media Access Control

Parameters for 800 Gb/s and Physical Layers and Management Parameters for 400 Gb/s and 800

Gb/s Operation," 2024. [Online]. Available: https://ieeexplore.ieee.org/document/10472445.

https://ieeexplore.ieee.org/document/9844436

 514

Copyright © 2025 Ultra Ethernet ConsortiumTM. All rights reserved.

[5] IEEE Std 802.1AB-2016, "IEEE Standard for Local and Metropolitan Area Networks - Station and

Media Access Control Connectivity Discovery," 2016. [Online]. Available:

https://ieeexplore.ieee.org/document/7433915.

[6] IEEE Std 802.1Q-2022, "IEEE Standard for Local and Metropolitan Area Networks – Bridges and

Bridged Networks," 2022. [Online]. Available: https://ieeexplore.ieee.org/document/10004498.

 515

Copyright © 2025 Ultra Ethernet ConsortiumTM. All rights reserved.

5.3 UE Link Negotiation

UE link negotiation defines the negotiation of optional link local features for the UE link layer that

extend the operation of the UE link beyond those of a standard IEEE Std 802.3 Ethernet. These optional

link local features can be used only on a UE link where both link partners support the optional features

and desire to enable them.

This specification defines the negotiation of the following optional link local features:

1. Link layer retry (LLR)

2. Credit based flow control (CBFC)

To support automatic discovery, negotiation, and selection among the optional link local features, a

negotiation protocol is built on top of UE link layer configuration information exchanged by the IEEE Link

Layer Discovery Protocol [1] , [2] , [9] . The UE link layer configuration information is exchanged by the

Link Layer Discovery Protocol (LLDP) within UE Organizationally Specific Type-Length-Values (TLVs),

which are formatted as specified in IEEE Std 802.1AB. The UE link configuration information, exchanged

by LLDP and stored in the LLDP database, is in turn used to configure and enable optional link local

features.

The management processes for each feature use the LLDP database to indicate their port’s capabilities

and configuration and to determine the capabilities and configuration of their remote link partner. The

local and remote LLDP database information is used to enable and disable each feature requiring co-

ordination between the link partners, deliver any parameters required to initialize the feature, and

provide indication of capabilities available at each port.

TLV tuples describe the capabilities of a UE link, for example LLR and CBFC support, as well as

configuration details such as the number of virtual channels supported by CBFC. The capabilities

advertised using LLDP can be used by network management to map the network topology along with

the capabilities available at each link, allowing the manager to determine paths that support the

optional features.

Any device that supports the widely deployed IEEE Link Layer Discovery Protocol can be easily extended

(often via software only) to support this negotiation protocol. In the event that a device does not

support the UE Link Negotiation Options TLVs, the use of UE link local optional features would be

disabled by the negotiation protocol. This provides backward compatibility with standard IEEE 802.3 Link

Layer devices that do not provide the UE organizationally specific LLDP TLVs. The use of the negotiation

protocol can be overridden by configuration management to allow manual configuration of link features

when necessary.

5.3.1 LLDP Overview

LLDP is a link layer protocol that allows an Ethernet device to advertise the capabilities and current

status of the system at a port. The port provides the service to a link layer control (LLC) entity that in

turn directs LLDP frames to the LLDP entity based on the Ethertype 0x88CC. The information distributed

and received in each LLDP protocol data unit (LLDPDU) is stored in one or more databases. Figure 5-17

 516

Copyright © 2025 Ultra Ethernet ConsortiumTM. All rights reserved.

illustrates LLDP and its relationship to its databases designed by the IETF, IEEE 802, UEC, OpenConfig,

and others.

Organizationally defined local

device LLDP YANG

extensions (optional)

Organizationally defined local

device LLDP YANG

extensions (optional)

LLDP local system

YANG

LLDP remote systems

YANG

Interface

Management

Other YANG

Modules

System

Management

UEC defined local device

LLDP YANG extensions

UEC defined remote device

LLDP YANG extensions

LLDP Frames

Remote device

informaiton

Local device

informaiton

()
LLDP

LLDPDU Transmission and Reception

Router

Management

Switch

Management

Figure 5-17 - LLDP Agent With the UE LLDP Databases

The UE LLDP database is defined under a UE organizationally defined YANG module. The information

within the UE LLDP database is used both by the network management system to discover the

capabilities and topology of the network and by the link partners to negotiate the operation of optional

UE link features. UE feature negotiation is performed by the local management procedures of each

individual feature using the local and remote UE LLDP database information.

The format of an LLDP frame is illustrated in Figure 5-18. The LLDPDU contains a series of TLVs

formatted as described in [1] . These include three mandatory TLVs — Chassis ID, Port ID, and Time To

Live — followed by a series of optional TLVs. The UE organizationally specific LLDP TLVs are included

among the optional TLVs.

 517

Copyright © 2025 Ultra Ethernet ConsortiumTM. All rights reserved.

DA SA
EtherType

=0x88CC

Chassis

ID TLV

Port ID

TLV

Time To

Live TLV

Optional

TLV

Optional

TLV

End Of

LLDPDU TLV
FCS

LLDPDU

Figure 5-18 - Ethernet Frame Containing an LLDPDU

The destination address of the LLDPDUs carrying the UE organizationally specific LLDP TLVs SHALL use

the nearest bridge group address listed in Table 5-32:

Table 5-32 - LLDP Database Group Addresses

IEEE 802.1 Group Address Name Group Address

Nearest bridge group address 01:80:c2:00:00:0e

Nearest customer bridge group address 01:80:c2:00:00:00

Nearest non-TPMR bridge group address 01:80:c2:00:00:03

5.3.2 UE Organizationally Specific LLDP TLVs

The UE organizationally specific LLDP TLVs are used to:

i) Advertise capabilities available at a UE Link.

ii) Negotiate and activate common link capabilities.

The UEC defines the UE Link Negotiation Options TLV and the UE Link CBFC TLV for configuration of UE

link features. The UE Link Negotiation Options TLV is used to discover and configure advanced UE link

capabilities for link layer retry (LLR). The UE Link Negotiation CBFC TLV is used to discover and configure

UE link credit-based flow control.

5.3.2.1 UE Link Negotiation Options TLV (Options TLV)

The UE Link Negotiation Options TLV is exchanged via LLDP and conforms to the LLDP TLV specification

[1] for organizationally specific TLVs. The UE Link Negotiation Options TLV is also called the Options TLV

within this specification.

The Options TLV is used to advertise the link layer retry (LLR) feature which provides link level re-

transmissions for packets with errors.

The Options TLV contains flags for each feature that use a suffix naming convention to designate their

definition and use. Flags that do not re uire negotiation use the suffix “-C” to indicate the feature is

available and enabled (i.e., “capable”). There are currently no flags using the suffix “-C”, however this

convention is defined for future use. Flags that use the suffix “-E” indicate the feature is “enabled” and

the suffix “-W” to indicate the feature is “wanted”. A UE link feature is negotiated using the information

contained in the Options TLV. If the Options TLV is not present at either end of the link, the feature is

disabled. If both ends of the link provide an Options TLV, each end of the link will see the ”-W” and ”-E”

flags in both their local and remote databases.

 518

Copyright © 2025 Ultra Ethernet ConsortiumTM. All rights reserved.

Each port seeing both the local and remote ”-W” flag TRUE responds by setting the corresponding ”-E”

flag TRUE in their local database. After setting the “-E” flag in the local database, the port SHALL wait to

see the corresponding ”-E” in the remote database before beginning to use the feature. The feature

SHALL become operational only when both local and remote enables are TRUE.

Each optional feature defines how this process applies to the specific case and the steps required before

full usage of the feature occurs. For example, the LLR logic uses inputs from the LLDP database to

control its internal state machine for enabling or disabling LLR.

TLV header

Bytes

Bits:

1 2 3 6

8 2 1 8 1

TLV information string = 6 octets

TLV type =
127

(7 bits)

TLV information
string length = 6

(9 bits)

UEC
CID

(3 octets)

Subtype
= 0

(5 bits)

TLV header

Vers
= 0

(3 bits)

7 8

Link Options
(2 octets)

1

LL
R

-E

83 18

8 15 18

RESV1=0

2 2Bits:

LL
R

-W RESV2=0

Figure 5-19 - UE Link Negotiation Options TLV (Options TLV)

5.3.2.1.1 TLV Type

The 7-bit IEEE-assigned TLV type 127 indicating this TLV is encoded using an organizationally specific

identifier format and subtype [1] .

5.3.2.1.2 TLV Information String Length

The 9-bit TLV information string length indicates the number of bytes following the information string

length field. The Options TLV length is 6 bytes.

5.3.2.1.3 Company ID (CID)

The 24-bit UEC Company ID (CID) used to identify UE TLVs is FA-7A-CB.

5.3.2.1.4 Subtype

The 5-bit subtype value 0 identifies the Options TLV. The UE subtype and version fields together occupy

the one-byte field specified by IEEE Std 802.1AB-2016 subclause 8.6.1 for the organizationally defined

subtype. The subtype value 0x1F is reserved for extending the UE TLV subtype field.

5.3.2.1.5 Version

The 3-bit version value 0 identifies this initial version of the Options TLV. Future versions of the TLV

SHALL be backward-compatible with version 0. They can extend the length of the TLV to add additional

 519

Copyright © 2025 Ultra Ethernet ConsortiumTM. All rights reserved.

information and/or provide definitions for currently reserved fields. Older versions will ignore any

updated reserved fields, unknown code points, or new information provided in the TLV extended length.

5.3.2.1.6 UE Link Options

The UE Link Options field describes the UE link optional capabilities that are available at the port sending

the Options TLV. In addition to the listed capabilities, some of the options can be enabled or disabled

depending on availability at the remote link end. Enable flags are provided in the UE link options field to

allow turning features on and off in synchronization with the remote link partner An enable value of

TRUE(1) indicates that the capability is running at the sender of the Options TLV; an enable value of

FALSE(0) indicates that the capability is not running at the sender. A port that advertises it wants an

optional capability SHALL enable the feature and set the enable flag to TRUE(1) only if the link partner

indicates it wants to use the feature. The capabilities are as defined in the following subclauses.

5.3.2.1.6.1 LLR

The 2-bit LLR-W field has four possible values. A value of LLR-W = 0 means the capability is not wanted.

A value of LLR-W = 3 means the capability is wanted. A version 0 UE link port SHALL NOT set LLR-W to

the values 1 or 2. A version 0 UE link port receiving LLR-W with the values 0, 1, or 2 from the remote

port SHALL disable LLR and set LLR-E to FALSE. If LLR-W is set to the value 3, the port is LLR-capable and

wanting to use bi-directional LLR. If the local and remote port’s LLR-W = 3, the local port sets the 1-bit

LLR-E flag to TRUE(1).

Table 5-33 - UE Link Negotiation Options TLV LLR-W Field Options

LLR-W Value UE Link optional capability

0 This port does not want to use LLR.

1 Reserved for future specification.

2 Reserved for future specification.

3 This port wants bi-directional LLR (it both sends and receives).

Even if the local port has set the LLR-E flag, indicating the local port is set to use LLR, the local port SHALL

NOT begin using LLR until the remote link partner indicates it has enabled LLR by setting its LLR-E flag to

TRUE(1). Both link partners SHALL enable LLR before the LLR feature is operational.

5.3.2.1.6.2 RESV1

A 6-bit reserved field that SHALL be transmitted as 0 and ignored on receive.

5.3.2.1.6.3 RESV2

A 7-bit reserved field that SHALL be transmitted as 0 and ignored on receive.

5.3.2.2 UE Link Negotiation CBFC TLV (CBFC TLV)

The UE Link Negotiation CBFC TLV is exchanged via LLDP and conforms to the LLDP TLV specification [1]

for organizationally specific TLVs. The UE Link Negotiation CBFC TLV is also called the CBFC TLV within

this specification.

 520

Copyright © 2025 Ultra Ethernet ConsortiumTM. All rights reserved.

The CBFC TLV provides the capabilities to:

• Determine if CBFC is supported by the presence or absence of the CBFC TLV in both the local

and remote LLDP databases.

• Exchange the receiver buffer parameters including the buffer size (cell size), per-packet

overhead, and total credits (each of cell size) assigned to CBFC.

• Negotiate the sender credit size and packet overhead.

• Identify each CBFC virtual channel (VC) the receiver wants to support along with the VC

identifier, state, queue, and packet stream selector, and optionally the per-VC credit limit.

• Allow the sender to indicate to the receiver when the sender is ready to start sending to the

wanted VC(s).

• Allow the receiver to indicate to the sender when the receiver is ready to begin operation of the

wanted VC(s).

• Allow the receiver to modify the credit limit on each VC independently.

• Allow the receiver to stop CBFC on each VC and to re-activate each VC independently.

The CBFC clause provides a complete explanation of how the CBFC TLV exchange is used to configure

CBFC service on a link. The CBFC TLV contains all the parameters required to initialize CBFC for each

virtual channel. Configuration of VCs is performed independently for each direction on the link. The

initialization begins when the receiver sets R_VC_WANT = TRUE(1) for the VC(s) desiring CBFC service.

The sender seeing R_VC_WANT = TRUE in its remote database from the remote link partner configures

the requested VC(s), then acknowledges the configuration by setting S_VC_RTS = TRUE(1) for the

requested VC(s) in its local database. The receiver seeing S_VC_RTS = TRUE for its requested VC(s) in its

remote database from its remote link partner configures itself based on the parameters provided by the

sender, then indicates it is ready to receive by setting R_VC_RTR = TRUE(1) for the VC(s) in its local

database. From this point onward the sender will use CBFC for transmissions on the configured VCs. The

sender SHALL NOT set S_VC_RTS = TRUE for a VC unless the remote receiver has set R_VC_WANT =

TRUE for the VC. The receiver SHALL NOT set R_VC_RTR = TRUE for a VC unless the remote sender has

set S_VC_RTS = TRUE for the VC. The sender SHALL NOT use CBFC for a VC unless the remote receiver

has set R_VC_RTR = TRUE for the VC.

 521

Copyright © 2025 Ultra Ethernet ConsortiumTM. All rights reserved.

TLV header

Bytes: 1 2 3 6

TLV information stringTLV header

resv4

=0

(1 bit)

R_VC_CreditLimit

(3 octets)
R_VcID

(5-bits)

Bytes:

Bits:

1

8

22 23 n * 6 + 22

2 6

5 1 1

R_PcpDei

(4-bits)

R_MaskPcpDei

(4-bits)

R_PktID_

Sel

4-bit

R_PktID

(12-bits)

Resv5

(2-bits)

=0

Resv6

(2-bits)

=0

5

R_DSCP

(6-bits)

R_MaskDSCP

(6-bits)

R_Handle

(12-bits)

5

4 2 7 4 16

If R_PktID_Sel = 1

If R_PktID_Sel = 2

If R_PktID_Sel = 3

7 6

R_VC_

RTR

(1-bit)

7

R_VC_

Want

(1-bit)

6

Bits: 8 2 1 8 1

TLV type =

127

(7 bits)

TLV information

string length =

n*6+18

(9 bits)

UEC

CID

(3 octets)

Subtype

= 1

(5 bits)

Vers

= 0

(3 bits)

8 5

R_VCn

(6-octets/VC)

R_NumVCs

= n

(6-bits)

1 1

R
es

v3
=

0

(2
 b

its
)

1

Bits:

4 1

4 1

Bits:

Bits:

1198 10

4

S_VC_RTS

(4 octets)

18

S_Credit

Size

(12-bits)

S_Packet

Overhead

(8-bits)

88 8

Resv1

=0

8-bits

Sender Information Receiver Information

7 15 23

Per VC Receiver Information

n*6+22

191715 18

4

R_TotalCredits

(3 octets)

18

R_Cell

Size

(12-bits)

R_Packet

Overhead

(8-bits)

88 8

R_VCn

Length=

6

(4 bits)

14

Error

Code

(4-

bits)

8

If R_PktID_Sel = 0 Disable Packet Identification

8

5

7

Resv2=0

(8-bits)

4 85 1

16 21

2214

Bytes:

Bits:

Bytes:

Bits:

Figure 5-20 - UE Link Negotiation CBFC TLV (CBFC TLV)

5.3.2.2.1 TLV Type

The 7-bit IEEE assigned TLV type 127 indicating this TLV is encoded using an organizationally specific

identifier format and subtype [1] .

 522

Copyright © 2025 Ultra Ethernet ConsortiumTM. All rights reserved.

5.3.2.2.2 TLV Information String Length

The 9-bit TLV information string length indicates the number of bytes following the information string

length field. The CBFC TLV string length depends on the number of receive VCs desired. For 0 <= n <= 32

where n is the number of receive VCs listed by this port, the string length is n*6+20. The maximum CBFC

TLV information string length is 212 bytes. The maximum total TLV length is 214 bytes.

5.3.2.2.3 Company ID (CID)

The 24-bit UEC Company ID (CID) used to identify UE TLVs is FA-7A-CB.

5.3.2.2.4 Subtype

The 5-bit subtype value 1 identifies the CBFC TLV. The UE subtype and version fields together occupy the

one-byte field specified by IEEE Std 802.1AB-2016 subclause 8.6.1 for the organizationally defined

subtype. The subtype value 0x1F is reserved for extending the UE TLV subtype field.

5.3.2.2.5 Version

The 3-bit version used to identify the initial version of the CBFC TLV is 0. Future versions of the TLV

SHALL be backward-compatible with version 0. They can extend the length of the TLV to add additional

information and definitions for reserved fields. Older versions will ignore any updated reserved fields,

code points, or TLV length extensions.

5.3.2.2.6 Error_Code

The 4-bit Error_Code is used by the CBFC sender to indicate error conditions to the remote CBFC

receiver. If no error is detected the Error_Code = 0. The error codes are:

Table 5-34 - UE Link Negotiation CBFC Error Codes

Value CBFC Sender Meaning

0x0 No error.

0x1 CBFC sender is unable to support the receiver cell size.

0x2 CBFC sender is unable to support a requested VC.

0x3 CBFC sender can’t support the credit pool size.

0x4 CBFC sender can’t support a re uested VC credit limit.

0x5 CBFC sender and CBFC receiver packet identification do not match.

0x6 Other error condition.

0x7-0xF Reserved for future UE specification.

5.3.2.2.7 S_CreditSize

The 12-bit S_CreditSize field identifies the number of bytes in a single credit at the sending port. When

S_CreditSize = 0 the CBFC sender has not yet set its credit size. A CBFC sending port waits to see the

CBFC receiver cell size, R_CellSize, in the remote LLDP database before selecting its credit size. The

S_CreditSize SHALL be valid when any of the S_VC_RTS[x] flags are TRUE. While any S_VC_RTS[x] flag is

TRUE the S_CreditSize SHALL NOT change.

 523

Copyright © 2025 Ultra Ethernet ConsortiumTM. All rights reserved.

5.3.2.2.8 S_PacketOverhead

The 8-bit S_PacketOverhead field identifies the number of overhead bytes per packet at the sending

port. The S_PacketOverhead SHALL be valid when any of the S_VC_RTS[x] flags are TRUE. While any

S_VC_RTS[x] flag is TRUE the S_PacketOverhead SHALL NOT change.

5.3.2.2.9 S_VC_RTS

The 32-bit S_VC_RTS field contains 32 ready-to-send flags, one for each of the 32 possible VCs. The

S_VC_RTS flag in bit position 0 indicates the VC0 CBFC sender state. When the S_VC_RTS flag is TRUE(1)

the sender is ready to send but SHALL wait to begin until the receiver sets R_VC_RTR=TRUE.

5.3.2.2.10 R_VCnLength

The 4-bit R_VCnLength field specifies the length of each element of the per-VC fields R_VCn. For version

0 the length is 6 bytes. Future versions can increase the length. Version 0 SHALL skip over any bytes

beyond 6 when reading the R_VCn fields.

5.3.2.2.11 R_CellSize

The 12-bit R_CellSize field identifies the number of bytes in a single credit at the receiving port.

5.3.2.2.12 R_PacketOverhead

The 8-bit R_PacketOverhead field identifies the number of overhead bytes at the receiving port.

5.3.2.2.13 R_TotalCredits

The 24-bit R_TotalCredits field identifies the total number of credits, of credit size, available for all VCs

at the receiver.

5.3.2.2.14 R_NumVCs

The 6-bit R_NumVCs field indicates the number of receiver VC configuration subfields (R_VCn) following

in this TLV.

5.3.2.2.15 R_VCn

R_VCn represents R_NumVCs fields, one for each VC the receiver at this port wants to activate or

catalog. Each R_VCn field contains parameters for configuring CBFC for this VC as listed in the following

subclauses.

5.3.2.2.15.1 R_VC_Want

The 1-bit R_VC_Want field indicates if the receiver wants CBFC lossless service for this VC. If TRUE(1) this

port wants CBFC lossless receiver service for this VC on this port. If FALSE(0) this VC is best effort. If

R_VC_Want transitions to FALSE(0), the sender SHALL stop using CBFC credits to qualify transmission of

packets on this VC, set the corresponding S_VC_RTS flag to FALSE(0), and return to best effort

forwarding.

 524

Copyright © 2025 Ultra Ethernet ConsortiumTM. All rights reserved.

5.3.2.2.15.2 R_VC_RTR

If the 1-bit R_VC_RTR field is TRUE, this VC receiver is ready. The R_VC_RTR field SHALL NOT be set

TRUE(1) until after a corresponding S_VC_RTS is set TRUE by the remote link partner. If R_VC_RTR

transitions to FALSE(0), the sender SHALL stop using CBFC credits to qualify transmission of packets on

this VC.

5.3.2.2.15.3 R_VcID

A 5-bit field indicating the receive VC number configured by the parameters in this R_VCn. VC numbers

range from 0 to 31. Implementations are not required to support all 32 possible VCs.

5.3.2.2.15.4 R_PktID_Sel

A 4-bit field indicating the type of identifier for the VC. Table 5-35 shows the possible R_PktID_Sel

options. This is an optional service that provides assurance that both the CBFC sender and receiver are

configured to count credits on the same packets. If the link partners do not agree on the packets that

belong to each VC, then the credit counts will be incorrect and the link can lose packets even with CBFC.

Table 5-35 - UE Link Negotiation CBFC TLV R_PktID_Sel Field Options

Value Meaning

0x0 Disable packet to VC identification matching.

0x1 The R_PcpDei contains a 4-bit PCP/DEI value used by this VC. The R_MaskPcpDei
parameter identifies which R_PcpDei bits are valid.

0x2 The R_DSCP contains a 6-bit DSCP value used to identify this VC. The
R_MaskDSCP parameter identifies which DSCP bits are valid.

0x3 The R_Handle contains a 12-bit stream handle identifying this VC. The handle
identifies a stream handle such as specified in IEEE Std 802.1CBdb-2021 clause 6
[10] .

0x4-0xF Reserved for future specification by UE.

5.3.2.2.15.5 R_PktID

The R_PktID contains one of three sets of fields that are used to identify the packets to VC mapping. The

type of field is determined by the R_PktID_Sel parameter. The R_PktID information is provided by the

receiver for each receiver VC and can be used by the sender in one of three ways depending on the local

configuration of the sender’s CBFC management agent. The sender MAY:

1) Ignore the packet to VC mapping.

2) Compare the mapping to its own sending VC configuration to verify agreement.

3) Dynamically install the mapping for its sending VC.

If the receiver elects to disable packet-to-VC mapping identification by setting R_PktID_Sel = 0, then the

sender cannot use dynamic packet identification. In the event the receiver disables packet identification

while the sender is configured for dynamic mapping, then the sender disables the VC and reports an

error.

 525

Copyright © 2025 Ultra Ethernet ConsortiumTM. All rights reserved.

5.3.2.2.15.6 R_MaskPcpDei

Selected if R_PktID_Sel = 1. The 4-bit R_MaskPcpDei field identifies the bits of the L2 PCP/DEI fields that

are valid for identifying this VC. The DEI bit is the least significant bit of the R_MaskPcpDei field.

5.3.2.2.15.7 R_PcpDei

Selected if R_PktID_Sel = 1. The 4-bit R_PcpDei field contains the L2 packet PCP/DEI value after the

R_MaskPcpDei mask is applied identifying this VC. The DEI bit is the least significant bit of the R_PcpDei

field. The set of packets that are members of the VC are those where (PcpDei & R_MaskPcpDei) ==

R_PcpDei is TRUE.

5.3.2.2.15.8 R_MaskDSCP

Selected if R_PktID_Sel = 2. The 6-bit R_MaskDSCP field identifies the bits of the L3 DSCP field that are

valid for identifying this VC.

5.3.2.2.15.9 R_DSCP

Selected if R_PktID_Sel = 2. The 6-bit R_DSCP field contains the L3 packet DSCP value after the

R_MaskDSCP mask is applied identifying this VC. The set of packets that are members of the VC are

those where (DSCP & R_MaskDSCP) == R_DSCP is TRUE.

5.3.2.2.15.10 R_Handle

Selected if R_PktID_Sel = 3. The 12-bit R_Handle is an opaque handle that can be used as an identifier

for a packet match method. The R_Handle is intended to cover complex packet match cases that can’t

be expressed by a simple mask and match of the PCP, DEI, and DSCP bits. The use of R_Handle requires

pre-arranged values by network management on each side of the link. These pre-arranged R_Handle

lists MUST match on both sides of the link. In some cases, a standard packet match method can be used,

such as stream identification as defined in IEEE Std 802.1CB-2017 [12] and IEEE Std 802.1CBdb-2021

clause 6 [10] . In other cases, the methods can be proprietary. There is no requirement to support any

particular packet match method or identifier list.

5.3.2.2.15.11 R_VC_CreditLimit

The 24-bit R_VC_CreditLimit field identifies the credits available for this VC receiver. A receiver SHALL

NOT set both R_VC_CreditLimit and R_TotalCredits to non-zero values. CBFC operates with either

R_VC_CreditLimit or R_TotalCredits, but not both.

5.3.2.2.15.12 Resv

All reserved fields are sent as 0 and ignored on receive.

5.3.3 UE LLDP YANG

This clause specifies the YANG modules that provide control and status monitoring of UE link options.

The YANG objects are based on the TLVs detailed in clause 2. This YANG model uses the YANG 1.1 data

modeling language as specified in [3] . The YANG framework applies hierarchy by using a uniform

resource name (URN) [8] , a private uniform resource identifier (URI), and the YANG objects that form a

hierarchy.

 526

Copyright © 2025 Ultra Ethernet ConsortiumTM. All rights reserved.

The YANG structure that incorporates the UE link YANG modules is represented by Figure 5-21. In this

diagram, white boxes are defined by the IETF, gray boxes are defined by the IEEE, and hashed boxes are

defined by the UE. As shown in the diagram the UE link YANG augments the IEEE LLDP management [2] .

IEEE LLDP

Management

IETF Interface

Management

IEEE 802.1CBcv

Stream Identification

IETF System

Management

.. . IP

...

Stream identif ication counters

...
IEEE 802.1CBdb

Mask-and-match

UEC Link Options

UEC Link CBFC

...

Figure 5-21 - YANG Root Hierarchy with UE Link LLDP Extensions

5.3.3.1 Models for UE LLDP Extension TLV YANG Modules

A UML-like representation of the management model is provided in the following subclauses. The

purpose of the UML-like diagram is to show the model design on a single piece of paper. The structure

of the UML-like representation shows the name and type of the object followed by the object

accessibility. In the UML-like representation, a box with a white background represents information that

comes from sources outside UE. A box with a gray background represents objects that are defined by

the UEC.

5.3.3.1.1 UE Link Negotiation Options TLV Model

The attributes for the UE Link Negotiation Options TLV object set are obtained from both system-wide

and per-port objects. A UML-like representation of the management model for the UE Link Negotiation

Options TLV is provided in this subclause. The model augments the IEEE LLDP port model. The UML for

the UE extension objects is derived from the UML specified in the IEEE Std 802.1AB and is shown in

Figure 5-22.

 527

Copyright © 2025 Ultra Ethernet ConsortiumTM. All rights reserved.

Port(name)

...

uel-options-tlv-extension // (5.2.1.3.6)

enum llr-want; // (5.2.1.3.6.1) r-w

boolean llr-enable; // (5.2.1.3.6.1) r

boolean tlvs-tx-org-uec-link-neg-options-enable; // (5.2) r-w

remote-systems-data(time-mark, remote-index)

timeticks timemark; // (RFC 2021 section 6) r

uint32 remote-index; // r

uel-options-tlv-extension // (5.2.1.3.6)

enum llr-want; // (5.2.1.3.6.1) r

boolean llr-enable; // (5.2.1.3.6.1) r

LLDP Port model objects

Objects added by this model

Figure 5-22 - UE Link Negotiation Options TLV Model

5.3.3.1.2 UE Link Negotiation CBFC TLV Model

The attributes for the UE Link Negotiation CBFC TLV are obtained from both system-wide and per-port

objects. A UML-like representation of the management model for the UE TLV is provided in this

subclause. The model augments the IEEE LLDP port model. The UML for the UE extension objects is

derived from the UML specified in the IEEE Std 802.1AB and is shown in Figure 5-23.

 528

Copyright © 2025 Ultra Ethernet ConsortiumTM. All rights reserved.

Port(name)

...

uel-cbfc-tlv-extension //

enum s-error-code; // r

uint16 s-credit-size; // r

Int8 s-packet-overhead; // r

uint32 s-vc-rts; // r

uint16 r-credit-size; // r

Int8 r-packet-overhead; // r

uint32 r-total-credits; // r-w

uint8 r-num-vcs; // r-w

LLDP Port model objects

Objects added by this model

*r-vc-id

bits tlvs-tx-org-uec-link-neg-cbfc-enable; // r-w

r-vcn (r-vc-id) // r-w

boolean r-vc-want; // r-w

boolean r-vc-rtr; // r

uint8 r-vc-id; // r-w

uint32 r-vc-credit-limit; // r-w

enum r-vc-pktid-sel; // r-w

remote-systems-data(time-mark, remote-index)

timeticks timemark; // (RFC 2021 section 6) r

uint32 remote-index; // r

per vc parameters (r-vcn)

packet type parameters (r-vc-pktid)

uel-cbfc-tlv-extension //

enum s-error-code // r

uint16 s-credit-size; // r

Int8 s-packet-overhead; // r

uint32 s-vc-rts; // r

uint16 r-credit-size; // r

Int8 r-packet-overhead; // r

uint32 r-total-credits; // r

uint8 r-num-vcs; // r

per vc parameters (r-vcn) r-vcn (r-vc-id) //

boolean r-vc-want; // r

boolean r-vc-rtr; // r

uint8 r-vc-id; // r

uint32 r-vc-credit-limit; // r

enum r-vc-pktid-sel; // r

packet type parameters (r-vc-pktid)

*r-vc-id

r-pcpdei-identification

binary r-mask-pcpdei; // r

binary r-pcpdei; // r

r-dscp-identification

binary r-mask-dscp; // r

binary r-dscp; // r

r-acl-identification

uint16 r-handle; // r

{XOR}

r-pcpdei-identification

binary r-mask-pridei; // r-w

binary r-pridei; // r-w

r-dscp-identification

binary r-mask-dscp; // r-w

binary r-dscp; // r-w

r-acl-identification

uint16 r-handle; // r-w

r-vc-pktid-sel

{XOR}

r-vc-pktid-sel

r-vc-pktid-sel

r-vc-pktid-sel

r-vc-pktid-sel

r-vc-pktid-sel

Figure 5-23 - UE Link Negotiation CBFC TLV Model

5.3.3.2 Security Considerations for UE LLDP Extension YANG Modules

The YANG modules defined in this clause are designed to be accessed via a network configuration

protocol, e.g., NETCONF protocol [5] . In the case of NETCONF, the lowest NETCONF layer is the secure

transport layer, and the mandatory-to-implement secure transport is SSH [6] . The NETCONF access

 529

Copyright © 2025 Ultra Ethernet ConsortiumTM. All rights reserved.

control model [7] provides the means to restrict access for particular NETCONF users to a preconfigured

subset of all available NETCONF protocol operations and content.

It is the responsibility of a system’s implementor and administrator to ensure that the protocol entities

in the system that support NETCONF, and any other remote configuration protocols that make use of

these YANG modules, are properly configured to allow access only to those principals (users) that have

legitimate rights to read or write data nodes. This standard does not specify how the credentials of

those users are to be stored or validated.

Several management objects defined in the uec-link-neg-options-tlv and uec-link-

neg-cbfc-tlv YANG modules are configurable (i.e., read-write) and/or operational (i.e., read-only).

Such objects may be considered sensitive or vulnerable in some network environments. A network

configuration protocol such as NETCONF can support protocol operations that can edit or delete YANG

module configuration data (e.g., edit-config, delete-config, copy-config). If this is done in a non-secure

environment without proper protection, it is possible to result in negative effects on the network

operation.

5.3.3.3 Schema for UE LLDP Extension YANG Modules

A simplified graphical representation of the data model is used in this document. The meaning of the

symbols in these diagrams is as follows:

• Brackets “ ” and “ ” enclose list keys.

• Abbreviations before data node names: “rw” means configuration (read-write), and “ro” means

state data (read-only).

• Symbols after data node names: “?” means an optional node, “ ” means a presence container,

and “*” denotes a list and leaf-list.

• Parentheses enclose choice and case nodes, and case nodes are also marked with a colon (“:”).

• Ellipsis (“...”) stands for contents of subtrees that are not shown.

5.3.3.3.1 UE Link Negotiation Options TLV Schema

module: uec-link-neg-options-tlv

 augment /lldp:lldp/lldp:port:

 +--rw tlvs-tx-org-uec-link-neg-options-enable? boolean

 +--rw uel-options-tlv-extension

 +--rw llr-want? identityref

 +--ro llr-enable? boolean

 augment /lldp:lldp/lldp:port/lldp:remote-systems-data:

 +--ro uel-options-tlv-extension

 +--ro llr-want? identityref

 +--ro llr-enable? boolean

5.3.3.3.2 UE Link Negotiation CBFC TLV Schema

 530

Copyright © 2025 Ultra Ethernet ConsortiumTM. All rights reserved.

module: uec-link-neg-cbfc-tlv

 augment /lldp:lldp/lldp:port:

 +--rw tlvs-tx-org-uec-link-neg-cbfc-enable? boolean

 +--rw uel-cbfc-tlv-extension

 +--rw s-error-code? identityref

 +--ro s-credit-size? uint16

 +--ro s-packet-overhead? int8

 +--ro s-vc-rts? uint32

 +--ro r-cell-size? uint16

 +--ro r-packet-overhead? int8

 +--rw r-total-credits? uint32

 +--rw r-num-vcs? uint8

 +--rw r-vcs* [r-vc-id]

 +--rw r-vc-want? boolean

 +--ro r-vc-rtr? boolean

 +--rw r-vc-id uint8

 +--rw r-vc-credit-limit? uint32

 +--rw r-vc-pktid-sel? identityref

 +--rw (paremeters)

 +--:(pcpdei-identification)

 | +--rw pcpdei-identification

 | +--rw r-mask-pcpdei? binary

 | +--rw r-pcpdei? binary

 +--:(dscp-identification)

 | +--rw dscp-identification

 | +--rw r-mask-dscp? binary

 | +--rw r-dscp? binary

 +--:(handle-identification)

 +--rw handle-identification

 +--rw r-handle? uint16

 augment /lldp:lldp/lldp:port/lldp:remote-systems-data:

 +--ro uel-cbfc-tlv-extension

 +--ro s-error-code? identityref

 +--ro s-credit-size? uint16

 +--ro s-packet-overhead? int8

 +--ro s-vc-rts? uint32

 +--ro r-per-vc-field-length? uint8

 +--ro r-cell-size? uint16

 +--ro r-packet-overhead? int8

 +--ro r-total-credits? uint32

 +--ro r-num-vcs? uint8

 +--ro r-vcs* [r-vc-id]

 +--ro r-vc-want? boolean

 +--ro r-vc-rtr? boolean

 +--ro r-vc-id uint8

 +--ro r-vc-credit-limit? uint32

 +--ro r-vc-pktid-sel? identityref

 +--ro (paremeters)

 +--:(pcpdei-identification)

 | +--ro pcpdei-identification

 | +--ro r-mask-pcpdei? binary

 | +--ro r-pcpdei? binary

 +--:(dscp-identification)

 | +--ro dscp-identification

 | +--ro r-mask-dscp? binary

 531

Copyright © 2025 Ultra Ethernet ConsortiumTM. All rights reserved.

 | +--ro r-dscp? binary

 +--:(handle-identification)

 +--ro handle-identification

 +--ro r-handle? uint16

5.3.3.4 UE Link Negotiation Extension YANG Modules

5.3.3.4.1 YANG Module uec-link-neg-options-tlv

module uec-link-neg-options-tlv {

 yang-version "1.1";

 namespace "http://ultraethernet.org/yang/uec-link-neg-options-tlv";

 prefix uel-options-tlv;

 import ieee802-dot1ab-lldp {

 prefix lldp;

 }

 organization

 "Ultra Ethernet Consortium";

 contact

 "UEC-URL: https://ultraethernet.org/

 Contact: UEC Link Layer Working Group Chair";

 description

 "UE LLDP extension TLV for the LLR feature

 Copywrite @ UEC (2025).

 This version of this YANG module is part of UE Specification v1.0,

 see the specification itself for full legal notices.";

 revision 2025-03-14 {

 description

 "LLDP extension TLV for UE link negotiation options.

 Included options are Link Layer Retry (LLR).

 Published as part of UE Specification v1.0";

 reference

 "UE Specification v1.0";

 }

 identity llr-want-selector {

 description

 "Specify if LLR service is wanted by this port.";

 }

 identity llr-no {

 base llr-want-selector;

 description

 "Indicates LLR service is not wanted by this port. Signaled as the

 value 0x0.";

 }

 identity llr-want {

 base llr-want-selector;

 description

 "Indicates LLR is wanted at the port. Signaled as the value 0x3.";

 }

 identity llr-resv {

 base llr-want-selector;

 description

 "Reserved LLR selection values 0x1 and 0x2 for future specification.";

 }

 532

Copyright © 2025 Ultra Ethernet ConsortiumTM. All rights reserved.

 grouping uel-options-tlv {

 description

 "UE link negotiation options TLV";

 reference

 "UE Specificaion v1.0";

 leaf llr-want {

 type identityref {

 base llr-want-selector;

 }

 description

 "Indicates if Link Layer Retry service is wanted at this port.";

 }

 leaf llr-enable {

 type boolean;

 config false;

 description

 "Link Layer Retry is enabled on this port.";

 }

 }

 augment "/lldp:lldp/lldp:port" {

 description

 "Augments LLDP port with the UE link negotiation options TLV";

 leaf tlvs-tx-org-uec-link-neg-options-enable {

 type boolean;

 description

 "Enable for the UE link negotiation options TLV transmission";

 }

 container uel-options-tlv-extension {

 description

 "The UE link negotiation options TLV";

 uses uel-options-tlv;

 }

 }

 augment "/lldp:lldp/lldp:port/lldp:remote-systems-data" {

 description

 "Augments the port's remote-systems-data with received UE link

 negotiation options TLV";

 container uel-options-tlv-extension {

 description

 "Holds a received UE link negotiation options TLV";

 uses uel-options-tlv;

 }

 }

}

5.3.3.4.2 YANG Module uec-link-neg-cbfc-tlv

module uec-link-neg-cbfc-tlv {

 yang-version "1.1";

 namespace "http://ultraethernet.org/yang/uec-link-neg-cbfc-tlv";

 prefix uel-cbfc-tlv;

 import ieee802-dot1ab-lldp {

 prefix lldp;

 }

 organization

 533

Copyright © 2025 Ultra Ethernet ConsortiumTM. All rights reserved.

 "Ultra Ethernet Consortium";

 contact

 "UEC-URL: https://ultraethernet.org/

 Contact: UEC Link Layer Working Group Chair";

 description

 "UE LLDP extension TLVs for the CBFC feature

 Copyright © UEC (2025).

 This version of this YANG module is part of UE Specification v1.0.

 See the specification itself for full legal notices.";

 revision 2025-03-14 {

 description

 "UE LLDP extension TLV for the Credit Based Flow Control

 feature.";

 reference

 "UE Specification v1.0";

 }

 identity r-pktid-selector {

 description

 "Specify the type of VC packet identifier.";

 }

 identity r-no-packet-identification {

 base r-pktid-selector;

 description

 "Indicates packet identification over LLDP is disabled

 for this VC[x]. Packets are identified by the port

 configuration on each side of the link without any

 LLDP verification.";

 }

 identity r-pcpdei-identification {

 base r-pktid-selector;

 description

 "Indicates the packet identification for this VC[x]

 is based on mask and match to the PCP/DEI bits.

 Signaled as the value 0x1.";

 }

 identity r-dscp-identification {

 base r-pktid-selector;

 description

 "Indicates the packet identification for this VC[x]

 is based on mask and match to the DSCP bits.

 Signaled as the value 0x2.";

 }

 identity r-handle-identification {

 base r-pktid-selector;

 description

 "Indicates the packet identification for this VC[x]

 is based on a matching opaque handle which can

 match a stream handle as specified by IEEE Std 802.1CB

 or other system defined packet identification.

 Signaled as the value 0x3.";

 }

 identity error-code-selector {

 description

 "Specify the type of error.";

 }

 534

Copyright © 2025 Ultra Ethernet ConsortiumTM. All rights reserved.

 identity error-no {

 base error-code-selector;

 description

 "No error. Signaled as value 0.";

 }

 identity error-cell-size {

 base error-code-selector;

 description

 "The sender is unable to support the receiver

 cell size. Signaled as value 1.";

 }

 identity error-vc {

 base error-code-selector;

 description

 "The sender cannot support a requested VC.

 Signaled as value 2.";

 }

 identity error-credit-pool {

 base error-code-selector;

 description

 "The sender cannot support the credit pool size.

 Signaled as value 3.";

 }

 identity error-credit-limit {

 base error-code-selector;

 description

 "The sender cannot support the credit

 limit. Signaled as value 4.";

 }

 identity error-packet-id {

 base error-code-selector;

 description

 "The sender packet identification does not

 match the receiver. Signaled as value 5.";

 }

 identity error-other {

 base error-code-selector;

 description

 "Other CBFC error detected by sender.

 Signaled as value 6.";

 }

 grouping uel-cbfc-tlv {

 description

 "UE Link CBFC TLV data";

 reference

 "UE 1.0 Specification";

 leaf s-error-code {

 type identityref {

 base error-code-selector;

 }

 description

 "Indicates either no error or the type of error

 detected at the sender.";

 }

 leaf s-credit-size {

 type uint16 {

 range "0..4094";

 535

Copyright © 2025 Ultra Ethernet ConsortiumTM. All rights reserved.

 }

 config false;

 description

 "The credit size used by the sender for credit accounting.

 When the value is 0 the sender has not configured a

 credit size. The receiver can not proceed until the

 sender sets its credit size based on the receiver's

 credit size. The sender credit size is valid when

 s-vc-rts != 0, meaning some VC[x] flag(s) are true.";

 }

 leaf s-packet-overhead {

 type int8 {

 range "-127..127";

 }

 config false;

 description

 "The packet overhead used by the sender for credit

 accounting. The receiver can not proceed until the

 sender sets its intended packet overhead based on the

 receiver's packet overhead. The sender packet overhead

 is valid when s-vc-rts != 0, meaning some VC[x] flag(s)

 are true.";

 }

 leaf s-vc-rts {

 type uint32;

 config false;

 description

 "This port has enabled CBFC transmission for the VCs identified

 by these bit flags. The bit positions n=0-31 indicate VC[n]";

 }

 leaf r-cell-size {

 type uint16 {

 range "1..4095";

 }

 config false;

 description

 "The cell size used by the receiver. The receiver

 cell size is the receiver's cell/buffer size.";

 }

 leaf r-packet-overhead {

 type int8 {

 range "-127..127";

 }

 config false;

 description

 "The packet overhead used by the receiver.";

 }

 leaf r-total-credits {

 type uint32 {

 range "1..16777215";

 }

 description

 "The number of pooled receiver credits for all VCs.";

 }

 leaf r-num-vcs {

 type uint8 {

 range "1..32";

 536

Copyright © 2025 Ultra Ethernet ConsortiumTM. All rights reserved.

 }

 description

 "The number of receive VC parameter lists following.";

 }

 list r-vcs {

 key r-vc-id;

 description

 "A 6-tuple of fields in the UE Link Neg CBFC TLV that

 provides the per VC receiver parameters needed to support

 Credit Based Flow Control on the VC identified by r-vcid.";

 leaf r-vc-want {

 type boolean;

 description

 "When FALSE indicates the receiver want to use best effort

 service on VC[r-vcid]. When TRUE indicates the receiver wants

 to use lossless service on VC[r-vc-id].";

 }

 leaf r-vc-rtr {

 type boolean;

 config false;

 description

 "When FALSE indicates this VC[r-vcid] has not completed

 configuration. When TRUE indicates this VC[r-vc-id] has

 completed configuration.";

 }

 leaf r-vc-id {

 type uint8 {

 range "0..31";

 }

 description

 "The index for this receive VC.";

 }

 leaf r-vc-credit-limit {

 type uint32 {

 range "0..16777215";

 }

 description

 "The credit limit for this VC[r-vc-id] receiver.

 If set to 0 there is no per VC credit limit used.";

 }

 leaf r-vc-pktid-sel {

 type identityref {

 base r-pktid-selector;

 }

 description

 "Indicates how packets are identified for this VC[r-vc-id].

 The value 0 disables packet identification.";

 }

 choice paremeters {

 mandatory true;

 description

 "Three methods to verify or set the packets associated with

 the VC[r-vc-id]. These methods are selected by r-pktid-sel.

 Each of the three methods have a different set of parameters.

 The methods are:

 1)identification by priority / drop eligible, 2)identification

 by DSCP,3)identification by the exchange of an opaque handle

 537

Copyright © 2025 Ultra Ethernet ConsortiumTM. All rights reserved.

 which can be an IEEE mask-and-match stream handle as defined

 in 802.1CBdb or any other system handle.";

 container pcpdei-identification {

 description

 "Provides mask and match for the pcp/dei bits.";

 leaf r-mask-pcpdei {

 type binary {

 length '4';

 }

 description

 "A 4-bit mask for the pri/dei bits.";

 }

 leaf r-pcpdei {

 type binary {

 length '4';

 }

 description

 "The r-pcpdei value identifying the L2 packet

 PCP/DEI value, after the r-mask-pcpdei mask is applied,

 which identifies the packets that are members of this VC.";

 }

 }

 container dscp-identification {

 description

 "Provides mask and match for the DSCP bits.";

 leaf r-mask-dscp {

 type binary {

 length '6';

 }

 description

 "A 6 bit mask for the DSCP bits.";

 }

 leaf r-dscp {

 type binary {

 length '6';

 }

 description

 "The r-dscp value identifying the L3 packet

 DSCP value, after the r-mask-dscp mask is applied,

 which identifies the packets that are members of this VC.";

 }

 }

 container handle-identification {

 description

 "Provides an opaque handle used to

 identifies the packets.";

 leaf r-handle {

 type uint16 {

 range "0..4095";

 }

 description

 "A handle used to identify a stream handle or other packet

 identifier which identifies the packets that are members

 of this VC.";

 }

 }

 }

 538

Copyright © 2025 Ultra Ethernet ConsortiumTM. All rights reserved.

 }

 }

 augment "/lldp:lldp/lldp:port" {

 description

 "Augments the LLDP port's local data with UE Link CBFC TLV";

 leaf tlvs-tx-org-uec-link-neg-cbfc-enable {

 type boolean;

 description

 "Enable for the UE Link CBFC TLV transmission";

 }

 container uel-cbfc-tlv-extension {

 description

 "Holds the local UE LLDP CBFC TLV data";

 uses uel-cbfc-tlv;

 }

 }

 augment "/lldp:lldp/lldp:port/lldp:remote-systems-data" {

 description

 "Augments the LLDP port's remote-systems-data with received

 UE Link CBFC TLV";

 container uel-cbfc-tlv-extension {

 description

 "Holds the received UE LLDP CBFC TLV data";

 uses uel-cbfc-tlv;

 }

 }

}

5.3.4 References

5.3.4.1 Normative References

[1] IEEE Std 802.1AB-2016, "IEEE Standard for Local and Metropolitan Area Networks - Station and

Media Access Control Connectivity Discovery," 2016. [Online]. Available:

https://ieeexplore.ieee.org/document/7433915.

[2] IEEE Std 802.1ABcu-2021, "IEEE Standard for Local and Metropolitan Area Networks - Station

and Media Access Control Connectivity Discovery, Amendment 1: YANG Data Model," 2021.

[Online]. Available: https://ieeexplore.ieee.org/document/9756407.

[3] IETF RFC 7950, "The YANG 1.1 Data Modeling Language," 2016. [Online]. Available:

https://datatracker.ietf.org/doc/html/rfc7950.

[4] IETF RFC 8343, "A YANG Data Model for Interface Management," 2018. [Online]. Available:

https://datatracker.ietf.org/doc/html/rfc8343.

[5] IETF RFC 6241, "The YANG 1.1 Data Modeling Language," 2011. [Online]. Available:

https://datatracker.ietf.org/doc/html/rfc6241.

5.3.4.2 Informative References

[6] IETF RFC 6242, "Using the NETCONF Protocol over Secure Shell (SSH)," 2011. [Online].

Available: https://datatracker.ietf.org/doc/html/rfc6242.

[7] IETF RFC 6536, "Network Configuration Protocol (NETCONF) Access Control Model," 2012.

[Online]. Available: https://datatracker.ietf.org/doc/html/rfc6536.

https://ieeexplore.ieee.org/document/7433915
https://ieeexplore.ieee.org/document/9756407
https://datatracker.ietf.org/doc/html/rfc7950
https://datatracker.ietf.org/doc/html/rfc8343
https://datatracker.ietf.org/doc/html/rfc6241
https://datatracker.ietf.org/doc/html/rfc6242
https://datatracker.ietf.org/doc/html/rfc6536

 539

Copyright © 2025 Ultra Ethernet ConsortiumTM. All rights reserved.

[8] IETF RFC 4122, "A Universally Unique Identifier (UUID) URN Namespace," 2005. [Online].

Available: https://datatracker.ietf.org/doc/html/rfc4122.

[9] IEEE Std 802.1ABdh-2021, "IEEE Standard for Local and Metropolitan Area Networks – Station

and Media Access Control Connectivity Discovery, Amendment 2: Support for Multiframe

Protocol Data Units," 2021. [Online]. Available:

https://ieeexplore.ieee.org/document/9760302.

[10] IEEE Std 802.1CBdb-2021, "Frame Replication and Elimination for Reliability Amendment 2:

Extend Stream Identification Functions," 2021. [Online]. Available:

https://ieeexplore.ieee.org/document/9740589.

[11] IEEE Std 802.1CBcv-2021, "Frame Replication and Elimination for Reliability Amendment 1:

Information Model, YANG Data Model, and Management Information Base Module," 2021.

[Online]. Available: https://ieeexplore.ieee.org/document/9715061.

[12] IEEE Std 802.1CB-2017, "Frame Replication and Elimination for Reliability," 2017. [Online].

Available: https://ieeexplore.ieee.org/document/8091139.

https://datatracker.ietf.org/doc/html/rfc4122
https://ieeexplore.ieee.org/document/9760302
https://ieeexplore.ieee.org/document/9740589
https://ieeexplore.ieee.org/document/9715061
https://ieeexplore.ieee.org/document/8091139

 540

Copyright © 2025 Ultra Ethernet ConsortiumTM. All rights reserved.

6 UE Physical Layer
Ultra Ethernet (UE) applications, such as AI and HPC systems, require physical layers that support a

variety of electrical and optical channels; provide low frame loss ratio, low latency, power efficiency, and

reliability at scale; and leverage existing ecosystems and standards that enable seamless

interoperability.

Informative Text:

The UE Physical Layer specification strives to maintain consistency with terminology defined by IEEE

Std 802.3. However, the 802.3 definition of the term “packet” is inconsistent with other portions of

the UE specification. When used in this Physical Layer specification, the 802.3 term “packet” is

replaced with “802.3 packet.”

6.1 UE PHY for 100 Gb/s per lane signaling

UE PHYs include a subset of Ethernet PHYs with 100 Gb/s per lane signaling, defined in IEEE Std 802.3™-

2022 [1], IEEE Std 802.3db™ 2 22 [2], IEEE Std 802.3ck™ 2 22 [3], and IEEE Std 802.3df™ 2 24 [4]

(henceforth referred to collectively as the Ethernet standard).

A device compliant with the UE PHY specifications SHALL conform to one of the specifications of PHY

types listed in section 6.1.2, as defined by the Ethernet standard.

Informative Text:

Other Ethernet PHYs may be able to support some of the UE specifications but are not considered

compliant with the UE specification.

6.1.1 Media support

The following physical media are supported, with relevant clause numbers in the Ethernet standard:

● Backplane (KR, clause 163)

● Copper cable (CR, clause 162)

● MMF up to 50 m (VR, clause 167)

● MMF up to 100 m (SR, clause 167)

● Parallel SMF up to 500 m (DR, clauses 124, 140)

● WDM SMF up to 2 km (FR, clauses 140, 151)

The following PHY families are considered beyond the scope of the UEC:

● Parallel SMF up to 2 km (DR-2, clause 124)

● WDM SMF up to 10 km (LR, clauses 124, 140, 151)

● WDM SMF, coherent (ZR, clause 154)

6.1.2 PHY rates and types supported

The following Ethernet PHY rates and types are in scope for UEC:

● 100GBASE-R family

 541

Copyright © 2025 Ultra Ethernet ConsortiumTM. All rights reserved.

o 100GBASE-KR1, 100GBASE-CR1, 100GBASE-VR1, 100GBASE-SR1, 100GBASE-DR, 100GBASE-

FR1

● 200GBASE-R family

o 200GBASE-KR2, 200GBASE-CR2, 200GBASE-VR2, 200GBASE-SR2

● 400GBASE-R family

o 400GBASE-KR4, 400GBASE-CR4, 400GBASE-VR4, 400GBASE-SR4, 400GBASE-DR4, 400GBASE-

FR4

● 800GBASE-R family

o 800GBASE-KR8, 800GBASE-CR8, 800GBASE-VR8, 800GBASE-SR8, 800GBASE-DR8

The clauses within the Ethernet standard that specify these PHY types are listed by media type in section

6.1.1.

In addition, the following 100G per lane interfaces are in scope:

● Chip-to-chip attachment unit interfaces (Annex 120F)

o 100GAUI-1 C2C, 200GAUI-2 C2C, 400GAUI-4 C2C, 800GAUI-8 C2C

● Chip-to-module attachment unit interfaces (Annex 120G)

o 100GAUI-1 C2M, 200GAUI-2 C2M, 400GAUI-4 C2M, 800GAUI-8 C2M

6.2 Control ordered sets

UE control ordered sets are an OPTIONAL UE feature. A PHY that supports this feature SHALL comply

with the requirements in this section.

The control ordered set (CtlOS) is a message mechanism utilized by the UE link layer features credit-

based flow control (CBFC) and link layer retry (LLR). The general format is extensible to future link-level

features as well. It is an 8-byte message encoded as an ordered set in the 64B/66B PCS encoding with an

O code value to distinguish it from standard Ethernet sequence ordered sets.

6.2.1 Sequence ordered sets and control ordered set background

Sequence ordered sets, as defined in IEEE Std 802.3-2022 [1] clause 81, are encoded 8-byte messages

that interrupt 802.3 packet transmission with critical link fault status. Three sequence ordered sets are

defined: Local Fault, Remote Fault, and Link Interruption. Each sequence ordered set has a defined MII

format and a generic 64B/66B PCS translation, as summarized below. See [1], subclause 81.3.2.2, Table

81-4 “Permissible lane encodings of RXD and RSC” and subclause 81.3.4, Table 81-5 “Se uence ordered

sets” as well as subclause 82.2.3.3, Figure 82-5 “64B/66B block format”.

 542

Copyright © 2025 Ultra Ethernet ConsortiumTM. All rights reserved.

Table 6-1 - Ethernet standard sequence ordered sets on MII

 Ordered set Lane 0
(D0, control
character)

Lane 1
(D1)

Lane 2
(D2)

Lane 3
(D3)

Lane 4
(D4)

Lane 5
(D5)

Lane 6
(D6)

Lane 7
(D7)

Local Fault 0x9C 0 0 1 0 0 0 0

Remote Fault 0x9C 0 0 2 0 0 0 0

Link
Interruption

0x9C 0 0 3 0 0 0 0

Informative Text:

All numbers in the table above represent 8-bit values (data octets).

The PCS 64B/66B encoding translates the MII Lane 0 sequence ordered set control code, 0x9C, to a block

type of 0x4B plus the 4-bit O code value of 0x0, as shown in Table 6-2.

Table 6-2 - Ethernet standard 64B/66B sequence ordered set encoding

Field name Sync Block type D1 D2 D3 O code D4[7:4] D5 D6 D7

Bit positions 0:1 2:9 10:17 18:25 26:33 34:37 38:41 42:49 50:57 58:65

Local Fault ‘b1 0x4B 0 0 1 0 0 0 0 0

Remote Fault ‘b1 0x4B 0 0 2 0 0 0 0 0

Link Interrupt ‘b1 0x4B 0 0 3 0 0 0 0 0

Note:

• O code in bits [34:37] = 0x0 for the defined fault codes.

6.2.2 Control ordered sets format

On the MII bus between the RS and PCS, control ordered sets have a Lane 0 (TXD<7:0>) control

character with value 0x5C. This distinguishes them from Sequence ordered sets.

 543

Copyright © 2025 Ultra Ethernet ConsortiumTM. All rights reserved.

Table 6-3 - Ordered set format on MII

Ordered set Lane 0
(D0, control
character)

Lane 1
(D1)

Lane 2
(D2)

Lane 3
(D3)

Lane 4
(D4)

Lane 5
(D5)

Lane 6
(D6)

Lane 7
(D7)

Sequence 0x9C 0 0 D3 0 0 0 0

Control 0x5C Type D2 D3 {D4[7:4], 0x6} D5 D6 D7

For a CtlOS, D4[3:0] SHALL be set to 0x6.

CtlOS uses the same Lane 0 control character as the “signal ordered set" defined in [1], subclause

49.2.4.6, Table 49-1; however, the value 0x6 is different from the one used by the signal ordered set.

The CtlOS Type field is used to identify each CtlOS message type. See the UE Link Layer specification

section 5.2.11.1 for all defined CtlOS type values and the specific data format of D2-D7 for each message

type.

6.2.3 PCS required modifications

The PCS 64B/66B encoding is updated to translate an MII lane 0 control character of 0x5C to a block

type of 0x4B, with bits 10 to 65 taken from D1 through D7 (where the 4 least significant bits of D4 are

0x6), as shown in Table 6-4.

Table 6-4 - Modified 64B/66B PCS encoding for ordered sets

Bit positions 0:1 2:9 10:17 18:25 26:33 34:37 38:41 42:49 50:57 58:65

Ordered set
Content

‘b1 0x4B D1 D2 D3 O code D4[4:7] D5 D6 D7

The O code value is 0x0 for sequence ordered sets and 0x6 for UE control ordered sets.

The sync field (bits 0:1) and block type field (bits 2:9) are transmitted as 10_11010010, where the

leftmost bit is transmitted first18. Starting with bits 10:17, each remaining byte is transmitted, starting

with its least significant bit.

In the PCS decoder, MII D1 through D7 are taken from bits 10 to 65, while the control character (MII D0)

is decoded from the O code in bits 34:37. For an O code value 0x0, MII D0 is set to 0x9C. For an O code

value 0x6, MII D0 is set to 0x5C.

The Ethernet standard’s state-based PCS encoder and decoder discard any non-data blocks that occur

between the Start and Terminate blocks of an 802.3 packet. However, CtlOS are allowed to preempt

regular 802.3 packet transmission and can occur at any point in the sequence of MII blocks.

In order to support 802.3 packet preemption, the following requirements apply to the PCS 64B/66B

encoder and decoder for all supported UE data rates (100GE–800GE):

18 Per the convention in IEEE Std 802.3, the LSB of the hexadecimal value 0x4B in bits 2:9 is transmitted first.

 544

Copyright © 2025 Ultra Ethernet ConsortiumTM. All rights reserved.

• The PCS decoder SHALL use the rules in Table 6-5 rather than the state-based PCS decoder.

These rules are based on the stateless PCS decoder option introduced for 800GE in IEEE Std

802.3df-2024 [4], subclause 172.2.5.9.2.

Table 6-5 - PCS stateless decoder rules

Reset + !align_status R_TYPE (rx_codedi-1) R_TYPE (rx_codedi) Resulting rx_raw

1 any block type any block type LBLOCK_R

0 any block type E EBLOCK_R

0 E any block type EBLOCK_R

0 any combination not listed above DECODE(rx_codedi)

Informative Text:

In some 100GBASE-R PCS implementations there is a potential for corrupted CtlOS being accepted by

the PCS decoder rules defined in Table 6-5. This issue is expected to be addressed by a future update

of this specification.

• The PCS encoder SHALL use the modified stateless encoder rules shown in Table 6-6 rather than

the state-based PCS encoder. These rules are a modification of the stateless PCS encoder option

introduced for 800GE in [4], subclause 172.2.4.1.2, Table 172-1 “PCS stateless encoder rules.”

Table 6-6 - Modified PCS stateless encoder rules

Reset T_TYPE (tx_raw) Resulting tx_coded

1 any block type LBLOCK_T

0 any block type ENCODE(tx_raw)

Informative Text:

The encoder rules above assume that the block type sequence that the MAC generates is valid, and

thus the PCS encodes the blocks as they arrive with no further checking.

6.2.4 RS required modifications

Support of CtlOS requires several enhancements to the reconciliation sublayer (RS) specified in the

Ethernet standard.

When the MAC sublayer requests transmission of a CtlOS, the RS indicates a CtlOS on the MII,

corresponding to the RS transmission of TXD<63:0> and TXC<7:0>. Otherwise (when not a CtlOS), the RS

requests transmission of 64 data bits by the PHY as described in [1], subclause 81.1.7.1.4.

 545

Copyright © 2025 Ultra Ethernet ConsortiumTM. All rights reserved.

When the RS detects a valid CtlOS on the MII, corresponding to the RS reception of RXD<63:0> and

RXC<7:0>, the RS sends an indication to the MAC sublayer. Otherwise (when not a CtlOS), the RS maps

the MII signals to PLS_DATA.indication as described in [1], subclause 81.1.7.2.

6.2.4.1 MII transmit functional specifications

The transmit RS is permitted to send a CtlOS (composed of the CtlOS control character and subsequent

seven data octets) anywhere in the MII data stream, subject to the restriction that the CtlOS control

character is aligned to lane 0 on the transmit MII. See [1], subclause 81.2 for details on the MII data

stream.

Insertion of a CtlOS anywhere in the MII data stream SHALL NOT corrupt any 802.3 packet transfers,

regardless of whether the CtlOS interrupts 802.3 packet transmission or falls outside 802.3 packet

boundaries.

The presence of a CtlOS SHALL NOT impact the Deficit Idle Count (DIC) of the transmit RS. See [1],

subclause 81.3.1.4 for details on DIC.

6.2.4.2 MII receive functional specifications

The receive RS SHALL consider a CtlOS (composed of the CtlOS control character and subsequent seven

data octets) arriving in lane 0 on the receive MII as a permissible lane encoding (see [1], subclause

81.3.2.2, Table 81-4).

A valid receive CtlOS SHALL have no impact on the RS DATA_VALID_STATUS parameter.

For setting DATA_VALID_STATUS to DATA_VALID (see [1], subclause 81.1.7.5.3), the RS SHALL skip over

(not consider) a CtlOS immediately preceding the reception of a Start control character on lane 0. The

RXC<7:0> and RXD<63:0> preceding the CtlOS are used to determine whether DATA_VALID_STATUS is

set to DATA_VALID upon reception of a Start control character on lane 0.

Table 6-7 - RS Layer CtlOS spacing constraints

Parameter Value (bits)

RS_CTLOS_MIN_RX_SPACING 2048

For setting DATA_VALID_STATUS to DATA_NOT_VALID (see [1], subclause 81.1.7.5.3), the RS SHALL skip

over (not consider) a single occurrence of a CtlOS (not cause DATA_VALID_STATUS to assume the value

of DATA_NOT_VALID). Occurrence of multiple CtlOS within a window of RS_CTLOS_MIN_RX_SPACING

MII data bits (see Table 6-7) is considered an error, and the RS may set DATA_VALID_STATUS to

DATA_NOT_VALID upon reception of a second (and any subsequent) CtlOS received within that window

of bits. It is also permissible for the RS to ignore (not cause DATA_VALID_STATUS to assume the value of

DATA_NOT_VALID) multiple CtlOS received within that window.

 546

Copyright © 2025 Ultra Ethernet ConsortiumTM. All rights reserved.

6.2.4.3 Link fault signaling

When the RS variable link_fault status indicates Local Fault or Remote Fault, the RS does not send CtlOS

on the MII. During that time (as described in [1], subclause 81.3.4), the RS sends either Remote Fault (in

response to link_fault status of Local Fault) or Idle (in response to link_fault status of Remote Fault).

When the link_fault status is set to OK, the transmit RS may send CtlOS on the MII.

6.3 FEC statistics for prediction of link quality

FEC statistics for prediction of link quality is an OPTIONAL UE feature. A PHY that supports this feature

SHALL comply with the requirements in this section.

Ethernet specifies the link quality in terms of frame loss ratio (FLR). FLR is defined at the MAC/PLS

service interface and is measurable in the MAC. An example of FLR requirements can be found in

subclause 167.1.1 of IEEE Std 802.3db-2022 [2] and its amendment in IEEE Std 802.3df-2024 [4].

For a 100 Gb/s Ethernet Physical Layer, the required FLR is less than 6.2e-10 (equivalent to BER of 1e-12

for a link that has no error correction and randomly occurring errors). For 200, 400, and 800 Gb/s

Ethernet Physical Layers, the required FLR for 64-octet frames with minimum interpacket gap is less

than 6.2e-11 (equivalent to BER below 1e-13 for a link that has no error correction and randomly

occurring errors).

Informative Text:

Although not written explicitly in the IEEE Std 802.3 PHY specifications, it is generally expected that

the actual FLR in most network links is several orders of magnitude lower than the values above. This

is especially true for large networks typical of UE applications. The maximum FLR that is acceptable is

application dependent. This specification is intended to help in defining and verifying FLR

requirements. Some examples are provided in 6.3.3.

For Ethernet types supported by UE (see section 6.1), the link is always protected by Reed-Solomon

forward error correction (RS-FEC) code, denoted RS(544,514). Three variations of RS-FEC using the

RS(544,514) code are defined in clauses 91, 119, and 161 of the Ethernet standard.

Measuring FLR is impossible in the PHY and is not always practical at the MAC. Additionally, the required

measurement times depend on link utilization level, which may be unknown. However, the FLR

requirements of Ethernet types supported by UE can be translated to an uncorrectable codeword ratio

(UCR), which is independent of traffic and measurable at the PHY level. The relationship between UCR

and FLR is described in 6.3.1.1.

The effect of UCR on application performance in a large network is easier to comprehend by converting

it to a metric in units of time, the mean time between PHY errors (MTBPE). In this context, a PHY error is

an event of an uncorrectable RS-FEC codeword, which can cause one or more consecutive MAC frames

to be discarded.

 547

Copyright © 2025 Ultra Ethernet ConsortiumTM. All rights reserved.

Informative Text:

MTBPE is unrelated to the mean time to false 802.3 packet acceptance (MTTFPA). In a compliant

Ethernet link, the probability of having an uncorrectable RS-FEC codeword that is not detected as

such is extremely small, and the probability of false 802.3 packet acceptance is even smaller. As a

result, the MTTFPA for a single link that meets the FLR requirements is many billions of years.

The worst-case MTBPE for a single link that meets the FLR requirements is different across Ethernet link

rates due to the different RS-FEC interleaving schemes and FLR specifications. The resulting MTBPE

values are summarized in Table 6-8. The calculation of MTBPE is based on the relationship between

performance metrics described in 6.3.1.

Table 6-8 - Ethernet-specified FLR and resulting MTBPE

Ethernet link data rate Specified maximum FLR
(for 64-octet frames with minimum

interpacket gap)

Worst-case MTBPE (approx.)

100 Gb/s 6.2e-10 1.5 minutes

200 Gb/s 6.2e-11 14.6 minutes

400 Gb/s 6.2e-11 7.3 minutes

800 Gb/s 6.2e-11 7.1 minutes

Informative Text:

The worst-case MTBPE would occur for borderline-compliant links. In typical networks, most

components are expected to have margins, and the MTBPE on most links can be expected to be

higher by several orders of magnitude.

6.3.1 Relationship between performance metrics

6.3.1.1 Relationship between UCR and FLR

UCR can be considered a fundamental quality metric of an Ethernet link. It is a function of lower-level

metrics that are not observable and thus are beyond the scope of this specification.

Ethernet uses RS-FEC with a technique called codeword interleaving, in which traffic can be spread

across multiple codewords that are interleaved in time. The number of codewords interleaved together

is referred to as the codeword interleaving ratio (CIR) and is either 4, 2, or 1, where 1 is equivalent to no

interleaving. A higher CIR generally improves the RS-FEC’s ability to handle correlated errors and

reduces the link UCR while increasing the FLR for a given value of UCR.

Informative Text:

The reduction of UCR due to the increased CIR can be orders of magnitude. In comparison, the

increase of FLR for a given UCR is up to a factor of 4, so the net effect is beneficial.

 548

Copyright © 2025 Ultra Ethernet ConsortiumTM. All rights reserved.

Codeword interleaving varies between data rates and PHY types:

• For 100 Gb/s Ethernet, 2-way interleaving (CIR=2) is defined as OPTIONAL for backplane and

copper cable PHYs (100GBASE-KR1 and 100GBASE-CR1). If this option is not selected, then

CIR=1. For all other PHY types (specifically optical PHYs), interleaving is not available (CIR=1).

• For 200 Gb/s and 400 Gb/s Ethernet, 2-way interleaving (CIR=2) is used for all PHY types.

• For 800 Gb/s Ethernet, 4-way interleaving (CIR=4) is used for all PHY types.

A single RS-FEC codeword has a payload of 5140 bits, corresponding to 80 PCS blocks or 640 octets (as

observed at the MII interface). A block of codewords that are interleaved together is referred to as a

codeword group (CG).

The default behavior of Ethernet RS-FEC is that an uncorrectable codeword causes all data in the CG that

this codeword is in to be marked as error by the PCS and discarded. As a result, any MAC frame fully or

partially included in a CG that includes an uncorrectable codeword will not be delivered to the MAC and

will be lost.

The Ethernet FLR requirements are stated for 64-octet frames with minimum interpacket gap (IPG),

which creates 84 octets in total per frame (including IPG and preamble). This condition (maximum

utilization with smallest frames) results in up to 8 frames per codeword (FPC), which is the maximum

possible number. Due to possible misalignment of frame and codeword boundaries, the maximum

number of frames that can be lost due to a single codeword error is 𝐶𝐼𝑅 ⋅ 𝐹𝑃𝐶 + 1.

Informative Text:

The maximum number of frames that can be lost due to a single codeword error is not necessarily

dependent on link utilization, since frames with minimum IPG can occur even with low utilization.

Table 6-9 shows the size of a CG in octets and the maximum number of frames that can be lost due to a

single uncorrectable codeword as a function of the CIR.

Table 6-9 - CIR and CG sizes

 100GbE with RS-FEC
(Clause 91)

200GbE and 400GbE (Clause 119),
100GbE with RS-FEC-Int

(Clause 161)

800GbE
(Clause 172)

CIR 1 2 4

CG size 640 octets 1280 octets 2560 octets

Max. frames lost due to
uncorrectable codeword

9 17 33

The conversion factor from UCR to FLR is:

𝑭𝑳𝑹

𝑼𝑪𝑹
=

 𝑪𝑰𝑹 ⋅ 𝑭𝑷𝑪 + 𝟏

𝑭𝑷𝑪
= 𝑪𝑰𝑹 +

𝟏

𝑭𝑷𝑪
 (Equation 1)

 549

Copyright © 2025 Ultra Ethernet ConsortiumTM. All rights reserved.

As the average frame size increases, FPC decreases, and the conversion factor from UCR to FLR changes

accordingly, as shown in Table 6-10.

Table 6-10 - UCR to FLR conversion factors

Average
frame size

(octets)

FPC Conversion factor, FLR/UCR

100 Gb/s with RS-FEC
(Clause 91)

200 Gb/s and 400 Gb/s
(Clause 119),
100 Gb/s with RS-FEC-Int
(Clause 161)

800 Gb/s (Clause
172)

64 8 1.125 2.125 4.125

1500 0.42 3.36875 4.36875 6.36875

9000 0.07 15.0875 16.0875 18.0875

Due to the dependence of FLR on traffic patterns (such as frame size), it is difficult to predict the link

performance using FLR measurement. It is thus preferable to use UCR as the performance metric and, if

necessary, convert it to FLR based on traffic characteristics.

Informative Text:

Error marking in the PCS may optionally be bypassed, and in that case, error detection is only

performed by the MAC using CRC. When this option is enabled, it is possible that some frames in an

uncorrectable codeword will reach the MAC without error, and the frame loss ratio will be somewhat

lower. The FLR analysis above is valid for the case where error marking is not bypassed.

6.3.1.2 Relationship between UCR and MTBPE

Unlike the relationship between UCR and FLR described in 6.3.1.1, which is dependent on many factors,

the relationship between UCR and MTBPE is simple. For each Ethernet data rate, MTBPE on a single link

is a deterministic function of the UCR on that link, which can be estimated from FEC statistics as

described in 6.3.2.

The number of codewords in a given period of time can be calculated from the period of a single

codeword (5440 bits), denoted TCW. Table 6-11 lists the value of TCW for different Ethernet rates.

Table 6-11 - Codeword times

Ethernet rate TCW [ns]

100 Gb/s 51.2

200 Gb/s 25.6

400 Gb/s 12.8

800 Gb/s 6.4

For a specific link, MTBPE can be calculated using Equation 2:

𝑴𝑻𝑩𝑷𝑬 =
𝑻𝑪𝑾

𝑼𝑪𝑹
 (Equation 2)

 550

Copyright © 2025 Ultra Ethernet ConsortiumTM. All rights reserved.

where TCW is provided in Table 6-11 and UCR is the uncorrectable codeword ratio on the link.

The UCR values corresponding to several values of MTBPE are provided in Table 6-12.

Table 6-12 - MTBPE to UCR conversion

MTBPE Uncorrectable codeword ratio

 100 Gb/s 200 Gb/s 400 Gb/s 800 Gb/s

One minute 8.5e-10 4.3e-10 2.1e-10 1.1e-10

One hour 1.4e-11 7.1e-12 3.6e-12 1.8e-12

One day 5.9e-13 3.0e-13 1.5e-13 7.4e-14

One week 8.5e-14 4.2e-14 2.1e-14 1.1e-14

One month 2.0e-14 9.9e-15 4.9e-15 2.5e-15

One year 1.6e-15 8.1e-16 4.1e-16 2.0e-16

10 years 1.6e-16 8.1e-17 4.1e-17 2.0e-17

Informative Text:

It is sometimes suggested that in a network comprising N Ethernet links of the same data rate, the

UCR of a single link should be multiplied by N or, equivalently, MTBPE should be divided by N.

However, this scaling assumes that all links have the same UCR. In large networks, it is often the case

that the UCR of most links is very low, but some links have much higher UCRs than the average.

Consequently, it can be expected that the MTBPE on the network depends on the UCR of good links

multiplied by N and on the UCR of a small number of the weakest links. The examples in 6.3.3

demonstrate this dependence. This provides motivation for identifying the weakest links in the

network (which can be done through the methods described in 6.3.2) and taking appropriate

measures suitable for the application, e.g., routing traffic away from such links or scheduling

replacement of parts.

6.3.2 Estimation of UCR from FEC statistics

Ethernet specifications include several RS-FEC counters that can be used to estimate the probability of

an RS-FEC codeword to be uncorrectable and thus provide an estimate of the UCR. From the UCR, the

MTBPE can be calculated by multiplication with the period of a single codeword.

The following counters are defined for Ethernet BASE-R PHY types that include RS-FEC functionality and

are mapped to MDIO registers. All registers are defined as clear-on-read and non-rollover.

Implementation of these counters and registers, and the method of accessing them, may depend on PCS

implementation.

• FEC_uncorrected_cw_counter (see [1], subclause 45.2.3.63) is a 32-bit counter that counts once

for each codeword that contains errors that were not corrected (i.e., contains more than t

symbol errors, where t=15 for the RS(544,514) FEC).

• FEC_corrected_cw_counter (see [1], subclause 45.2.3.62) is a 32-bit counter that counts once for

each codeword that contains errors that were corrected (i.e., contains between 1 and t symbol

errors).

 551

Copyright © 2025 Ultra Ethernet ConsortiumTM. All rights reserved.

• FEC_cw_counter (see [3], subclause 45.2.1.120a) is a 48-bit counter once for each FEC

codeword received. Note that this counter is defined as optional in the Ethernet standard.

• FEC_codeword_error_bin_i (see [3], subclause 45.2.1.131a), where i takes a value from 1 to 15.

Each of these counters is a 32-bit counter that counts once for each codeword that contains

exactly i symbol errors. Note that these counters are defined as optional in the Ethernet

standard.

A UE PHY that supports the OPTIONAL MTBPE estimation SHALL include all of these counters and have

them accessible to software.

Reading these counters periodically can provide the probability of specific events by dividing the read

value by the total number of codewords since the previous readout, denoted Ntotal. Ntotal may be

obtained by reading FEC_cw_counter if that counter is available; alternatively, it can be estimated quite

accurately by the time since the previous reading. In this specification, it is assumed that the counters

are read regularly once per minute, and the approximate values of Ntotal for this period are provided in

Table 6-13. Other observation periods may be used instead, with calculations adjusted as appropriate.

Table 6-13 - Number of codewords received in one minute, Ntotal (approximate)

Ethernet link data rate Ntotal in one minute (approximate)

100 Gb/s 1.2e9

200 Gb/s 2.3e9

400 Gb/s 4.7e9

800 Gb/s 9.4e9

Methods of estimating the UCR of an active link using these registers are described in 6.3.2.1, 6.3.2.2,

and 6.3.2.3.

Informative Text:

The counters above are defined at the PCS decoder, and thus UCR estimates can be calculated only at

the receive side of the link. However, a high UCR could indicate issues unrelated to the receiver, such

as in the link partner’s transmitter or in the cabling.

6.3.2.1 Estimation of UCR using the uncorrected codewords counter

If only FEC_uncorrected_cw_counter is available, an estimate of UCR is simply:

𝑼𝑪𝑹𝒆𝒔𝒕𝟏 =
𝑭𝑬𝑪_𝒖𝒏𝒄𝒐𝒓𝒓𝒆𝒄𝒕𝒆𝒅_𝒄𝒘_𝒄𝒐𝒖𝒏𝒕𝒆𝒓

𝑵𝒕𝒐𝒕𝒂𝒍
 (Equation 3)

For an observation period of one minute, Ntotal is provided in Table 6-13.

For links in a large network, the UCR is expected to be lower than 1e-12 (and preferably much lower).

Therefore, when reading once per minute, the value of FEC_uncorrected_cw_counter should almost

always be 0. If the UCR needs to be estimated using only this counter, the calculated values of UCRest1

 552

Copyright © 2025 Ultra Ethernet ConsortiumTM. All rights reserved.

should be averaged over longer periods of time. Also, this estimate cannot be used proactively to

predict the MTBPE, since the estimated UCR can be calculated only after some PHY error events occur.

6.3.2.2 Estimation of UCR using the corrected codewords counter

If FEC_corrected_cw_counter is available, the UCR can be estimated based on the corrected codeword

ratio (CCR), defined by:

𝑪𝑪𝑹 =
𝑭𝑬𝑪_𝒄𝒐𝒓𝒓𝒆𝒄𝒕𝒆𝒅_𝒄𝒘_𝒄𝒐𝒖𝒏𝒕𝒆𝒓

𝑵𝒕𝒐𝒕𝒂𝒍
 (Equation 4)

For an observation period of one minute, Ntotal is provided in Table 6-13.

Unlike FEC_uncorrected_cw_counter, when FEC_corrected_cw_counter is read once per minute, most

values are expected to be nonzero. Thus, estimates can be made after shorter periods and before actual

PHY error events.

Assuming that uncorrectable codewords are rare compared with correctable codewords, the CCR is

approximately the probability that a codeword has a nonzero number of symbol errors (neglecting the

case that it is uncorrectable). Denoting the probability of an RS-FEC symbol error by symbol error ratio

(SER), we have:

𝑪𝑪𝑹 ≈ 𝟏 − (𝟏 − 𝑺𝑬𝑹)𝟓𝟒𝟒 (Equation 5)
And thus,

𝑺𝑬𝑹 ≈ 𝟏 − (𝟏 − 𝑪𝑪𝑹)
𝟏

𝟓𝟒𝟒 (Equation 6)

Assuming symbol errors occur as a stationary process (uncorrelated error model), UCR can be estimated

by the expression:

𝑼𝑪𝑹𝒆𝒔𝒕𝟐 = 𝟏 − ∑ (
𝟓𝟒𝟒

𝒊
) 𝑺𝑬𝑹𝒊(𝟏 − 𝑺𝑬𝑹)𝟓𝟒𝟒−𝒊

𝟏𝟓

𝒊=𝟎

 (Equation 7)

For links that use 1/(1+D) precoding (available in CR and KR PHY types), errors occur in pairs.

Consequently, the estimate of Equation 7 is inadequate in the following specific case: 100 Gb/s Ethernet

with the IEEE Std 802.3-2022 clause 91 RS-FEC (where interleaving is not used) and precoding enabled.

This case has a much higher UCR for the same SER. For links requiring high MTBPE, it is RECOMMENDED

to use IEEE Std 802.3-2022 clause 161 RS-FEC_int instead.

Several values of UCRest2 based on CCR (assuming uncorrelated errors, with no guard band) are provided

in Table 6-14. A graphical representation of the relationship between CCR and UCRest2 is shown in Figure

6-1.

 553

Copyright © 2025 Ultra Ethernet ConsortiumTM. All rights reserved.

Table 6-14 - Calculation of UCRest2 from CCR

CCR (measured) UCRest2 (calculated)
Assuming uncorrelated errors

0.132 1e-25

0.152 1e-24

0.175 1e-23

0.202 1e-22

0.231 1e-21

0.265 1e-20

0.344 1e-18

0.439 1e-16

0.549 1e-14

0.668 1e-12

0.728 1e-11

0.820 4.3e-10

0.836 8.5e-10

Figure 6-1 - UCRest2 as a function of CCR, assuming uncorrelated errors

The uncorrelated error model is not accurate in many practical cases. Correlated errors increase the

UCR, so this estimate is biased and can predict a higher MTBPE than the true value. The effect of

correlated errors can increase the actual UCR by an unknown factor, and therefore UCRest2 should be

1E 3

1E 2

1E 28

1E 2

1E 26

1E 25

1E 24

1E 23

1E 22
1E 21

1E 2

1E 1

1E 18

1E 1

1E 16
1E 15

1E 14

1E 13

1E 12

1E 11

1E 1

1E

 .2 .4 .6 .8 1

U
C
R
2
es
t

CCR (measured)

 554

Copyright © 2025 Ultra Ethernet ConsortiumTM. All rights reserved.

considered inaccurate and not be used to predict the MTBPE of a link. Despite this possible inaccuracy,

this estimate can be useful for identifying outliers in the statistics of links in a large network.

6.3.2.3 Estimation of UCR using the codeword error bin counters

If FEC_codeword_error_bin_i are available, the UCR may be estimated based on these counters. This

estimate is more reliable than the one based on FEC_corrected_cw_counter (see 6.3.2.2) because it

accounts for correlated errors, too.

The UCR can be estimated based on the probability of having k or more symbol errors in a codeword,

defined by:

𝑷𝒌 = 𝑷𝒓𝒐𝒃(𝒄𝒐𝒅𝒆𝒘𝒐𝒓𝒅 𝒉𝒂𝒔 ≥ 𝒌 𝒔𝒚𝒎𝒃𝒐𝒍 𝒆𝒓𝒓𝒐𝒓𝒔) =
𝑵𝒌

𝑵𝒕𝒐𝒕𝒂𝒍
 (Equation 8)

where Nk is the sum of the values read from counters k and up:

𝑵𝒌 = ∑ 𝑭𝑬𝑪_𝒄𝒐𝒅𝒆𝒘𝒐𝒓𝒅_𝒆𝒓𝒓𝒐𝒓_𝒃𝒊𝒏_𝒊

𝟏𝟓

𝒊=𝒌

 (Equation 9)

For an observation period of one minute, Ntotal is provided in Table 6-13.

If the errors are uncorrelated, then Pk depends on the RS-FEC SER as follows:

𝑷𝒌 = ∑ (
𝟓𝟒𝟒

𝒊
) 𝑺𝑬𝑹𝒊(𝟏 − 𝑺𝑬𝑹)𝟓𝟒𝟒−𝒊

𝟓𝟒𝟒

𝒊=𝒌

≈ ∑ (
𝟓𝟒𝟒

𝒊
) 𝑺𝑬𝑹𝒊(𝟏 − 𝑺𝑬𝑹)𝟓𝟒𝟒−𝒊

𝟏𝟓

𝒊=𝒌

 (Equation 10)

And the UCR for uncorrelated errors is:

𝑼𝑪𝑹 = ∑ (
𝟓𝟒𝟒

𝒊
) 𝑺𝑬𝑹𝒊(𝟏 − 𝑺𝑬𝑹)𝟓𝟒𝟒−𝒊

𝟓𝟒𝟒

𝒊=𝟏𝟔

 (Equation 11)

It is thus possible to create a mapping between Pk and UCR for each value of k, using SER as a parameter.

Informative Text:

Calculation of Pk and UCR as in equations 10 and 11 is susceptible to numerical errors. These

calculations can be performed by various mathematical tools that provide binomial distribution

functions. As an example, the Excel function BINOM.DIST can be used to calculate Pk using the

formula “=BINOM.DIST(544-k, 544, 1-SER, TRUE)”.

Correlated errors can create different statistics than uncorrelated errors. In this method, the effect of

correlated errors is accounted for by calculating the UCR using Pk for several values of k and taking the

worst of the results as the estimate. If the estimates obtained with different values of k do not

significantly deviate from each other, it is an indication that the errors are uncorrelated.

Informative Text:

A specific example of correlated errors results from using 1/(1+D) precoding in the PHY. Precoding

typically results in errors occurring in pairs, and thus the statistics of errors with precoding is different

 555

Copyright © 2025 Ultra Ethernet ConsortiumTM. All rights reserved.

than it is without precoding, because even-numbered bins represent single-error events. Inspecting

several even values of k enables detection of poor links whether precoding is used or not.

Assuming an observation period of one minute, the Ntotal values provided in Table 6-13 are between 1e9

and 1e10, and probabilities of 1e-8 and higher can be verified with a reasonable level of confidence. For

a probability of 1e-8, the values of P6, P8, and P10 can be calculated by periodically reading the set of

counters FEC_codeword_error_bin_i, calculating the cumulative counts Nk, and dividing them by Ntotal,

per Equation 8. These values can be used to find the SER values with the uncorrelated errors model,

from which corresponding UCR values can be found, denoted UCR6, UCR8, and UCR10, respectively.

The relationship between P6, P8, and P10 and UCR (assuming uncorrelated error model) is listed in Table

6-15. Figure 6-2 shows this relationship on a log-log scale, on which it is close to a straight line for each

of the values. The linear trend equations shown in the figure can be used for numeric conversion.

Table 6-15 - Mapping from UCR to P6, P8, and P10 assuming uncorrelated errors

UCR P6 P8 P10

1e-22 7.0e-7 1.1e-9 1.0e-12

1e-21 1.6e-6 3.3e-9 4.1e-12

1e-20 3.8e-6 1.0e-8 1.7e-11

1e-19 8.6e-6 3.1e-8 7.1e-11

1e-18 2.0e-5 9.6e-8 2.9e-10

1e-17 4.5e-5 2.9e-7 1.2e-9

1e-16 1.0e-4 8.9e-7 4.9e-9

1e-15 2.3e-4 2.7e-6 2.0e-8

1e-14 5.0e-4 8.0e-6 8.0e-8

1e-13 1.1e-3 2.4e-5 3.2e-7

1e-12 2.4e-3 7.0e-5 1.3e-6

UCRest3 is then determined by the highest UCR of the three:

𝑼𝑪𝑹𝒆𝒔𝒕𝟑 = 𝐦𝐚𝐱(𝑼𝑪𝑹𝟔, 𝑼𝑪𝑹𝟖, 𝑼𝑪𝑹𝟏𝟎) (Equation 12)

When the counters are read once per minute, the resolution of Pk will not be better than 1e-9, and for

some values of k, it may be estimated as 0; in that case, the corresponding UCR can be taken as the

minimum value in the table. Values of P10 corresponding to N10=1 may occur occasionally and may be

ignored. For better resolution, the value of N10 can be averaged over time.

Informative Text:

Usage of P6, P8, and P10 is a specific choice that is considered suitable for estimating UCR down to

about 1e-20 when registers are read once per minute. Other values of k can be used instead, with

calculations adjusted as appropriate, to provide faster measurement or better resolution. Specifically,

if there are indications of correlated errors, higher values of k may provide better estimates.

 556

Copyright © 2025 Ultra Ethernet ConsortiumTM. All rights reserved.

With correlated errors, the calculations of Pk in Equation 10 and of UCR in Equation 11 would not be

valid. However, the relationship between Pk and UCR as shown in Table 6-15 is expected to hold for

mildly correlated errors (and the accuracy improves for larger values of k).

Figure 6-2 - Expected values of P6, P8, and P10 as a function of UCR

6.3.3 Examples

6.3.3.1 MTBPE of a large network

Consider a network with N=100000 links with 400 Gb/s each, where most links have a UCR of ~1e-20 but

K=10 links are barely compliant and have a UCR of 1e-10 (where the UCR is estimated through either of

the methods described in 6.3.2).

From Table 6-12, the MTBPE of a single bad link (M1) is about 1 minute, and the MTBPE of a single good

link (M2) is about 20 thousand years. The frequency of errors in the full network is
𝐾

𝑀1
+

𝑁−𝐾

𝑀2
, and the

MTBPE is the reciprocal of this value, about 6 seconds.

It can be observed that, for the MTBPE of the network, the worst-case UCR is multiplied by K rather than

by N.

If the K=10 worst links have a UCR of 1e-16 instead (corresponding to an MTBPE of about 2 years), the

MTBPE of the full network becomes about 7 days. In this case, the MTBPE is mostly governed by the

total number of links N, and further improvement of the worst links has negligible effect.

y = .356x 1.6584

y = .4841x 1.65

y = .6128x 1.465

 15

 13

 11

 5

 3

 28 2 26 25 24 23 22 21 2 1 18 1 16 15 14 13 12 11 1 8

log1 (UCR)

log1 (P6)

log1 (P8)

log1 (P1)

 557

Copyright © 2025 Ultra Ethernet ConsortiumTM. All rights reserved.

6.3.3.2 Monitoring a network

Consider a network with N=1000 links with 800 Gb/s each. A software agent runs on each node

(endpoint or switch) and monitors the PCS FEC counters of each active link.

One node in the network, denoted endpoint A, has a PCS with only the FEC_corrected_cw_counter

available. The agent on node A reads this counter once per minute, and the average value is

approximately 1e9.

• From Table 6-13, for 800 Gb/s, the value of Ntotal is 9.4e9.

• Using the method in 6.3.2.2, the CCR is approximately 1e / .4e ≈ .1.

• Looking at Figure 6-1, this value of CCR corresponds to a UCR of about 1e-29 with uncorrelated

errors. Taking a guard band of four orders of magnitude, the estimated UCR is 1e-25.

• From 6.3.1.2, the MTBPE can be estimated as 6.4e-9/1e-25≈6.4e16 seconds, or more than

2 billion years.

• The software agent on node A can report this estimate or just that the link is not expected to

experience PHY errors.

• Note that there is no way to tell from the FEC_corrected_cw_counter alone whether errors are

correlated and thus whether this estimate is reliable. If PHY errors occur despite this estimate, it

is likely due to correlated errors.

Another node in the network, denoted node B, also has a PCS with only the FEC_corrected_cw_counter

available. If the agent on node B reads this counter once per minute, the counter is saturated at 2 32 ≈

4.3e9. To enable estimation of the MTBPE, the agent has to read the counter more frequently to

prevent saturation. When reading the counter once per second, the average count turns out to be about

1.1e8.

• The value of Ntotal for an observation time of one second is .4e /6 ≈1.5 e8.

• Using the method in 6.3.2.2, the CCR is 1.1e8/1.5 e8≈ .7.

• Looking at Figure 6-1, this value of CCR corresponds to a UCR higher than 1e-13.

• Even without applying any guard band, from Table 6-12, a UCR of 1e-13 corresponds to an

MTBPE of less than one day. Thus, node B is expected to experience frequent PHY errors.

• The software agent can report the estimated MTBPE to a network monitoring system so that the

specific link can be handled proactively.

Another node in the network, denoted node C, has a PCS with FEC_codeword_error_bin_i counters

available. The agent on node C reads these counters once per minute to obtain N6, N8, and N10. The

average values are approximately 90000, 440, and 1, respectively, where N10 is calculated by averaging

multiple readouts (the values are mostly between 0 and 2).

• From Table 6-13, for 800 Gb/s and 1-minute observation time, the value of Ntotal is 9.4e9, or

approximately 1e10.

• Dividing the average counter values by 1e10, we get that P6, P8, and P10 are about 9e-6, 4.4e-8,

and 1e-10, respectively.

 558

Copyright © 2025 Ultra Ethernet ConsortiumTM. All rights reserved.

• Looking at Figure 6-2, these values of P6, P8, and P10 correspond to UCR values of approximately

1.1e-19, 2.0e-19, and 1.7e-19, respectively. Taking the maximum of the three values, the UCR is

estimated as 2e-19. Since the values are close, the estimate can be considered accurate.

• From 6.3.1.2, the MTBPE can be estimated as 6.4e-9/2e-19=3.2e10 seconds, or about 1000

years. Thus, node C is not expected to experience frequent PHY errors.

• The software agent can report the estimated MTBPE to a network monitoring system that

aggregates information from all ports on the network. If all 1000 nodes in the network report

similar MTBPE estimates, the full network is expected to have a PHY error once a year.

6.3.3.3 Planning a large-scale network with reliability requirements

Consider a plan to build a network with 1 million links of 100 Gb/s each. Two options for reliability

requirements are considered:

• Option A targets minimization of retransmissions due to PHY errors, with a requirement that the

network-wide MTBPE is less than once per day.

• Option B assumes that occasional retransmissions are acceptable and allows a network-wide

MTBPE up to once per minute.

Assuming that all links have the same performance, the minimum MTBPE on each link has to be at least

1 million days (8.6e10 seconds) for option A or 1 million minutes (6e7 seconds) for option B.

At 100 Gb/s, the codeword period is 51.2 ns (see 6.3.1.2), so these requirements can be translated to a

maximum UCR of approximately 6e-19 for option A or approximately 8.5e-16 for option B.

Assuming that all nodes have observable FEC_codeword_error_bin_i counters, the estimation method

in 6.3.2.3 can be used. Using the approximate log-linear relationships shown in Figure 6-2, the maximum

allowed values of P6, P8, and P10 are approximately 1.6e-5, 7.5e-8, and 2.1e-10, respectively, for option A

or 2.1e-4, 2.5e-6, and 1.8e-8, respectively, for option B.

From Table 6-13, at 100 Gb/s, Ntotal is approximately 1.2e9 per minute. To verify the UCR requirements,

network agents on each node can read the FEC_codeword_error_bin_i counters once per minute. With

this observation period, the values of N6, N8, and N10 corresponding to the maximum UCR are

approximately 19 800, 90, and 0.26, respectively, for option A or approximately 257000, 2990, and 22,

respectively, for option B.

With either option A or option B, if the counters exceed the maximum values on any of the nodes, that

node might fail the per-node UCR requirement, and the link associated with it can be considered a weak

link. However, the overall network performance can still be acceptable if other links are better than the

requirement and compensate for the weak link. It is therefore preferable that a software agent on each

node reports the MTBPE to a network monitoring system that aggregates information from all ports on

the network to assess the network-wide MTBPE. If the network-wide MTBPE is shorter than the

reliability requirement, the weak links should be identified and handled.

 559

Copyright © 2025 Ultra Ethernet ConsortiumTM. All rights reserved.

6.4 Recommendations

To meet the requirements of AI and HPC environments and enable efficient and scalable

communication, special attention is needed in the following areas of PHY and channel design.

6.4.1 Low error rate

To improve performance and efficiency of communication in UE networks and applications using them,

it is RECOMMENDED to minimize the error rate through optimized PHY and channel design and close

monitoring of the network.

Ethernet links with higher-than-minimum MTBPE (i.e., on the order of hundreds of years) could reduce

802.3 packet retry and improve the link bandwidth efficiency and overall network performance. It is

RECOMMENDED that network management uses MTBPE estimates collected from multiple links, if

available, to configure the network for improved application performance.

Informative Text:

The choice of network configuration methods depends on the application. Network configuration can

include settings above the physical layer, such as changing routing tables to avoid usage of poor links

or enablement of reliability features (such as LLR) for specific links.

6.4.2 Low power

Power consumption is usually one of the limiting factors for scaling AI and HPC systems. It is

RECOMMENDED to have a power-optimized PHY that supports a wide range of channel conditions, with

configurable power tailored to each usage case.

Emerging technologies such as linear optics and co-packaged optics can also potentially reduce the

power of the link.

6.4.3 Low latency

Latency plays a critical role in the performance of AI and HPC systems, and the PHY latency can be an

important factor in the overall latency. It is RECOMMENDED to optimize both average and tail latencies

for robust and high-performance networks.

Average latency: Examples of PHY technologies under development that would potentially be beneficial

to average latency include: latency-sensitive FEC error correction solutions; reducing lane-to-lane skew,

as the link latency is dictated by the slowest lane; and new electro-optical integration (e.g., optical direct

drive).

Tail latency: Reducing PHY error rate, as discussed in section 6.4.1, and the resulting 802.3 packet

retransmit through link or end-to-end mechanisms, can significantly reduce tail latency. This is especially

important for AI and HPC with scalable applications relying on global synchronization.

 560

Copyright © 2025 Ultra Ethernet ConsortiumTM. All rights reserved.

6.5 References

[1] IEEE Std 802.3-2022, "IEEE Standard for Ethernet," 2022. [Online]. Available:

https://ieeexplore.ieee.org/document/9844436.

[2] IEEE Std 802.3db-2022, "IEEE Standard for Ethernet - Amendment 3: Physical Layer

Specifications and Management Parameters for 100 Gb/s, 200 Gb/s, and 400 Gb/s Operation

over Optical Fiber using 100 Gb/s Signaling," 2022. [Online]. Available:

https://ieeexplore.ieee.org/document/9988984.

[3] IEEE Std 802.3ck-2022, "IEEE Standard for Ethernet Amendment 4: Physical Layer Specifications

and Management Parameters for 100 Gb/s, 200 Gb/s, and 400 Gb/s Electrical Interfaces Based

on 100 Gb/s Signaling," 2022. [Online]. Available:

https://ieeexplore.ieee.org/document/9999414.

[4] IEEE Std 802.3df-2024, "IEEE Standard for Ethernet - Amendment 9: Media Access Control

Parameters for 800 Gb/s and Physical Layers and Management Parameters for 400 Gb/s and 800

Gb/s Operation," 2024. [Online]. Available: https://ieeexplore.ieee.org/document/10472445.

https://ieeexplore.ieee.org/document/9844436
https://ieeexplore.ieee.org/document/9988984
https://ieeexplore.ieee.org/document/9999414
https://ieeexplore.ieee.org/document/10472445

 561

Copyright © 2025 Ultra Ethernet ConsortiumTM. All rights reserved.

7 UE Compliance Requirements
To assist implementors in efforts to comply to this UE specification, the UEC provides test collateral

including profile matrices, compliance checklists, and a best practices document describing suggestions

for establishing a testbed. The profile matrix and compliance checklist should be used by implementors

to self-attest for compliance.

These documents are located at: https://ultraethernet.org/

The profile matrix states which features are mandatory, conditional, or optional for each Ultra Ethernet

profile. UE defines three profiles: AI Base, AI Extended, and HPC. The profile matrix also specifies which

items in the compliance checklist need to be tested if the feature or technology is implemented. Figure

7-1 shows an excerpt from the profile matrix.

The compliance checklist contains a list of the items to test for each specification. The checklist includes

the TestID, TestName, Criteria, and the reference to the specification. Figure 7-2 shows an excerpt from

the compliance checklist, each row identifying a testable item.

In order to attest compliance to the specification, implementers should run tests to confirm the

behavior that is targeted by the checklist items, either by themselves or with the help of a third party.

Implementers making a compliance statement should provide the information listed in the Compliance

Statement as follows, to indicate that they have tested and are compliant to the profile and features

they are claiming support for.

7.1 Compliance Statement

A vendor can claim UE support by performing a self-attestation and declaring the supported features

and profiles in their product literature.

Figure 7-1 - Example of Profile Matrix

Figure 7-2 - Example of Compliance Checklist

 562

Copyright © 2025 Ultra Ethernet ConsortiumTM. All rights reserved.

7.1.1 UE Support Requirements

Implementers SHALL call out supported features and associated profiles [e.g. LL-LLR, AI-BASE].

Implementers SHALL execute the checklist tests, corresponding to the profile line items [e.g. LL-LLR-1.1].

7.1.2 Declaration Format

The declaration format is:

<Complies to UE Specifications: [spec ver # - section], [profile + optional/conditional], tested against

[checklist doc ver #]>

It is RECOMMENDED that the declaration statement lists the optional/conditional profile features that

were tested.

Declaration example: “Complies to UE Specifications: UE Specification v1.0 – section 5.1, AI-BASE, CT LL-

PHY Specifications 1. ”.

Non-mandatory features can be enabled during compliance tests, but it must be possible to disable non-

mandatory features if they can cause interoperability issues with other implementations using the same

UE profile without the optional features.

7.1.3 Compliance verses Support Terminology

Support is synonymous to Comply. A statement of compliance with UE Specifications should be

accompanied by a declaration stating what was tested.

	1 Introduction
	1.1 Background
	1.1.1 UEC Organization
	1.1.2 UE Transport Profiles

	1.2 UE Specification Conventions
	1.2.1 Normative, Informative, and Implementation Statements
	1.2.2 Terminology
	1.2.2.1 Abbreviations
	1.2.2.2 Terms

	1.2.3 Formatting
	1.2.3.1 Header Format Figures
	1.2.3.2 Sequence Diagrams

	1.2.4 References

	1.3 System View and Nomenclature
	1.3.1 Workloads [Informative]
	1.3.1.1 AI Training Workloads
	1.3.1.2 AI Inference Workloads
	1.3.1.3 HPC Workloads
	1.3.1.4 Client/Server (e.g., Storage Traffic)

	1.4 Software
	1.4.1 AI and HPC API Interface
	1.4.2 Fabric Endpoint Software Stack
	1.4.3 Switch Software Stack
	1.4.4 Network Operating System (NOS) Interface

	1.5 Networking
	1.5.1 AI and HPC Network Taxonomy
	1.5.1.1 Frontend Network
	1.5.1.2 Backend Scale-out Network
	1.5.1.3 Scale-up Network

	1.5.2 UE Transport (UET) Objectives
	1.5.3 Network Fabric
	1.5.3.1 Elements
	1.5.3.1.1 Control Plane
	1.5.3.1.2 Data Plane
	1.5.3.1.3 Management Plane

	1.5.3.2 UE Switch Operation in Physical Networks
	1.5.3.3 Topologies
	1.5.3.4 Network Constraints

	1.6 UE Specification Overview: Layers
	1.6.1 Software Layer
	1.6.2 Transport Layer
	1.6.3 Network Layer
	1.6.4 Link Layer
	1.6.5 Physical Layer

	2 UE Software Layer
	2.1 UE Software Overview
	2.1.1 Software Specifications
	2.1.1.1 Libfabric Mapping

	2.1.2 Software Components and Interfaces
	2.1.2.1 Integration Model of FEP

	2.1.3 Reference Software Models and Supplementary Software
	2.1.4 References

	2.2 UE Libfabric Mapping
	2.2.1 Application Use Cases
	2.2.2 UET Profiles
	2.2.2.1 Profile Negotiation and Inter-Profile Interoperability

	2.2.3 Configuration Information
	2.2.4 JobIDs
	2.2.4.1 JobID Assignment at Job Initialization Time
	2.2.4.2 Fallback JobID Assignment
	2.2.4.3 Authorization
	2.2.4.3.1 Untagged Message Buffer Authorization
	2.2.4.3.2 Tagged Message Buffer Authorization
	2.2.4.3.3 Memory Region Authorization

	2.2.4.4 JobID Selection for Data Transmission Operations

	2.2.5 Libfabric APIs
	2.2.5.1 Libfabric Addressing
	2.2.5.2 Discovery APIs
	2.2.5.2.1 fi_version() API
	2.2.5.2.2 fi_getinfo() API

	2.2.5.3 Communication and Completion APIs
	2.2.5.3.1 fi_fabric() API
	2.2.5.3.2 fi_eq_open() API
	2.2.5.3.3 fi_domain() API
	2.2.5.3.4 fi_mr_reg() and fi_mr_key() APIs
	2.2.5.3.4.1 Memory Key Format

	2.2.5.3.5 fi_endpoint() and fi_ep_bind() APIs
	2.2.5.3.5.1 UET Address Assignment Architecture

	2.2.5.3.6 fi_getname() API
	2.2.5.3.7 fi_cq_open() and fi_cntr_open() APIs
	2.2.5.3.8 fi_av_open() and fi_av_insert() APIs

	2.2.5.4 OFI Data Transfer APIs
	2.2.5.4.1 fi_msg() APIs
	2.2.5.4.1.1 Unexpected Messages
	2.2.5.4.1.2 Message Rendezvous

	2.2.5.4.2 fi_tagged() APIs
	2.2.5.4.2.1 Tagged Message Initiator ID Matching
	2.2.5.4.2.2 Tagged Message Rendezvous

	2.2.5.4.3 fi_rma() APIs
	2.2.5.4.4 fi_atomic() APIs
	2.2.5.4.5 Collective APIs

	2.2.5.5 Other APIs
	2.2.5.6 Libfabric API Error Codes

	2.2.6 Packet Delivery Modes
	2.2.7 Traffic Classes
	2.2.8 Transmit and Receive Queues
	2.2.8.1 Transmit Queues
	2.2.8.2 Receive Queues and Registered Memory Regions

	2.2.9 Security Protocol
	2.2.10 Wire Protocol Mapping
	2.2.10.1 IP Header Field Mappings
	2.2.10.2 UET TSS Field Mappings
	2.2.10.3 UET PDS Header Field Mappings
	2.2.10.4 UET SES Header Field Mappings

	2.2.11 Linux Implementation of UET Control API
	2.2.12 References

	3 UE Transport Layer
	3.1 UET Scope, Scale, and Reach
	3.1.1 Virtualization

	3.2 UET Layers, Components, and Capabilities
	3.2.1 Semantic Sublayer (SES)
	3.2.2 Packet Delivery Sublayer (PDS)
	3.2.3 Congestion Management Sublayer (CMS)
	3.2.4 Transport Security Sublayer (TSS)
	3.2.5 Layering Summary
	3.2.6 Sublayer Interfaces
	3.2.7 Error Handling

	3.3 Profiles and Capabilities [normative]
	3.3.1 SES Transactions
	3.3.2 Buffer Addressing Mechanisms
	3.3.3 Authorization
	3.3.4 Buffer Behavior
	3.3.5 Packet Formats
	3.3.6 PDS Ordering Modes
	3.3.7 CMS Congestion Control Algorithms
	3.3.8 Encapsulation

	3.4 Semantics Sublayer (SES)
	3.4.1 Definition of Semantic Concepts
	3.4.1.1 Operations, Messages, and Transactions
	3.4.1.2 Services and Resources
	3.4.1.3 Addressing
	3.4.1.3.1 Job Identifiers (JobID)
	3.4.1.3.2 Process Identification (PIDonFEP)
	3.4.1.3.3 Separation of Services within a Process (Resource Index)
	3.4.1.3.4 Initiator Identifiers
	3.4.1.3.5 Matching and Nonmatching Operations
	3.4.1.3.6 Memory Addressing
	3.4.1.3.7 Addressing Summarized
	3.4.1.3.8 Addressing and libfabric [Informative]

	3.4.1.4 Authorization
	3.4.1.4.1 Job Identifier (JobID) and Authorization
	3.4.1.4.2 Encryption and Authorization

	3.4.1.5 Network Transaction Types
	3.4.1.5.1 Sends – Tagged and Untagged
	3.4.1.5.2 Writes
	3.4.1.5.3 Reads
	3.4.1.5.4 Atomic operations
	3.4.1.5.4.1 Atomic Operations and Datatypes
	3.4.1.5.4.2 Atomic Operation Control Fields

	3.4.1.5.5 Rendezvous Send Transactions
	3.4.1.5.6 Deferrable Send Transactions
	3.4.1.5.7 Responses

	3.4.1.6 Target Operation Types: Supported Buffer Behavior
	3.4.1.6.1 Use-Once Operation
	3.4.1.6.2 Multi-Receive
	3.4.1.6.3 Tagged Operations
	3.4.1.6.4 Memory Key Size and Range

	3.4.1.7 Ordering
	3.4.1.7.1 Libfabric Message Ordering
	3.4.1.7.2 Payload Ordering
	3.4.1.7.3 Order of Generation of Packets Within a Message
	3.4.1.7.4 Completion Ordering
	3.4.1.7.5 Ordering of Response Data

	3.4.1.8 Protocol Isolation Mechanisms
	3.4.1.9 Header Data
	3.4.1.10 Additional Control Fields
	3.4.1.11 Packet Sizes Based on Payload MTU
	3.4.1.12 Zero-Byte Operations
	3.4.1.13 Interaction of Semantics with Reliability Modes
	3.4.1.14 Message Identifiers and Message Construction
	3.4.1.15 Original Request PSN

	3.4.2 Semantic Header Formats
	3.4.2.1 Standard Header Format
	3.4.2.2 Optimized Header Formats
	3.4.2.3 Rendezvous Extension Header Format
	3.4.2.4 Atomic Operation Extension Header Format
	3.4.2.5 Semantic Response Header Formats
	3.4.2.6 Header Parsing Guide

	3.4.3 Semantic Processing
	3.4.3.1 Buffer Selection
	3.4.3.1.1 Send/Receive Operation
	3.4.3.1.2 RMA Operation
	3.4.3.1.3 Matching Operation

	3.4.3.2 Buffer Authorization
	3.4.3.3 Response Generation
	3.4.3.4 Rendezvous Processing
	3.4.3.5 Deferrable Send Processing
	3.4.3.5.1 Supporting Deferrable Send as Send

	3.4.3.6 Unexpected Message Handling
	3.4.3.6.1 Unexpected Messages over RUD PDC
	3.4.3.6.1.1 Back-off and Retry

	3.4.3.6.2 Unexpected Messages with Buffering
	3.4.3.6.2.1 Buffered Headers
	3.4.3.6.2.2 Buffered Unexpected Messages

	3.4.3.6.3 Unexpected Messages and Resource Exhaustion over ROD PDC
	3.4.3.6.3.1 Scalable Parallel Application Deployments
	3.4.3.6.3.2 Client/Server Buffer Exhaustion

	3.4.4 Semantic Protocol Sequences
	3.4.4.1 Requests with Payloads
	3.4.4.1.1 Single-Packet Requests
	3.4.4.1.2 Multi-Packet Requests

	3.4.4.2 Requests with Responses That Have Payloads
	3.4.4.3 Rendezvous Transactions
	3.4.4.4 Deferrable Send Transactions
	3.4.4.5 Additional Unexpected Message Sequences
	3.4.4.6 Errors Indicated by the Initiator

	3.4.5 Error Handling
	3.4.5.1 Error Precedence
	3.4.5.2 Error Scopes
	3.4.5.3 Recoverable Errors
	3.4.5.3.1 Handling of Recoverable Errors Detected at the Initiator
	3.4.5.3.2 Handling of Recoverable Errors Detected at the Target

	3.4.5.4 Unrecoverable Errors
	3.4.5.4.1 Handling of Unrecoverable Errors Detected at the Initiator
	3.4.5.4.2 Handling of Unrecoverable Errors Detected at the Target
	3.4.5.4.3 Unrecoverable Errors and Rendezvous

	3.4.5.5 Informational Errors
	3.4.5.6 Return Codes

	3.4.6 Enumerated Types Used in Headers
	3.4.6.1 PDS Next Header Enumerations
	3.4.6.2 Opcode Enumerations
	3.4.6.3 Return Codes
	3.4.6.4 Atomic Memory Operations (AMO) Enumerations

	3.4.7 Device Expectations
	3.4.7.1 Header Field Integrity Enforcement
	3.4.7.2 SDI Assignment to Applications

	3.4.8 UE Transport Semantics: Memory Model
	3.4.8.1 Ordering
	3.4.8.1.1 Message Ordering
	3.4.8.1.2 Completion Ordering
	3.4.8.1.3 Data Ordering

	3.4.8.2 Consistency and Atomicity
	3.4.8.3 Global Observability
	3.4.8.4 Idempotency

	3.4.9 Mapping of *CCL Send/Receive to Proposed Semantics [Informative]
	3.4.9.1 Tag-Based *CCL Mapping
	3.4.9.2 RMA-Based *CCL Mapping

	3.5 Packet Delivery Sublayer (PDS)
	3.5.1 PDS Terminology
	3.5.2 Illustration of PDS Terms
	3.5.3 Packet Delivery Services
	3.5.4 PDS-SES Logical Interface
	3.5.5 PDS Configuration Parameters
	3.5.6 Reliability and Ordering
	3.5.7 Packet Delivery Modes Overview
	3.5.7.1 Reliable Unordered Delivery (RUD)
	3.5.7.2 Reliable Ordered Delivery (ROD)
	3.5.7.3 Reliable Unordered Delivery for Idempotent Operations (RUDI)
	3.5.7.4 Unreliable Unordered Delivery (UUD)
	3.5.7.5 Ordered Packets vs. Ordered Messages

	3.5.8 Packet Delivery Contexts (PDC)
	3.5.8.1 PDC Selection and Sharing
	3.5.8.2 PDC Establishment
	3.5.8.2.1 PDC Establishment with Encryption
	3.5.8.2.2 PDS Lifecycle with Encryption

	3.5.8.3 PDC Close
	3.5.8.4 PDC Lifetime

	3.5.9 PDS Event State Machine
	3.5.9.1 PDS Top Level
	3.5.9.2 PDS Manager
	3.5.9.3 PDC Initiator State Machine
	3.5.9.4 PDC Target State Machine

	3.5.10 Header Formats
	3.5.10.1 UET Entropy Header
	3.5.10.2 PDS Prologue
	3.5.10.3 RUD/ROD Request
	3.5.10.4 RUD/ROD Request with CC State
	3.5.10.5 RUD/ROD Acknowledgement
	3.5.10.6 RUD/ROD ACK_CC
	3.5.10.7 RUD/ROD ACK_CCX
	3.5.10.8 RUD/ROD CP
	3.5.10.9 RUDI Request/Response
	3.5.10.10 NACK
	3.5.10.11 NACK_CCX
	3.5.10.12 UUD Request
	3.5.10.13 RUD/ROD Default Response SES Header

	3.5.11 Header Fields
	3.5.11.1 pds.type
	3.5.11.2 pds.next_hdr
	3.5.11.3 pds.ctl_type
	3.5.11.4 Packet Sequence Numbers
	3.5.11.4.1 pds.psn
	3.5.11.4.2 pds.psn_offset
	3.5.11.4.3 pds.pdc_info
	3.5.11.4.4 CLEAR_PSN
	3.5.11.4.5 CACK_PSN
	3.5.11.4.6 ACK_PSN
	3.5.11.4.7 SACK_PSN
	3.5.11.4.8 New_Start_PSN
	3.5.11.4.9 pds.pkt_id

	3.5.11.5 PDC Identifiers
	3.5.11.6 pds.pdc_info
	3.5.11.7 pds.req_cc_state
	3.5.11.8 pds.flags
	3.5.11.8.1 pds.flags.isrod
	3.5.11.8.2 pds.flags.syn
	3.5.11.8.3 pds.flags.ar
	3.5.11.8.4 pds.flags.retx
	3.5.11.8.5 pds.flags.m
	3.5.11.8.6 pds.flags.req
	3.5.11.8.7 pds.flags.p
	3.5.11.8.8 pds.flags.nt
	3.5.11.8.9 Reserved Flags
	3.5.11.8.10 Mapping pds.flags Fields to pds.type

	3.5.11.9 pds.entropy
	3.5.11.10 NACK pds.payload
	3.5.11.11 pds.cc_type and pds.ccx_type
	3.5.11.12 NCCX_TYPE
	3.5.11.13 pds.mpr (Maximum PSN Range)
	3.5.11.14 pds.sack_bitmap
	3.5.11.15 pds.ack_cc_state and pds.ack_ccx_state
	3.5.11.16 pds.nack_ccx_state

	3.5.12 Requests and Acknowledgements
	3.5.12.1 PDS Requests
	3.5.12.2 PDS Acknowledgements
	3.5.12.3 ACK per Packet
	3.5.12.3.1 SACK bitmap – ACK per Packet

	3.5.12.4 Coalesced ACKs
	3.5.12.4.1 Packet/Byte Threshold ACK Trigger – Coalesced ACKs
	3.5.12.4.2 Last Packet ACK Trigger – Coalesced ACKs
	3.5.12.4.2.1 Example Method for Last Packet ACK Trigger

	3.5.12.4.3 SACK Bitmap – Coalesced ACKs

	3.5.12.5 Cumulative ACK (CACK) Rules
	3.5.12.6 ACK Window
	3.5.12.7 PDS Negative Acknowledgements

	3.5.13 Default SES Responses
	3.5.14 Transmit Scheduling
	3.5.15 Loss Detection and Recovery
	3.5.15.1 Trimming
	3.5.15.2 NACK Loss Detection
	3.5.15.3 RTO Loss Detection
	3.5.15.4 Early Loss Detection — Requests
	3.5.15.4.1 OOO-based Loss Detection
	3.5.15.4.2 EV-Based Loss Detection
	3.5.15.4.3 Tail Loss Detection
	3.5.15.4.4 Receiver Based Loss Detection

	3.5.15.5 Early Loss Detection - ACKs
	3.5.15.5.1 Loss Detection for Guaranteed Delivery ACKs
	3.5.15.5.2 OOO-Based Loss Detection — ACKs

	3.5.16 Control Packet (CP)
	3.5.16.1 NOOP
	3.5.16.2 ACK Request
	3.5.16.3 Clear
	3.5.16.3.1 Clear Command
	3.5.16.3.2 Clear Request

	3.5.16.4 PDC Close
	3.5.16.4.1 Close Command
	3.5.16.4.2 Close Request

	3.5.16.5 Probe
	3.5.16.6 Credit
	3.5.16.6.1 Credit
	3.5.16.6.2 Credit Request

	3.5.16.7 Negotiation
	3.5.16.8 CP Summary Table

	3.5.17 Semantic Responses
	3.5.18 Reserved Service Support
	3.5.19 Sequence Diagrams
	3.5.20 Reliable Unordered Delivery
	3.5.20.1 RUD Services
	3.5.20.2 Standard Sequences
	3.5.20.2.1 Single-Packet Send Sequence – Non-Guaranteed Delivery
	3.5.20.2.2 Single-Packet Send Sequence – Guaranteed Delivery
	3.5.20.2.3 Multi-Packet Send Sequence – Non-Guaranteed Delivery
	3.5.20.2.4 Multi-Packet Send Sequence – Guaranteed Delivery
	3.5.20.2.5 Single Packet Read Sequence – SES Standard Header
	3.5.20.2.6 Single-Packet Read Sequence – SES Medium and Small Headers
	3.5.20.2.7 Single-Packet Read Sequence Optimization
	3.5.20.2.8 Multi-Packet Read Sequence

	3.5.20.3 Negative Acknowledgements, Packet Drops, and Retries
	3.5.20.3.1 Single-Packet PDS NACK Sequence
	3.5.20.3.2 NACK Sequence for Lost PDS Requests and ACKs

	3.5.21 Reliable Ordered Delivery
	3.5.21.1 ROD Services
	3.5.21.2 Standard Sequences
	3.5.21.3 Error Sequences

	3.5.22 RUDI Sequence Diagrams
	3.5.22.1 RUDI Services
	3.5.22.2 Standard Sequences
	3.5.22.3 Negative Acknowledgements, Packet Drops, and Retries

	3.5.23 Error Model
	3.5.23.1 PDC Normal Events
	3.5.23.2 Unexpected Events
	3.5.23.3 PDC Unrecoverable Events

	3.5.24 Full Header Format
	3.5.24.1 UET over UDP/IP, no UET CRC, no Encryption
	3.5.24.2 UET over UDP/IP Using UET CRC, no Encryption
	3.5.24.3 UET over UDP/IP using Encryption
	3.5.24.4 UET directly over IP no UET CRC, no Encryption
	3.5.24.5 UET directly over IP with UET CRC, no Encryption
	3.5.24.6 UET directly over IP using Encryption

	3.5.25 UET CRC

	3.6 Congestion Management Sublayer (CMS)
	3.6.1 UET CC Guidelines [Informational]
	3.6.2 Congestion Control Algorithms
	3.6.3 Congestion Control Algorithm Design Targets
	3.6.4 Telemetry and Network Switch Services
	3.6.4.1 Explicit Congestion Notification (ECN)
	3.6.4.2 Round-Trip Time (RTT)
	3.6.4.3 Endpoint Congestion State
	3.6.4.4 Packet Trimming
	3.6.4.5 Priority Flow Control
	3.6.4.6 Credit-based Flow Control
	3.6.4.7 Mapping UET to Traffic Classes and DSCP
	3.6.4.7.1 DSCP Mappings
	3.6.4.7.2 Traffic Classes for Best Effort Networks
	3.6.4.7.3 Traffic Classes for Lossless Networks

	3.6.5 UET CC Protocol Operation Overview
	3.6.5.1 Types of Congestion [Informational]
	3.6.5.2 Adoption of Multipath
	3.6.5.3 Window Based Operation
	3.6.5.4 UET CC Startup Behavior

	3.6.6 Congestion Control Context (CCC)
	3.6.7 CCC for ROD PDCs
	3.6.7.1 CCC for RUDI & UUD

	3.6.8 Source Context
	3.6.8.1 Abstract interface between PDS and Congestion Control
	3.6.8.1.1 Source API

	3.6.9 UET-CC Header Formats and Fields
	3.6.9.1 pds.req_cc_state – RCCC and TFC
	3.6.9.2 pds.ack_cc_state for NSCC
	3.6.9.2.1 pds.ack_cc_state.rcvd_bytes for NSCC
	3.6.9.2.2 pds.ack_cc_state.rcv_cwnd_pend and pds.ack_cc_state.rc for CC_NSCC
	3.6.9.2.3 pds.ack_cc_state.ooo_count for NSCC
	3.6.9.2.4 pds.ack_cc_state.service_time for NSCC

	3.6.9.3 pds.ack_cc_state for TFC and RCCC
	3.6.9.3.1 pds.ack_cc_state.credit for TFC and RCCC
	3.6.9.3.2 pds.ack_cc_state.ooo_count for TFC and RCCC

	3.6.10 Common Congestion Control Event Processing
	3.6.10.1 Extracting Entropy from packets
	3.6.10.2 ACK Preprocessing for Congestion Control
	3.6.10.3 ACK CC_STATE Preprocessing for pds.cc_type=CC_NSCC
	3.6.10.4 ACK CC_STATE Preprocessing for pds.cc_type=CC_CREDIT
	3.6.10.5 NACK Preprocessing for CC
	3.6.10.6 Retransmission Timeouts and Inferred Loss

	3.6.11 Congestion Control Modes
	3.6.12 Overall CCC Pseudocode
	3.6.12.1 Sender Algorithm
	3.6.12.2 Nominal Packet Size
	3.6.12.3 Overall CCC Pseudocode
	3.6.12.4 Receiver Algorithm

	3.6.13 Network Signal-based Congestion Control
	3.6.13.1 Calculating RTT
	3.6.13.2 Destination Flow Control
	3.6.13.3 NSCC Configuration Parameters
	3.6.13.4 NSCC Source State
	3.6.13.5 NSCC Source Algorithm
	3.6.13.6 NSCC Internal Functions
	3.6.13.7 Initializing base_rtt
	3.6.13.8 NSCC Destination State
	3.6.13.9 NSCC Destination Algorithm

	3.6.14 UET Receiver-Credit Congestion Control
	3.6.14.1 CCC Identifiers
	3.6.14.2 RCCC Source State
	3.6.14.3 RCCC Credit Timer
	3.6.14.4 RCCC Source Algorithm
	3.6.14.5 RCCC Destination State
	3.6.14.5.1 RCCC Global Destination State
	3.6.14.5.2 Per-Source Destination State

	3.6.14.6 RCCC Destination Algorithm
	3.6.14.7 Dynamic Credit Rate
	3.6.14.7.1 RCCC Destination Flow Control

	3.6.15 Transport Flow Control (TFC)
	3.6.15.1 Examples of credit_used calculation
	3.6.15.2 TFC Credit Initialization
	3.6.15.3 TFC CCC Shutdown
	3.6.15.4 TFC CCC Credit Timer

	3.6.16 Multipath Path Selection
	3.6.16.1 Path Entropy
	3.6.16.2 Single-Path Entropy
	3.6.16.3 Oblivious Multipath Spraying
	3.6.16.4 Path-aware Multipath Spraying
	3.6.16.5 Detecting and Handling Path Failure
	3.6.16.6 Multi-port and Multi-plane Operation
	3.6.16.6.1 Multiple Separate Planes, One Shared FEP Address for All Ports.
	3.6.16.6.2 Multi-port, Single Plane, One IP address for All Ports
	3.6.16.6.3 Single-port Spraying on a Multi-port NIC

	3.6.17 Switch Configuration for UET CC

	3.7 Transport Security Sublayer (TSS)
	3.7.1 Introduction
	3.7.2 Security Model
	3.7.2.1 Trust Model
	3.7.2.2 Threat Model
	3.7.2.2.1 Security Assumptions

	3.7.2.3 Endpoint Considerations
	3.7.2.4 Switch Considerations
	3.7.2.4.1 Quality of Service/Congestion Marking
	3.7.2.4.2 Packet Trimming Congestion Signal

	3.7.2.5 TSS Logical Interfaces [informative]
	3.7.2.5.1 PDS – TSS Interface
	3.7.2.5.2 TSS – Link Interface

	3.7.3 Architecture
	3.7.3.1 Use Cases
	3.7.3.1.1 Single Job Within a Secure Domain
	3.7.3.1.2 Multiple Jobs Within Secure Domain
	3.7.3.1.3 Client-Server Model
	3.7.3.1.4 FaaS (Function-as-a-Service)

	3.7.4 Secure Domains
	3.7.4.1 Joining a Secure Domain
	3.7.4.2 Removing a FEP from a Secure Domain
	3.7.4.3 Rejoining a Secure Domain

	3.7.5 Key Lifetime and Security Considerations
	3.7.5.1 Key Rotation
	3.7.5.2 KDF Rekeying
	3.7.5.3 KDF Algorithms
	3.7.5.4 Symmetric Algorithms
	3.7.5.5 IV Considerations
	3.7.5.6 Time-stamp Counter (TSC)

	3.7.6 Secure Domain Key Database (SDKDB)
	3.7.7 KDF Modes
	3.7.8 KDF Construction
	3.7.8.1 Cluster mode KDF for IPv4 and Packets with Explicit SSI
	3.7.8.2 Cluster mode KDF for IPv6 without explicit SSI
	3.7.8.3 Server Mode KDF
	3.7.8.4 KDF Examples

	3.7.9 Replay Protection
	3.7.10 Epoch-based packet rejection
	3.7.11 TSS Packet Processing
	3.7.11.1 Packet Encryption
	3.7.11.1.1 Authentication and Confidentiality Offsets
	3.7.11.1.2 IV Generation
	3.7.11.1.3 ICV Calculation

	3.7.11.2 Packet Transmission
	3.7.11.3 Packet Reception

	3.7.12 Statistics, Parameters, and Events

	3.8 References

	4 UE Network Layer
	4.1 Packet Trimming
	4.1.1 Interactions with explicit congestion notification
	4.1.2 Where can trimming be enabled?
	4.1.3 Interactions with upper protocols
	4.1.4 Mapping DSCPs to traffic classes for Ultra Ethernet transport
	4.1.4.1 Single instance of UET per network
	4.1.4.2 Multiple instances of UET per network

	4.1.5 Mapping DSCPs to traffic classes for other transports
	4.1.6 Security considerations
	4.1.7 References

	5 UE Link Layer
	5.1 Link Layer Retry (LLR)
	5.1.1 Frame structure
	5.1.1.1 UE Link frame preamble

	5.1.2 Interface modifications
	5.1.3 LLR Operation
	5.1.3.1.1 Control Ordered Set

	5.1.4 LLR configuration
	5.1.5 LLR transmit path operation
	5.1.6 Transmission of LLR_ACKs/LLR_NACKs
	5.1.7 LLR receive path operation
	5.1.8 Received ACK/NACK processing
	5.1.9 Control Ordered Set transmission and reception
	5.1.9.1.1 LLR_INIT CtlOS
	5.1.9.1.2 LLR_INIT_ECHO CtlOS
	5.1.9.1.3 LLR_ACK CtlOS
	5.1.9.1.4 LLR_NACK CtlOS
	5.1.9.1.5 Control Ordered Set transmission priority

	5.1.10 Error propagation
	5.1.11 Counters

	5.2 Credit-based Flow Control
	5.2.1 Lossless Packet Delivery Use Cases
	5.2.2 CBFC and PFC Relative Advantages
	5.2.3 CBFC Feature List
	5.2.4 CBFC Overview
	5.2.4.1 General Overview
	5.2.4.2 Cyclic Counters for Tracking Credits with Resiliency

	5.2.5 CBFC Operation
	5.2.5.1 Overview
	5.2.5.2 Configuration Parameters and Initialization
	5.2.5.3 CBFC Cyclic Counters and State Variables
	5.2.5.4 CBFC Point-to-Point Messages
	5.2.5.5 Packet and CBFC Message Sequence
	5.2.5.6 Sender Operations
	5.2.5.6.1 Packet Transmission Credit Check
	5.2.5.6.2 Packet Transmission Counter Updates
	5.2.5.6.3 CF_Update Message Reception
	5.2.5.6.4 CC_Update Message Generation

	5.2.5.7 Receiver Operations
	5.2.5.7.1 Packet Reception Counter Updates
	5.2.5.7.2 Input Buffer Drain and Counter Updates
	5.2.5.7.3 CF_Update Message Generation
	5.2.5.7.4 CC_Update Message Reception

	5.2.5.8 Handling Non-Ideal Credit Sizes (Informative)

	5.2.6 CBFC Message Formats
	5.2.6.1 CF_Update Message
	5.2.6.2 CC_Update Messages

	5.2.7 MAC and MAC Control Layer Interfaces to CBFC
	5.2.7.1 MAC Service Interface Additions
	5.2.7.2 MAC Insertion of CBFC Messages
	5.2.7.3 MAC Reception of CBFC Messages

	5.2.8 CBFC Initialization
	5.2.8.1 Network-Level Configuration
	5.2.8.2 Link-Level Configuration
	5.2.8.3 CBFC Link Level Initialization Using UE Link Negotiation
	5.2.8.3.1 CBFC Receiver TLV Fields
	5.2.8.3.2 CBFC Sender TLV Fields

	5.2.8.4 Lossless VC Initialization Process
	5.2.8.5 Lossless VC Removal Process

	5.2.9 Interactions Between CBFC, PFC, and LLR
	5.2.10 Compliance Requirements
	5.2.10.1 CreditSize Parameter
	5.2.10.2 Packet Overhead
	5.2.10.3 Compliance Requirements Summary

	5.2.11 Control Ordered Sets (CtlOS) in UE Link Layer
	5.2.11.1 Control Ordered Sets Format
	5.2.11.2 Link Layer and MAC CtlOS Insertion Rules

	5.2.12 CBFC Message Examples (Informative)
	5.2.12.1 CBFC CF_Update Message
	5.2.12.2 BFC CC_Update Message

	5.2.13 References

	5.3 UE Link Negotiation
	5.3.1 LLDP Overview
	5.3.2 UE Organizationally Specific LLDP TLVs
	5.3.2.1 UE Link Negotiation Options TLV (Options TLV)
	5.3.2.1.1 TLV Type
	5.3.2.1.2 TLV Information String Length
	5.3.2.1.3 Company ID (CID)
	5.3.2.1.4 Subtype
	5.3.2.1.5 Version
	5.3.2.1.6 UE Link Options
	5.3.2.1.6.1 LLR
	5.3.2.1.6.2 RESV1
	5.3.2.1.6.3 RESV2

	5.3.2.2 UE Link Negotiation CBFC TLV (CBFC TLV)
	5.3.2.2.1 TLV Type
	5.3.2.2.2 TLV Information String Length
	5.3.2.2.3 Company ID (CID)
	5.3.2.2.4 Subtype
	5.3.2.2.5 Version
	5.3.2.2.6 Error_Code
	5.3.2.2.7 S_CreditSize
	5.3.2.2.8 S_PacketOverhead
	5.3.2.2.9 S_VC_RTS
	5.3.2.2.10 R_VCnLength
	5.3.2.2.11 R_CellSize
	5.3.2.2.12 R_PacketOverhead
	5.3.2.2.13 R_TotalCredits
	5.3.2.2.14 R_NumVCs
	5.3.2.2.15 R_VCn
	5.3.2.2.15.1 R_VC_Want
	5.3.2.2.15.2 R_VC_RTR
	5.3.2.2.15.3 R_VcID
	5.3.2.2.15.4 R_PktID_Sel
	5.3.2.2.15.5 R_PktID
	5.3.2.2.15.6 R_MaskPcpDei
	5.3.2.2.15.7 R_PcpDei
	5.3.2.2.15.8 R_MaskDSCP
	5.3.2.2.15.9 R_DSCP
	5.3.2.2.15.10 R_Handle
	5.3.2.2.15.11 R_VC_CreditLimit
	5.3.2.2.15.12 Resv

	5.3.3 UE LLDP YANG
	5.3.3.1 Models for UE LLDP Extension TLV YANG Modules
	5.3.3.1.1 UE Link Negotiation Options TLV Model
	5.3.3.1.2 UE Link Negotiation CBFC TLV Model

	5.3.3.2 Security Considerations for UE LLDP Extension YANG Modules
	5.3.3.3 Schema for UE LLDP Extension YANG Modules
	5.3.3.3.1 UE Link Negotiation Options TLV Schema
	5.3.3.3.2 UE Link Negotiation CBFC TLV Schema

	5.3.3.4 UE Link Negotiation Extension YANG Modules
	5.3.3.4.1 YANG Module uec-link-neg-options-tlv
	5.3.3.4.2 YANG Module uec-link-neg-cbfc-tlv

	5.3.4 References
	5.3.4.1 Normative References
	5.3.4.2 Informative References

	6 UE Physical Layer
	6.1 UE PHY for 100 Gb/s per lane signaling
	6.1.1 Media support
	6.1.2 PHY rates and types supported

	6.2 Control ordered sets
	6.2.1 Sequence ordered sets and control ordered set background
	6.2.2 Control ordered sets format
	6.2.3 PCS required modifications
	6.2.4 RS required modifications
	6.2.4.1 MII transmit functional specifications
	6.2.4.2 MII receive functional specifications
	6.2.4.3 Link fault signaling

	6.3 FEC statistics for prediction of link quality
	6.3.1 Relationship between performance metrics
	6.3.1.1 Relationship between UCR and FLR
	6.3.1.2 Relationship between UCR and MTBPE

	6.3.2 Estimation of UCR from FEC statistics
	6.3.2.1 Estimation of UCR using the uncorrected codewords counter
	6.3.2.2 Estimation of UCR using the corrected codewords counter
	6.3.2.3 Estimation of UCR using the codeword error bin counters

	6.3.3 Examples
	6.3.3.1 MTBPE of a large network
	6.3.3.2 Monitoring a network
	6.3.3.3 Planning a large-scale network with reliability requirements

	6.4 Recommendations
	6.4.1 Low error rate
	6.4.2 Low power
	6.4.3 Low latency

	6.5 References

	7 UE Compliance Requirements
	7.1 Compliance Statement
	7.1.1 UE Support Requirements
	7.1.2 Declaration Format
	7.1.3 Compliance verses Support Terminology

